CO 456 — Game Theory F08, David Pritchard — Notes 3 1

The Lemke-Howson Algorithm

In this note we introduce an algorithm that finds Nash equilibria of 2-player, finite, strategic
games. In doing so, we will prove that the algorithm is correct: it terminates, and it finds a
Nash equilibrium. We hence prove the special case of Nash’s theorem where there are only 2
players.

The algorithm originally appeared in the paper [1] of Lemke and Howson, in 1964. The
Lemke-Howson algorithm resembles the simplex algorithm (from linear programming), espe-
cially since the algorithm consists of iterated pivoting. On a related note, we have already seen
that the entire set of Nash equilibria in zero-sum 2-player games can be found (and proved to
exist) by using linear programming methods. Here is one similarity and one difference between
the two methods.

e The simplex algorithm can take an exponential number of iterations [Klee and Minty
1969] and so can the Lemke-Howson algorithm [Savani and von Stengel 2004].

e Other techniques to solve linear programs are known that run in polynomial time (e.g.,
the ellipsoid and interior point methods) but no polynomial time technique is known for
finding Nash equilibria (even for 2-player games).

In the first part, we describe the Lemke-Howson algorithm at a high level. In the second
part, we show how the algorithm can be executed using tableaux, using an example. In the
third part, we discuss degeneracy issues.

Our notation follows [2], which we repeat here. Let player 1 have m actions labeled M =
{1,...,m} and player 2 have n actions labeled N = {m + 1,...,m + n}. We represent the
payoffs for our two-player game with m x n matrices. The matrix A represents the payoffs for
player 1, and the matrix B represents the payoffs for player 2. We think of player 1 picking
rows and player 2 picking columns; so a mixed strategy for player 1 is an m-element row vector
that is stochastic (the entries are nonnegative and sum to 1) and similarly a mixed strategy for
player 2 is an n-element stochastic column vector. With these notations, the payoff to player
1 (resp. 2) under mixed action profile (z',y) is " Ay (resp. # " By). The support supp(-) of
a vector is the set of indices where the vector is nonzero. We use X to denote the set of all
mixed strategies of player 1 (i.e., X is the set of all stochastic m-element row vectors) and Y
is defined similarly. The symbol 0 represents the all-zero vector, whose size and orientation
should be determined from context.

Assumption 1. We assume that all entries of A and B are nonnegative, that A has no all-zero
columns, and B has no all-zero rows.

This assumption is no loss of generality, since adding the same large positive number to
every entry of A (or B) clearly does not change the structure of the Nash equilibria.

1. The Basic Idea

As we observed last class, one brute-force algorithm (noted in [Dickhaut and Kaplan 1991] and
probably earlier) for finding all Nash equilibria relies on guessing the support of the equilibrium,
and then solving a linear program to determine what values the nonzero variables can take on.
The Lemke-Howson algorithm uses a similar idea; we maintain a single guess as to what the
supports should be, and in each iteration we change the guess only a little bit.

The easiest description of the algorithm, and the easiest proof of Nash’s theorem for 2-
player games, relies on two polytopes which we now define. A polytope is the same as the
feasible region for an LP: a system of linear equalities and inequalities. Let B; denote the

CO 456 — Game Theory F08, David Pritchard — Notes 3 2

column of B corresponding to action j and let A* denote the row of A corresponding to action
i. Here are the two polytopes:

Po={zeRM|(VieM:2;,>0)& (Vj€EN:2 ' B; <1)}
Po={ycRY|(VieN:y; >0) & (Vie M:Ay<1)}

Note that we don’t restrict x and y to be stochastic here, only nonnegative. For a nonzero
nonnegative z, we can normalize it to a stochastic vector nrml(z) as follows,

nrml(z) = (sz> x.

The inequalities that define P; have the following meaning:
e if x € P| meets x; > 0 with equality then ¢ is not in the support of x
e if z € P| meets ' B; < 1 with equality then j is a best response to nrml(x)

So the polyhedra P; somehow encode information about best responses and the support. We
now make this encoding explicit.

Let us say that @ € Py has label k, where k € MUN = {1,...,m+n}, if either k € M and
2, =0,0or k€ N and 2! B, = 1. Similarly y € P, has label k if either k € N and vy, = 0, or
k € M and AFy = 1. As a consequence of the Support Characterization, we have the following.

Theorem 1. Suppose that z € P; and y € P, and neither z nor y is the all-zero vector.
Then x and y together have all labels from 1 to k if and only if (nrml(z), nrml(y)) is a Nash
equilibrium. All Nash equilibria arise in this way.

