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Micro-Review

In class (November 8) we proved the following:

Lemma (Copycat). If G is a combinatorial game, then G + G is a P-position.

Proposition (P-ignorance). If G and H are combinatorial games and G is a P-position, then
whoever has a winning strategy in H also has a winning strategy in G + H.

We defined the Grundy function g() recursively by the formula

g(G) = mex({g(G′) | G′ ∈ A(G)})

where mex is the “minimal excludant” function. We also gave the statement of the Sprague-
Grundy theorem:

Theorem (Sprague-Grundy). If G is an impartial combinatorial game then G + ∗(g(G)) is a
P-position.

Finally, here is the argument that led me to say “if you know how to play Nim, because of
the Sprague-Grundy theorem, then you know how to play arbitrary sums of impartial games”
(provided you know their Grundy numbers). Let G + H + K + · · · be some sum of games.
Then all of the following games have the same winner:

G + H + K + · · ·
(G + ∗(g(G))) + G + H + K + · · · (by S-G Thm. G + ∗(g(G)) is P, then use P-ignorance)
(G + G) + ∗(g(G)) + H + K + · · · (by rearranging)

∗(g(G)) + H + K + · · · (by copycat G + G is P, then use P-ignorance)
∗(g(G)) + ∗(g(H)) + ∗(g(K)) + · · · (by repeating the argument).

The last game is just a game of Nim with piles of size (g(G), g(H), g(K), . . . ) so if we know
who wins that, we know who wins G+H +K + · · · . We’ll see later, using the same ideas, how
to actually find a winning strategy in G + H + K + · · · .

Proof of Sprague-Grundy

Now that we have some motivation, we can get to the proof of the Sprague-Grundy Theorem.
It is useful to point out the following facts beforehand.

Fact. For any impartial combinatorial game G,

(a) Every option G′ of G (i.e., every G′ ∈ A(G)) has g(G′) 6= g(G).

(b) For each integer t with 0 ≤ t < g(G), there exists an option G′ of G with g(G′) = t.

The proof of these facts is simple: look at the definition of g().
A null game is a game G with A(G) = ∅. We leave it as an easy exercise to show that the

sum of two null games is null.

Proof of Sprague-Grundy Theorem. Like the proofs of the Copycat Lemma and P-ignorance,
we use induction on depth(G).

Base case: depth(G)=0. Then G is a null game, as is g(G) = 0, and G + ∗(g(G)) is also
null. Since null games are P-positions, we are done.

Inductive case: This involves showing that every option H ∈ (G+∗(g(G))) is a N -position,
which in turn requires showing that every such H has an option K ∈ A(H) so that K is a
P-position. Essentially, we are giving a winning strategy for player 2 in G + ∗(g(G)).
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What options does G+∗(g(G)) have? Either a move can be made in the left component G,
or in the right component ∗(g(G)). Using Fact (a) we can further break down the left moves
into two types depending on whether the Grundy value increases or decreases. This leads to
case analysis. If H ∈ A(G + ∗(g(G))), one of the following cases holds:

decreasing left move: H is of the form G′ + ∗(g(G)) where G′ ∈ A(G) and g(G′) is less
than g(G). Notice that K := G′ + ∗(g(G′)) is an option of H — we’re just removing
some Nim counters. Re-using the Sprague-Grundy theorem by induction, we see that K
is a P-position, as required.

reversible left move: H is of the form G′ + ∗(g(G)) where G′ ∈ A(G) and g(G′) is greater
than g(G). By Fact (b), G′ has some option, call it G′′, with g(G′′) = g(G). Thus
K := G′′ + ∗(g(G)) is an option of H. Again by induction, K is a P-position.

right move: H is of the form G + ∗(t) where t < g(G). By Fact (b), G has some option, call
it G′, with g(G′) = t. Then K := G′ + ∗(t) is an option of H and again by induction, K
is a P-position.

So no matter what, every option H of G + ∗(g(G)) is a N -position, and hence G + ∗(g(G)) is
a P-position, as claimed.

What Comes Next: The XOR Rule for g()

In class I will show Bouton’s theorem, or in other words, I will show how to play Nim perfectly.
The main result is that a Nim position ∗(a) + ∗(b) + ∗(c) + · · · is a P-position if and only if
a⊕ b⊕ c⊕ · · · = 0.

The next proposition (whose proof uses Bouton’s Theorem) is a kind of restatement of the
Sprague-Grundy Theorem. I would suggest in fact that it is more important to remember the
XOR rule — since it actually tells us how to compute g() values — than it is to remember the
Sprague-Grundy Theorem, which is somewhat abstract.

Proposition (The XOR Rule). g(G + H) = g(G)⊕ g(H)

Proof. The following 4 games are all P-positions:

(a) (G + H) + ∗(g(G + H))

(b) G + ∗(g(G))

(c) H + ∗(g(H))

(d) ∗(g(G)) + ∗(g(H)) + ∗(g(G)⊕ g(H))

Why? Items (a)–(c) follow from the Sprague-Grundy Theorem, and item (d) follows from
Bouton’s Theorem, since x⊕ y ⊕ (x⊕ y) = 0 for any x, y (we use x = g(G), y = g(H)).

Using P-ignorance, the sum of all 4 games is also a P-position. Using the Copycat Lemma
the sum simplifies as follows:

[(G + H) + ∗(g(G + H))] + [G + ∗(g(G))] + [H + ∗(g(H))] + [∗(g(G)) + ∗(g(H)) + ∗(g(G)⊕ g(H))]
= ∗ (g(G + H)) + ∗(g(G)⊕ g(H)).

This game is a P-position. But we know from our analysis of two-pile Nim that ∗(a) + ∗(b) is
a P-position iff a = b. Thus g(G + H) = g(G)⊕ g(H), as claimed.


