
CS Circles: An In-Browser Python Course for Beginners

David Pritchard
Department of Computer Science∗

Princeton University
Princeton, NJ, USA

dp6@cs.princeton.edu

Troy Vasiga
David R. Cheriton School of Computer Science∗

University of Waterloo
Waterloo, ON, Canada

tmjvasiga@cs.uwaterloo.ca

ABSTRACT
Computer Science Circles is a free introductory program-
ming course in the form of a website. Its target audience is
beginners, and its design goals are to be easy to use, fun, and
to reach the broadest possible audience. We teach Python
because it is simple yet powerful. The course content is
structured but written in plain language. There are over
100 exercises embedded within its thirty lesson pages. This
paper discusses the philosophy behind the course and its de-
sign, as well as a description of how it was implemented and
statistics on its use.

Categories and Subject Descriptors
D.2.8 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Design, Human Factors, Languages

Keywords
Massive Online Open Courses, Python, CS0/1

1. INTRODUCTION
The last decade has seen an explosion of web-based soft-

ware that runs “in the cloud,” jointly with a tremendous
improvement in the ability of a web browser to interact
with users and servers. Near the end of 2009, we and our
colleagues thought it would make sense to make an intro-
ductory programming course available in this way. Part of
the motivation is that many wonderful online programming
judges exist for veteran programmers1, but there is little for

∗CS Circles is a project of the Centre for Education in Math-
ematics and Computing, University of Waterloo
1e.g. TopCoder.com, Sphere Online Judge (spoj.pj), the
ACM judge (acm.uva.es), USA Computing Olympiad train-
ing (train.usaco.org), the PEG judge (wcipeg.com), etc

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UNPUBLISHED DRAFT
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

beginners. It is unreasonable to expect the average begin-
ner to download a compiler, or to re-load a web page and
re-upload a file every time they want to test their “Hello,
world!” program. Computer Science Circles is our way of
filling this gap.

CS Circles is publicly available at

http://cscircles.cemc.uwaterloo.ca

Since opening in the fall of 2011, over 4000 users have regis-
tered and in total they have completed 90000 exercises. On
an average day, the website handles 1000 visits and 7500
code submissions. Approximately 50% of the traffic is from
users that are not logged in. The statistics in this paper are
taken from the start of September 2012.

We eschew the traditional separation into “lesson/lecture
content” and “problem sets.” Our position is that such a
framework puts the student at risk of losing interest during
the lesson, and also splits their attention between review,
reading exercises, and writing solutions when they finally
start working hands-on. We think it is pedagogically supe-
rior for the exercises to be embedded in the lessons them-
selves: this reduces monotony and keeps the student on a
focused progression. Removing page reloads and handling
the student/auto-grader communication with asynchronous
JavaScript (a.k.a. ajax) helps keep this experience smooth.

Programming is the ideal topic for computer-based learn-
ing: beginners can get immediate detailed feedback (from
the compiler and auto-grader) on the entirety of their cre-
ations. Automatic grading is not a replacement for a real
teacher looking on over your shoulder. Additionally, CS Cir-
cles does not check for plagiarism or style. To compensate
for these issues we have added a human touch by letting stu-
dents easily send a“Help”message when they are stuck. Any
message sent in this way will also automatically include the
code currently in the student’s code editor for that problem.
We have answered over 500 student questions in this way,
with most messages answered in a 24-48 hour turnaround.
Additionally, teachers wishing to use our site can be set as
the “guru” of their students, which means all questions from
their students will be sent to this guru instead; the guru has
access to other student tracking tools as well.