Proof. For each i € M, we know that either z; = 0 or ¢ is a best response by player 1 to the
normalized strategy corresponding to y. Thus (by the S. C.) player 1 is using a best mixed
response. Similarly player 2 is using a best mixed response, so we have a NE.

On the other hand, given any Nash equilibrium (z’,y’) let A; be the value that player 1
obtains and Ag be the value that player 2 obtains. It is easy to check that '/ € P; and
y' /A1 € Py, and the S. C. again quickly proves that 2’ and y’ together have all labels. O

Next we employ a common sort of assumption from the mathematical programming liter-
ature. Assumption 1 ensures that the polyhedron P; is bounded and m-dimensional, and P
is bounded and n-dimensional. A bounded polyhedron is called a polytope. A d-dimensional
polytope is simple if every vertex (i.e., every extreme point) meets exactly d of the defining
inequalities with equality.

Assumption 2. The polytopes P, and P, are simple.

A game that does not satisfy Assumption 2 is called degenerate. Intuitively, degeneracy
involves a special relationship amongst the payoffs, and so “most” games are non-degenerate.
(More specifically, in the 2mn-dimensional space of all games, the degenerate ones occupy
regions of dimension at most 2mn — 1.) There is a standard way to deal with degenerate cases
called perturbation, where we change all the payoff values by a little amount (either numerically
with random numbers, or symbolically). We will explain later in concrete terms how to apply
the Lemke-Howson algorithm to games that are degenerate.

For a point z in a polyhedron P, a defining inequality N is binding if x meets X with
equality. The binding subsystem ((x) corresponding to x is the set of all defining inequalities
that are binding. The following facts are basic elements of polyhedral theory; intuitively, it
is easy to see that they hold in dimension at most 3. (The first item is just the definition of
“simple”).

CO 456 — Game Theory F08, David Pritchard — Notes 3 3

Theorem 2. In a simple d-dimensional polytope,
(a) every vertex v has |8(v)| = d, i.e., is incident on exactly d faces;
(b) for two distinct vertices v, v’ we have 3(v) # B(v');

(c) (pivoting) every vertex is incident on exactly d edges; in particular, for each X € §(v),
there is a unique neighbour v’ of v with 8(v') N B(v) = B(v)\{N}

Notice that in P; and P», binding inequalities correspond to the labels we defined earlier.
E.g., x has label i € M iff z; > 0 is binding for x, and « has label j € N iff 2T B; < 1 is
binding for x. Because of this, applying Theorem 2(c¢) to P; or P, will be called removing the
label k from v and obtaining new vertex v’, where k is the label corresponding to inequality N.
Similarly, since v’ in Theorem 2(c) has exactly one new label that v didn’t have, namely the
label &’ corresponding to the unique inequality in 5'(v)\B(v), we will say that the label k' was
added.

We are now able to state the Lemke-Howson algorithm and prove its correctness (in the
nondegenerate case). Throughout the algorithm, x is a vertex of P; and y is a vertex of Ps.

Algorithm 3-0.1 The Lemke-Howson algorithm.

1: Let = (resp. y) be the all-zero vector 0 of length m (resp. n)
2: Let kg be any label of x

3: Let k = ko

4: loop

5: In P;, remove the label k from x; let 2’ be the new vertex and &’ the label added
6: Let © = o’

7 If ¥ = kg, stop looping

8: In P, remove the label k' from y; let ¥’ be the new vertex and &” the label added
9: Let y =4/

10: If ¥ = kg, stop looping
11: Let k= k"

12: end loop

13: Output (nrml(z), nrml(y))

(It should be easy to see how to modify the algorithm so that the first label is removed
from y instead of from z.)

Claim 1. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Each time we apply Theorem 2(c) and update the point « or y it will be called a pivot.
Let us define a configuration to be any pair (z,y) such that z is a vertex of Py, y is a vertex of
P,, and every label in M U N — kg is had by either x or y (or both). The key point is that, at
every point during the algorithm, x and y together form a configuration. (To see this, recall
that x has exactly m labels, y has exactly n labels, there are m + n labels in total, and use
induction on the number of pivots.)

We say that configurations (z,y) and (2/,y’) are adjacent if either

(a) x =2’ and an edge of P, connects y to y/, or
(b) y =y’ and an edge of P; connects z to z’.

