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Finding Nash Equilibria of 2-Player Zero-Sum Games

We mentioned Nash’s Theorem in the previous class: in every strategic game with a finite
number of players and a finite number of actions per player, there is at least one mixed Nash
equilibrium. In this class, we prove the theorem for the special case of 2-player zero-sum
games.

(Note: Chapter 11 of Osborne’s text is somewhat similar to these notes. However his
approach is kind of like using a hammer (Nash’s Theorem, whose proof relies on topological
arguments and fixed point theorems) to open a walnut. I am taking a different approach in
class and in these notes: we give a direct proof of Nash’s Theorem in the special case of 2-player
zero-sum games, using LP duality.)

Definition. We say that a game with von Neumann-Morganstern preferences is a zero-sum
game if for all outcomes a,

n∑
i=1

ui(a) = 0.

In particular, for a two-player game, u1(a) = −u2(a) for all outcomes a, so it is convenient
to write down only the utility function for player 1.

Example of a 2-Player Zero-Sum Game. In the table below we show the payoffs for
player 1 for the game Rock-Paper-Scissors.

p1\p2 R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

(u1 shown; u2 = −u1)

Consider the mixed strategy of player 1 which assigns probability 1/3 to each of her actions.
Question: what is special about this strategy? Answer: it guarantees no expected loss to player
1! That is to say, no matter which pure or mixed strategy player 2 responds with, the expected
value to player 1 is zero.

Now let’s consider a less familiar example. Example: Matching Coins (attributed to
Vasek Chvátal 1981 in Martin Gardner’s book “Mathematical Recreations.”) Two players each
privately pick a nickel, dime or quarter. Both are revealed simultaneously. If they are different,
then player 1 wins both the coins, and if they match, player 2 wins both the coins. This can
be written as a 2-player strategic game, with payoffs represented by cents won or lost. The
game is zero-sum, since player 1’s lost coins go directly to player 2, and vice-versa. Here is the
payoff table for player 1:

p1\p2 N D Q
N -5 10 25
D 5 -10 25
Q 5 10 -25

(u1 shown; u2 = −u1)

Remark: one contrast between the 2 previously shown games is that Rock-Paper-Scissors is
symmetric with respect to the two players (u1(A,B) = −u1(B,A) = u2(B,A) for all actions A
and B) but Matching Coins is not symmetric. Intuitively, we expect neither player therefore to
have an advantage in Rock-Paper-Scissors, while the same might not be true about Matching
Coins.
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Maxminimization

Question: Is it possible for player 1 to guarantee some positive expected profit in Matching
Pennies? Answer: Yes. Perhaps the simplest way to see this is that, if player 1 uses a uniformly
mixed distribution (the one that assigns probability 1/3 to each action — which we will also
write as 1

3N + 1
3D + 1

3Q), then

• if player 2 uses the pure response N , then player 1 wins 5/3 cents in expectation

• if player 2 uses the pure response D, then player 1 wins 10/3 cents in expectation

• if player 2 uses the pure response Q, then player 1 wins 25/3 cents in expectation

• by weighted averaging, when using 1
3N + 1

3D + 1
3Q, player 1 wins at least 5/3 cents in

expectation against all mixed strategies of player 2

We can write this into our table,

p1\p2 N D Q
N -5 10 25
D 5 -10 25
Q 5 10 -25

1
3N + 1

3D + 1
3Q 5/3 10/3 25/3

(u1 shown; u2 = −u1)

Question: what does this tell us about the best player 2 can do? Answer: there is no mixed
strategy that can guarantee player 1 any expected utility better than −5/3 cents.

In other words, player 2 is going to lose money in this game no matter what he does. But,
can he limit his losses? We could try the same trick as before: look at the payoffs for player
2 when he uses the uniformly mixed strategy, depending on the pure response of player 1.
Visually, we add a new column to our table (caution, these are written as utilities for player
2, so the signs change).

1
3N + 1

3D + 1
3Q

N -10
D -20/3
Q 10/3

(u2 shown)

So by using the uniformly mixed strategy, player 2 can guarantee that he will lose no more
than 10 cents per round, in expectation.

But: we still don’t have the whole story for this game: we only know that player 2’s “best”
scenario leaves him losing between 5/3 and 10 cents per round. Question: is there some way
we can tighten our analysis so as to learn more? Can we get rid of this “gap?” Answer: there
might be mixed strategies for player 1 and player 2 that “guarantee” them more than they are
“guaranteed” by the uniformly mixed strategy.