The rest of the paper is organized as follows. Section 1.1
discusses related work. Section 2 provides an overview of
the CS Circles experience and the philosophy behind it. Sec-
tion 3 discusses the features of the site, grouped according to
the three types of people interacting with the site: students,
lesson authors, and teachers. Section 4 describes details of
the site’s implementation. Finally, Section 5 has some sug-
gestions for future work.

spoj.pj
acm.uva.es
train.usaco.org
wcipeg.com
http://cscircles.cemc.uwaterloo.ca

1.1 Related Work
In the past year, the acronym MOOC became well-known

in education, meaning“massive open online course.”The two
most well-known companies offering MOOCs are Coursera
(coursera.org) and Udacity (udacity.com). Two main dis-
tinctions are that Coursera offers each course on a specific
schedule, while Udacity allows open enrollment at any time;
and that Coursera deals with the full range of university
subjects, while Udacity is focused on the sciences, especially
computer science. Udacity has an auto-grader while the
Coursera course we took [15] only had multiple-choice and
short answer questions based on whatever external program-
ming environment the user cared to use. But, two other
open educational websites are very similar to ours. The
first, Codecademy (www.codecademy.com), launched in Oc-
tober 2011. Initially they only offered JavaScript, but now
they also offer Python programming. The second, Khan
Academy (www.khanacademy.org/cs), has had online inter-
active programming lessons since August 2012, although
they have offered video-only CS content since 2011 and auto-
graded interactive math lessons since 2010.

Both Khan Academy CS and Codecademy are great en-
vironments for learning to program. With Codecademy, the
student code is retained in the coding window between steps
of a multi-part exercise, which gives the user a sense of conti-
nuity in progressing with their work. We found that their UI
needed improvement in spots, for example there were“hints”
that necessarily had to be read in order to complete a prob-
lem, and occasionally the grader didn’t specify the nature of
the failed test when a student’s code would not pass. They
allow community-generated lessons, although we found this
made it difficult for a novice to guess a useful sequence of
lessons that would teach skills in an irredundant, incremen-
tal manner. However, its continuing site development and
curriculum refinement appear to be addressing both of these
issues.

The design of the Khan Academy CS user interface is dras-
tically different from traditional coding environments, and
is inspired by the “responsive programming” ideas of Bret
Victor [17]. The ubiquituous Khan Academy video content
takes the form of a narrated replay of the lecturer’s code win-
dow, which can be interrupted at any time and edited. As
the user edits, the code is continuously re-compiled and re-
executed; numeric constants in the code can be changed by
dragging a slider, which creates the effect of an animation
when there is graphic output. Any syntax/run-time error
comes with automatically-generated suggestions on how it
can be fixed. These are fantastic tools but beyond the scope
of our own project.

Compared with Codecademy and Khan Academy, our lay-
out is sequential like the traditional concept of a web “page.”
Each lesson, together with its embedded exercises, is laid out
in a vertical sequence on a scrollable web page. Despite its
old-fashionedness, it has some advantages over video/audio
tracks: it is simpler for authors, can be easier to navigate
when reviewing, and it is easier for students to follow at
their own speed, including students not fluent in English.

Two other formidable online interactive Python courses
date back to 2011. One is pyschools.com, a collection of
210 exercises arranged in 14 topics. While nice, it lacks
overall organization and narrative. Another notable site is
How to Think Like a Computer Scientist: Interactive Edi-
tion [11]. It runs a Python interpreter within the browser’s

JavaScript interpreter and builds on excellent Creative Com-
mons content from Downey’s “Think Python” book [2]. The
experience with their site is quite similar to ours. On the
one hand not all of their exercises are auto-gradeable, but on
the other hand their auto-grader is able to run client-side.
The same authors recently released a sequel, in the same
interactive format, on algorithms and data structures [12],
and published a paper [13] discussing their methodology.

2. BIRD’S-EYE VIEW
The CS Circles website is “end-to-end” in the sense that

everything is handled through the browser interface: submit-
ting code, seeing the grader’s reply, editing with syntax high-
lighting, debugging visualization with forward/backward step-
ping, saving and loading solutions, and asking for help. There
is a curriculum to serve as a backbone, but we also make ju-
dicious use of flexibility: some lessons are optional, helping
each user learn at their own choice of depth; and some les-
son groups can be completed in any order, which we think
makes the course less monotonic.