First, notice that each pivot of the algorithm moves us from one configuration to an adjacent
configuration. Next, consider the following two kinds of configurations:

CO 456 — Game Theory F08, David Pritchard — Notes 3 4

x and y together have all labels: this configuration is adjacent to exactly one other con-
figuration, since exactly one of x or y has label ky, and we need to remove that label
from whichever one has it.

x and y share a duplicate label: this configuration is adjacent to exactly two other con-
figurations, since we can remove the duplicate label from x and pivot in P;, or remove
the duplicate label from y and pivot in Ps.

Consider a graph whose nodes are all the configurations, and whose edges are all pairs of
adjacent configurations. The above analysis shows that every node has degree 1 or 2; hence
every connected component is a path or a cycle. Viewed in this graph, the Lemke-Howson
algorithm begins at the configuration (0, 0); this configuration has all labels and is therefore
an endpoint of a path component. The algorithm walks along this path until it finds another
degree-1 node. From the above analysis we see that such a node has all labels; furthermore,
it cannot be that the final configuration is (0,0). (It still might be possible to end at a
configuration of the form (z,0) or (0,y), but we leave it as an exercise to show that this is
not possible.) Hence, using Theorem 1 we end at a configuration corresponding to a Nash
equilibrium. O

In the proof it is also clear that the “configuration graph” has an even number of degree-1
nodes, and all of them except (0, 0) are Nash equilibria. With a little more work we can hence
prove the following:

Corollary 1. A nondegenerate two-player strategic game has a finite, odd number of Nash
equilibria.

In particular, of course, the game cannot have 0 equilibria.

2. Tableau Method and Example

To apply the tableau method to find Nash equilibria using the Lemke-Howson algorithm, we
use the following four steps.

(a) Preprocessing.

(b) Initialization of tableaux.

(¢) Repeated pivoting.

(d) Recover Nash equilibrium from final tableaux.

In the tableau method, we introduce slack wvariables, and use the terminology basic and
non-basic variables. For our purposes the basic variables and set of labels have opposite
meanings since labels imply a tight inequality and basic variables are not tight. Hence,
“enters the basis” means the same as “label is removed” and “leaves the basis” means that
“label is added.”

Step 1. Preprocessing

Recall that iterated elimination of strictly dominated strategies preserves all Nash equilibria.
Elimination reduces the size of the game, and therefore will reduce the amount of work involved
with the pivoting later on. Hence, one should apply this elimination before beginning. Strict
domination by mized strategies also applies here!

Next, to ensure that the game satisfies the conditions of Theorem 1, add a suitably large
constant to the entries of each payoff matrix.

CO 456 — Game Theory F08, David Pritchard — Notes 3 5

Step 2. Initialization of Tableaux

For the purposes of solving the game we need two tableaux, one for each player. Let r; be the
slack in the constraint A*y < 1 and let s; be the slack in the constraint :z:TBj < 1. We then
obtain the system

Ay+r=1,B'z+s=1, and z,y,7, s are nonnegative.

In the initial tableaux, the basis is {r; | i € M}U{s; | j € N} and so we rewrite the equations
so as to solve for them.
As an example we will use the following game.

pl\p2 || 4 | 5| 6
1 121317100
2 010321
3 2010 1,3

Notice that the entries are positive, no strict domination occurs, and furthermore that there
are no pure Nash equilibria. The game satisfies Assumption 1 and it happens to also satisfy
Assumption 2.

The initial tableaux are r = 1 — Ay,

ry = 1 —Ya —3y5 [AH

ro =1 —2yg [A2]

rs=1 —2ys —ys —Ys [A3]
and s=1— BTz,

Sq4 = 1 —2561 —X2 [Bl]

S5 = 1 —X1 733’]2 [BQ]

S = 1 —x —31’3 [B?)]

Step 3. Pivoting

We need to arbitrarily choose some x or y variable to bring in to the basis, corresponding to
the arbitrary choice kg of label that we remove. Let’s bring x; in. By considering the min-ratio
rule (i.e., looking at the coefficients of x; in the [B] tableau) it is s4 that must leave the basis.
Therefore we solve [B1] for x1, obtaining a new equation [B’1l], and we substitute the new
equation into [B2] and [B3] obtaining

x1=1/2 —1/2s84 —1/229 [B’1]
S5 = 1/2 —|—1/284 —5/21‘2 [B’Q]
S — 1 —x2 —3.133 [B’g]

The main feature of the Lemke-Howson algorithm, as we discussed in the first section,
is that the variable which just left the basis determines the variable to enter the basis next.
There are m + n complementary pairs of variables: {r;,z;} for i € M and {s;,y;} for i € N.
Each pair corresponds (in an inverse sense) to the labels we mentioned earlier, e.g., x; is basic
iff z does not have label i and s; is basic iff z does not have label j.