What, exactly, do we mean by a better guarantee? Consider an arbitrary mixed strategy
α1 := (pN , pD, pQ) for player 1, where pN is the probability assigned to N, etc. Then as before,
we can compute the values of α1 to player 1 depending on the response of player 2, and we
add a new row to the table:

p1\p2 N D Q
α1 −5pN + 5pD + 5pQ 10pN − 10pD + 10pQ 25pN + 25pD − 25pQ
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We see that α1 guarantees a payoff to player 1 of min{−5pN + 5pD + 5pQ, 10pN + −10pD +
10pQ, 25pN + 25pD − 25pQ}. How can we maximize this guarantee? More generally, our
approach suggests the following definition:

Definition. The guarantee of a mixed strategy αi for player i is the minimum value of
ui(αi, a−i) over all partial action profiles a−i that the other players can choose. The maxmini-
mized value of the game for player i, denoted maxmin(i), is the value of the largest guarantee,

maxmin(i) := max
αi

min
a−i

ui(αi, a−i),

where the max is taken over all mixed strategies player i has. A mixed strategy αi that attains
this maximum is called a maxminimizer (or maxminimizing strategy) for player i.

Now, let’s go back to Matching Coins. Question: how can we find a maxminimizer for
player 1? Answer: solve a linear program, with variables pN , pD, pQ. A little trick is needed
to compute the min.

We now give a more general presentation that works for any 2-player game. Without loss
of generality write A1 = {1, 2, . . . ,m} and A2 = {1, 2, . . . , n}. Then the LP for player 1 is

max v ← “value” guaranteed
s.t. pi ≥ 0 for i = 1, . . . ,m

m∑
i=1

pi = 1

m∑
i=1

pi · u1(i, j) ≥ v for j = 1, . . . , n.

(Question: How does the trick work — why is v always minj{
∑m
i=1 pi · u1(i, j)} in an op-

timal solution?) Solving this LP for Matching Coins gives us an optimal solution (p∗, v∗)
defined by p∗N = 7/34, p∗D = 12/34, p∗Q = 15/34, v∗ = +50/17. So by using the mixed strategy
corresponding to p∗, player 1 wins at least 50/17 expected cents per round.

Just as before, this also tells us that player 2 could at best guarantee himself an expected
payoff of −50/17 cents per round.

We can also use the LP approach to compute a maxminimizer for player 2. In this case

• the unique maxminimizer for player 2 assigns probability 10/17 to N, 5/17 to D, and
2/17 to Q

• the guarantee for this maxminimizer is −50/17

So amazingly, the “gap” that we had before has disappeared: we know that losing 50/17 cents
per game is the best possible scenario for player 2, and that winning 50/17 cents per game
is the best possible scenario for player 1. (In fact, as we will see, we have found a Nash
equilibrium.) This is not a coincidence:

Theorem (von Neumann’s minimax theorem, 1928). In any 2-player zero-sum game,

maxmin(1)+maxmin(2)=0.

We will prove this. (von Neumann looked at minimizing the maximum payoff of any
opponent, which is why the name is different.) Unlike the original proof, we will give a short
proof using the theory of LP duality. However, before getting in to these details, we show
what this has to do with Nash equilibria.
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Proposition. Suppose an n-player zero-sum game has the property that
∑n
i=1 maxmin(i) =

0. If αi is a maxminimizing strategy for each player, then α is a mixed Nash equilibrium.
Conversely, if there are only 2 players, and α′ is a mixed Nash equilibrium, then α′i is a
maxminimizing strategy for each player i.

Proof. We will only prove the first of the two statements. Suppose otherwise for the sake of
contradiction: α is not a NE, so some player j has a profitable deviation α′j ,

uj(α′j , α−j) > uj(α).

Now for each player i 6= j, since αi is a maxminimizer,

ui(α′j , α−j) ≥ maxmin(i)

and likewise, since αj is a maxminimizer,

uj(α′j , α−j) > uj(α) ≥ maxmin(j).

Adding up the above inequalities for each player, we get

n∑
i=1

ui(α′j , α−j) >
n∑
i=1

maxmin(i) = 0

(where the equality uses the hypothesis of the proposition.) But by linearity of expectation
and the fact that the game is zero-sum,

n∑
i=1

ui(α′j , α−j) = 0.

So the last two lines provide our contradiction.

Remark: it is not true that in all 3-player zero-sum games, maxmin(1)+maxmin(2)+maxmin(3)=0.
However, it is still possible to compute maxmin values by an LP; e.g. in the LP for player 1,
instead of |A2| constraints for each action of player 2, you would use |A2| · |A3| constraints for
all partial action profiles a−1.

Finally, what we really cared about:

Corollary. Every 2-player zero-sum has a mixed Nash equilibrium.