Content. The content begins with a lesson on “Hello,
World!”, including a working click-to-run program and a
crashing one. We continue through variables, function calls,
comments, quotes, and all of the fundamentals needed in
order to write or understand an elementary program. Most
lessons have a narrative where a new feature is motivated
and explained, with examples, caveats, and exercises for the
user. A few special lessons don’t talk about language fea-
tures but instead about practical matters like errors, design,
and debugging; several lessons have only exercises based on
material from prior lessons, helping to re-consolidate what
the user learned previously. The final lessons discuss basic
auto-decryption of Caesar ciphers, recursion, object vs. value
identity, and efficiency. We forced ourselves not to make the
lessons too long; 1000 words was a soft upper limit on what
was reasonable to convey in a single sitting. The end goal
for our lessons is that the user will have enough knowledge
and confidence to understand further information available
on the web.

In the top half of Figure 1 we show an example of the
first exercise on the site, which is to write a program that
prints out a particular message, in analogy with the Hello,

world! example. When the user submits their code, it is
compiled, executed, and graded server-side. Then, without
a page reload, the grading box is updated according to the
result of grading. The bottom half of Figure 1 shows the
result of a successful submission for this exercise.

There is little “gamification” in CS Circles, since we feel
that a public points-and-badges system can be intimidating
for some beginners, and can be a distraction in general. But
when an exercise is completed, its box turns green and a
checkmark appears; the “My Progress” page keeps a hyper-
linked visual list of which exercises are completed, so stu-
dents can easily pick up where they left off or go back over
previously-skipped exercises. We receive a lot of positive
user feedback; here are portions of unsolicited quotes from
two students about their enjoyment of learning Python and
solving the exercises.

Jun 11 2012: “I’m addicted to how the frustration of getting
the function or program wrong at first transitions into
excitement as I finally figure it out, and it all makes
perfect sense laid out in front of me.”

coursera.org
udacity.com
www.codecademy.com
www.khanacademy.org/cs
pyschools.com

⇓

Figure 1: Top: the first exercise in the course. Bot-
tom: when the user submits a correct submission,
the grader reply is shown (without a page reload).
The box color has changed from blue to green. Not
shown is the checkmark appearing in the top right
corner.

Aug 14 2012: “Sites like Codecademy tend to corral you
through a safe introduction of ‘type this after me’ but
Computer Science Circles has really helped me apply
the things I’m learning in a fun, more thought-intensive
way.”

Our position is that games are addictive because they are fun
and engaging, and that copying the fun and engagement is
more effective than copying more superficial aspects. Like-
wise, because we assume that anyone completing our ex-
ercises is doing so just for the pursuit of learning and/or
problem-solving, we don’t take any precautions against pla-
giarism. This means that in an institutional setting, while
CS Circles can be used to deliver content, its exercises should
not be used as a way of assigning marks.

2.1 Usage Statistics
In Figure 2 we show three different charts describing usage

data for CS Circles. The top chart shows the number of users
that have completed each problem on the site, sorted from
most completed to least completed. The “outlier” with the
least number of completions is the final exercise on the site,
which asks the user to look up information from outside of
our site and implement the Sieve of Eratosthenes method
for computing primes.

1

4

16

64

256

1024

4096

C
o
m

p
le

te
d

b
y

th
is

m
a
n
y

p
eo

p
le

Problems (most to least solved)

1 1000 2000 3000 3987
1

4

16

64

256

1024

4096

S
u
b
m

it
te

d
co

d
e

th
is

m
a
n
y

ti
m

es

Registered users (most to least submissions)

1 hr

5 hrs

1 day

4 days

2 wks

8 wks

T
im

e
u
n
ti

l
so

lv
ed

(o
ct

il
es

)

Problems (in order of appearance)

Figure 2: Top: All 105 problems, sorted by the num-
ber of people who have completed them. Middle:
The users of the site, sorted by the number of times
they have submitted code. Bottom: For each prob-
lem, conditional on solving it, octiles of time elapsed
between registration and completing it.

The middle chart in Figure 2 shows the total number
of code fragments submitted by each user. Some traffic is
caused by usage of the“console”for non-CS Circles purposes,
although an an informal review, this inorganic usage wasn’t
significant in the top few most prolific submitters.