The m 4+ n complementarity conditions

rixi:O,iGM Sjyj:(),jEN.

tell us when to stop. Initially, all complementarity conditions are satisfied. We keep performing
pivots until the complementarity conditions are again satisfied. Equivalently, we pivot until,

CO 456 — Game Theory F08, David Pritchard — Notes 3 6

between the two tableaux, in each complementary pair of variables, exactly one is basic and
exactly one is non-basic.

In this case, since s4 just left the basis, y, must be brought in. Examining the [A] tableau
we see that 73 is the winner of the min-ratio rule, and is therefore leaves the basis. We obtain
the following.

9 = 1 —2y6
Yq = 1/2 —1/27“3 —1/2y5 —1/2y6

Since r3 left, now x3 enters the other tableau, and by the min-ratio rule sg leaves.

x1=1/2 —1/2s4 —1/2z4
s5=1/2 41/2s4 —5/2x4
xr3 = 1/3 —1/3(1,‘2 —1/386

Since sg left, now yg enters, and by the min-ratio rule ry leaves.

1 :3/4 +1/27"3 —5/2y5 —1/47“2
y6:1/2 —1/2’[“2
y4:1/4 71/27"3 71/21,/5 +1/47’2

Since ry left, now x5 enters, and by the min-ratio rule s; leaves.

Tr1 = 2/5 —3/554 +1/5S5
To = 1/5 +1/5S4 72/585
x3 =4/15 —1/15s4 +2/15s5 —1/3s¢

Since ss5 left, now y5 enters, and by the min-ratio rule r; leaves.

Ys = 3/10 +1/57’3 —2/57"1 —1/107"2

Y = 1/2 —1/27‘2

Yg = 1/10 —3/5’/“3 +1/57“1 +3/10T2
Step 4. Output

Since x7 was the initial variable to enter the basis, and r; just left, the complementarity
conditions are now satisfied. (More generally, if ; was the initial variable to enter, we stop
when x; or its complement leaves.) In a tableau, we obtain values for the basic variables by
setting the non-basic variables to zero. Hence the variables’ values are

r=(0,0,0),s =(0,0,0),z = (2/5,1/5,4/15),y = (1/10,3/10,1/2).
Therefore, the Nash equilibrium we just found is

(nrml(z), nrml(y)) = ((6/13,3/13,4/13),(1/9,3/9,5/9)).

3. Degeneracy

The effect of nondegeneracy on the tableau method is the following:

Proposition 1. When running the Lemke-Howson algorithm in tableau form on a nondegen-
erate game, in each iteration there is a unique variable that wins the min-ratio test.

CO 456 — Game Theory F08, David Pritchard — Notes 3 7

However, degenerate games occur frequently in practice. In a general game, we can still use
the tableau method, but we will be faced with the problem of breaking ties in some manner.
Furthermore, just as in the simplex algorithm, if we have a “bad” tie-breaking rule, then our
program can enter a loop and run forever.

By using infinitesimal perturbations, we can obtain a “good” tie-breaking rule that can be
performed in polynomial time; see the section of [2] on the lexicographic method. However,
this rule is impractical to perform by hand, so we will not describe it here, and no simpler one
appears to be known in the literature.

One consequence of the lexicographic method is that the following pivot rule will work for
any game: when faced with a tie to break, make the choice arbitrarily; if you later come back
to the same basis, then break the tie in a different way. This is the approach we expect you
to take when solving games by hand, but we will try to set things up in such a way that you
quickly reach an equilibrium no matter how you break the ties.

For further edification, we state the following characterization of nondegenerate games,
which is not too hard to prove.

Proposition 2. A 2-player finite strategic game is nondegenerate if and only if, for any mixed
strategy « of a player, the number of pure best responses by their opponent does not exceed

|supp(a)|.
References

[1] C. E. Lemke and J. J. T. Howson. Equilibrium points of bimatrix games. SIAM Journal
on Applied Mathematics, 12(2):413-423, 1964.

[2] B. von Stengel. Computing equilibria for two-person games. In R. J. Aumann and S. Hart,
editors, Handbook of Game Theory, Vol. 3, pages 1723-1759, 2002.