Proof. Combine the minimax theorem with the Proposition.
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Proof of Minimax Theorem

Here is the LP to compute maxmin(1), modified into a standard form:

maxmin(1) = max v ← “value” guaranteed
s.t. pi ≥ 0 for i = 1, . . . ,m

m∑
i=1

pi = 1

v −
m∑
i=1

pi · u1(i, j) ≤ 0 for j = 1, . . . , n.

We now compute its dual. Introduce an unbounded variable w for the equality constraint∑m
i=1 pi = 1 and a nonnegative variable qj for each inequality constraint

∑m
i=1 pi ·u1(i, j)−v ≥

0. Then the new LP is

maxmin(1) = minw
s.t. qj ≥ 0 for j = 1, . . . , n

n∑
j=1

qj = 1 since v was unbounded

w −
n∑
j=1

qj · u1(i, j) ≥ 0 for j = 1, . . . , n.

(The initial equality follows from strong LP duality.)
Now we replace each u1(i, j) by −u2(i, j) (it is a zero-sum game) and we replace w by the

variable w′ := −w. Multiply the inequalities by −1. The minimum possible value of −w′ is
the negative maximum of w′, so we have

maxmin(1) = −maxw′

s.t. qj ≥ 0 for j = 1, . . . , n
n∑
j=1

qj = 1

w′ −
n∑
j=1

qj · u2(i, j) ≤ 0 for j = 1, . . . , n.

But ignoring the minus sign, this is the LP to compute the maxmin value of player 2. Hence
maxmin(1)=−maxmin(2).
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Other Ruminations

If you are reading this class as a student at Waterloo, it is pretty likely you have seen LPs
and the simplex method before. Although the simplex algorithm takes exponential time in the
worst case, there are other ways to solve LPs (interior point methods, the ellipsoid method)
that run in polynomial time. Hence (by computing the maxmin strategies) we can find a mNE
of any 2-player zero-sum game in polynomial time.

The simplex method always finds a rational optimum for any LP. So we can now deduce,
assuming all ui(·, ·)’s are rational, that every 2-player zero-sum game has a rational mixed
Nash equilibrium, i.e. one where all probabilities are rational. In fact, the zero-sumness is not
important:

Proposition. Every 2-player game has a rational Nash equilibrium, if all ui(·, ·) are rational.

Proof. Now we will use the hammer. By Nash’s theorem, there is some Nash equilibrium α∗,
but it might be irrational. However, let’s consider the Support Characterization to derive
another LP. Let S1 ⊂ A1 be the support of α∗1, i.e. S1 = {a1 ∈ A1 | α∗1(a1) > 0}. Define S2

similarly.
The Support Characterization says that every action in S1 is a best response against α2,

and vice-versa. Let X be the best response value against α2 and Y be the best response value
against α1. We can write these as linear constraints, where pi stands for α∗1(ai) and qj stands
for α∗2(aj):

Σmi=1pi = 1
Σnj=1qj = 1

all pi, qj nonnegative
pi = 0, ∀i 6∈ S1

qj = 0, ∀j 6∈ S2

Σnj=1qju1(i, j) = X, ∀i ∈ S1

Σnj=1qju1(i, j) ≤ X, ∀i ∈ A1\S1

Σmi=1piu2(i, j) = Y, ∀j ∈ S2

Σmi=1piu2(i, j) ≤ Y, ∀j ∈ A2\S2

Since it has a solution (the one corresponding to α∗), by the simplex method, it also has a
rational solution. It is easy to check with the Support Characterization that this rational
solution gives a rational Nash equilibrium.

In fact, we can just “guess” the supports and use the above LP to compute a Nash equi-
librium for any 2-player game. The Lemke-Howson algorithm (which we will see next class) is
closely connected to the above approach; however, the Lemke-Howson algorithm will explicitly
show that the equilibrium exists, without using Nash’s Theorem in its powerful generality.

However, if we don’t know the supports ahead of time, there are 2|A1|+|A2| possibilities. So
that naive algorithm for finding NE of 2-player games runs in exponential time. Is it possible
to find NE of general 2-player games in polynomial time? What about 3-player and higher
games? Recent developments in complexity theory show that this is probably not possible;
much like the “P vs. NP” problem we don’t know for sure, but if we could efficiently find (even
approximate) NE of 2-player games in polynomial time, we could use it as a subroutine to
do lots of other fancy stuff (compute fixed points, find NE of n-player general-sum games) in
polynomial time.

As an exercise, by modifying a game discussed in class, find a 3-player finite game that has
no rational Nash equilibria. What about a 3-player zero-sum game?