The bottom chart in Figure 2 shows the typical time
elapsed before each problem is completed. Specifically, for
each problem and for users who have completed that prob-
lem, we show the octiles (median in blue and quartiles in
red) of time between account creation and completion of
that problem. Note that for every exercise, at least half of
all completions were achieved within two weeks.

We have no formal biometric data, but in unsolicited feed-
back and the “Help” system four of our users have self-
identified as a PhD student, a lawyer, a parent and child,
and an alumnus of U. Waterloo from the 1970s.

3. FEATURES

3.1 Student Tools
Whereas a typical IDE has dozens of buttons our cod-

ing windows start with just 3: submit, help, history. The
remaining features are introduced later, discussed one at a
time in various sections, so that the student knows all of
the available tools without reading any manual. These tech-
niques help avoid novices from getting overloaded.

The “Help” button is for the student to use when they are
stuck and want targeted assistance. Clicking on this button
opens up a new text field where the student is directed to
type a few sentences about what they’ve tried and where
they are stuck. This is sent along with the current contents
of the code editor for that problem.

For each user, every coding exercise automatically stores a
history of all prior submissions. The history can be accessed
on demand, and is also available to the student’s teacher to
help understand what a student has tried, when they ask
for help. When a user re-visits a page, the most recently
submitted version is automatically loaded in the text editor.

In lesson 4, we introduce the two debugging tools for the
course. One is simply a “console” that allows the student to
run arbitrary code without any grader interference. Every
example has a button which allows it to be copied to the
console, in a new browser tab, with a single click. The other
debugging tool is an open-source Python“visualizer” [5] that
can take an arbitrary program, store the steps of its execu-
tion, and replay those steps both forwards and backwards
in time along with a visual representation of all of the vari-
ables/call stack. This replicates most of the functionality of
a client-side debugger but the backwards execution is even
more useful than what most IDEs currently offer. Students
run the visualizer on 600 pieces of code per day on average.

The ability to specify a test input is introduced in lesson
5, when the command to read from standard input is intro-
duced. In later lessons, when users are tested based on their
function definitions, this input box is replaced with a text
area for test commands.

In lesson 7, just after introducing the first block-structured
elements of Python, we switch the user to a “rich” editor,
provided by the CodeMirror project [6]. It highlights syn-
tax, enumerates the lines of code, matches parentheses as
the user types, and performs smart indentation. We have
customized it to resize automatically up to a fixed limit, but
to also be manually sizeable when the user desires.

3.2 Lesson Designer Tools
CS Circles is exercise-centric: indeed, exercises are em-

bedded throughout the lessons. We use traditional exercise
formats like short answer and multiple choice as well as cod-
ing exercises in many flavours.

The Python auto-grader is similar to existing auto-graders
used for olympiads and public problem websites. Aiming
for beginners necessitated that the grader offers many more
grading styles than the typical stdin/stdout approach. While
we teach the print function in lesson 0, input reading doesn’t
occur until lesson 5 and for this reason the early exercises
take input by way of variables which the grader pre-defines
with values. In lesson 1 the swap exercise — write code to
put the value of x in y and vice-versa — has the grader pre-
define variables, and test their values after the user code exe-
cutes. Later, once we have described how to define functions
with def, inspecting the values returned from function calls
becomes the main testing approach. We recommend that
each of these three methods (variable-based, stdin/stdout,
function-based) has its place in a beginner course.

Our grader uses a number of other techniques in order to
maximize the variety and fun of the exercises:

• randomized test cases, with the answer specified im-
plicitly by a model solution, to prevent hard-coded so-
lutions;

• pre-defining non-working initial code, and optionally
limiting the (Levenshtein) edit distance to a valid so-
lution;

• pre-defining a function for the student;

• forbidding the student from using some built-in func-
tions;

• requiring that a specific error be produced;

• and plugging-in of custom graders defined in Python
(for problems where more than one answer is correct).

Code Scramble. We present a small fraction of our cod-
ing exercises as code scramble exercises: a solution is already
given in the coding window, but with its lines appearing in
the wrong order; users are only permitted to drag-and-drop
entire lines of code until they find a correct solution. A nice
side effect of writing a problem in this way is that we don’t
rely on the student to have memorized any past syntax, and
they can focus purely on the logical aspect of the problem.
See also the studies [9, 3] on “syntax-free programming.”
The problem type we call “code scramble” has been previ-
ously called Parsons problems [14]; see Denny et al. [1] for
a thoughtful quantitative study of how complex these prob-
lems should be for optimal effect. Unlike us, they sometimes
give decoy lines that must be identified and left out of the
solution, or they pair up real lines with decoy lines. Gener-
ally, our code scrambles are of medium difficulty: they can
be solved most but not all of the way via syntactic analy-
sis. See also [7] for information on C-doku, near-complete
programs with specific short answer blanks that the student
must fill in, with additional ingredients such as code cover-
age requirements.

Hints are essential to writing an exercise that can meet
the needs of the widest variety of students. As a rule, our
problems are always solvable using only the tools that have

been previously introduced to the student, even without
hints. However, we also want to avoid that students get
stuck on a particular problem just because they have over-
looked an old idea or they are unable to come up with an
innovation on their own. For this reason we offer clickable
hints. The most basic version is one whose content appears
like a pop-up window when clicked, which can be moved
around the page to a convenient place and closed when no
longer needed. Occasionally we find that a very conceptu-
ally challenging exercise (such as the swap exercise) requires
many hints, and in this case we present them in an “ac-
cordion” style, where at most one of the hints can be slid
open on the page in the midst of the existing content, which
avoids overloading the user interface with too many boxes.

Two other features are the result of user feedback: a
“cheatsheet” in html and pdf formats, which contains a quick
review of all the functions and syntax used by our curricu-
lum; and automatically-generated“previous/next lesson”but-
tons on the bottom of each page, precluding the need to
scroll all the way up to the main navigation menu when a
lesson has been completed.

3.3 Teacher Tools
A student can ask a teacher, mentor or friend who has

signed up for CS Circles to be their “guru.” Conversely, we
imagine that for any classroom using our site, the teacher
would tell the students to declare him/her as their guru.
Currently, there are 8 gurus with five or more students reg-
istered under them; in total these gurus have 108 registered
students.

A student with a guru can send their “Help” messages to
their guru instead of to the CS Circles staff. When a teacher
clicks on the reply link sent in the e-mail that they receive,
they are brought to the “mail” page of our website. The mail
page offers the teacher several tools we found invaluable in
providing fast personalized responses:

• the complete submission history for that student on
that problem, to see what they’ve tried that worked or
did not, and how close they got;

• a view of the “My progress” page for that student, to
see where they are overall;

• a list of the teacher’s other messages about the same
problem, which allows them to cut-and-paste relevant
information in the case several students have the same
question around the same time.

We have found that this system is an extremely efficient
way to provide targeted, personalized feedback to hundreds
of students without much work, filling in the inherent gaps
in the help that an auto-judge can provide.

There is another surprising benefit of this “Help” button:
as lesson authors, we are able to get a tremendous amount
of quick feedback when any newly-introduced content is too
difficult or has bad wording. Many of the hints in the current
curriculum are the result of boiling down commonly-asked
questions received in this way.

4. IMPLEMENTATION
Our website is built on top of the WordPress content man-

agement system (CMS). It is estimated2 to be the most

2http://trends.builtwith.com/cms

[pyBox repeats=3 precode="people = _rint(10, 100)"

autotests="heads\nshoulders\nknees\ntoes"

solver="heads, shoulders, knees, toes =

people, 2*people, 2*people, 10*people"]

⇓

Figure 3: Top: a WordPress-style shortcode that de-
fines an exercise in our system. Bottom: the result
of a submission sent to the this exercise.

popular CMS, hosting a significant portion of all sites on
the internet. We chose it because it has an easy web-based
interface for content editing (including instant preview of
edits) and management, it has a built-in secure login sys-
tem we could extend for our own purposes, it is built on a
well-maintained and easy-to-modify code base, and it has
a plugin system which lets us easily add third-party fea-
tures. We use plugins for site search, analytics, contact
forms, translation, LATEX, jQuery UI, custom auto-mails,
and role management for special users like translators.

As mentioned earlier, CodeMirror [6] and the Python vi-
sualizer [5] are two prominent non-WordPress tools that we
integrated into our site. Flexigrid3 is another external li-
brary that we use, which allows for smooth and secure user
access to database slices — for example this lets you view
your past code submissions without pulling them all from
our server at once.

Lesson pages are stored, like in most CMSes, as html-
formatted text in a database. The auto-grader and exercises
are specified using WordPress “‘shortcodes.” For example,
the code at the top of Figure 3 defines an exercise where
students must correctly define variables counting the heads,
shoulders, knees, and toes at a party, given a pre-defined
count of the number of people. The specification, when
embedded in the lesson text and rendered, produces the ex-
ercise. At the bottom of Figure 3 we show an example of
the grader’s reply to a partially correct solution. Using this
quick text-based specification system has been instrumental
in quick prototyping and lesson editing.

The auto-grader and surrounding code is written in a mix
of several languages. There is html/js/css to handle browser
interaction, PHP to interface with WordPress and gener-

3http://flexigrid.info/

http://trends.builtwith.com/cms
http://flexigrid.info/

ate dynamic html, Python to do introspective grading, and
C++ to call the core “safeexec” sandbox routines. The lat-
ter was developed starting from the safeexec module of the
Mooshak contest system [8]. For a survey of the techniques
involved in executing arbitrary user code securely, see the
excellent survey of Forǐsek [4] or the recent new implemen-
tation of Mareš and Blackham [10].

The grader has a run-time limit of 1 second by default.
With the sole exception of the Sieve of Eratosthenes exercise,
we don’t intend that any of the coding problems need to be
solved in an optimized way. So far the design has been
successful: we’ve not seen any correct student code that
times out on any other problem.

We are starting to experiment with using off-site “cloud”
computing to reduce the load on our centralized server. It
has been very promising so far and in particular our visu-
alization code runs there, falling back to the central server
only when the user is not able to communicate directly with
the off-site server. We intend to pursue this further, and use
caching to help keep the site responsive.

5. FUTURE WORK
Our experiences with WordPress and its great plugin com-

munity drive us to ask, would it be useful to distribute the
technologies behind CS Circles as a set of plugins? It would
be excellent to let teachers and other parties develop and of-
fer online lessons without the need to pay a large company.
We would also like to see in-browser auto-graded exercises
and sandboxes become part of the on-line documentation for
other languages such as JavaScript, R, and Sage.

Interactive input and output is not currently possible in
our system, but it would be an important feature to add in a
future version. As a way of partially compensating for this,
our “Resources” page recommends the pygame book [16] and
its sequel for students to learn about interactivity.

Currently our website gets traffic from all over the world;
about half of it comes from outside of North America, but
only 30% of the overall traffic is from non-anglophone coun-
tries. We are currently finishing a French translation of the
site and are plan to offer it in other languages as well. Pro-
gramming generally requires enough English competency to
make sense of the syntax and the errors, but we are attempt-
ing to translate every other part of the site.

Can a useful programming course be taught on a touch-
screen/tablet/iPad? Our intuition is that a comfortable
keyboard is an important ingredient in making any signifi-
cant amount of coding enjoyable. However, “code scrambles”
might work even better on a touchscreen.

6. ACKNOWLEDGMENTS
We sincerely thank the authors of all of the plug-ins and

libraries mentioned above, especially Philip Guo and Pe-
ter Wentworth for their work on the visualizer. We thank
GitHub for free hosting of our code repository. Thanks go
to our colleagues Graeme Kemkes and Andy Kong for their
invaluable work on the lessons and back-end, and Brice Can-
vel for leading the French translation. We are inspired by
StarCraft’s excellent integrated tutorial missons and their
feature of choosing the next level from a limited selection;
and by Good Eats for its clear, amusing, and scientific ex-
planations with high production values.

7. REFERENCES
[1] P. Denny, A. Luxton-Reilly, and B. Simon. Evaluating

a new exam question: Parsons problems. In Proc. 4th
ICER (Int. Workshop Comp. Ed. Research), pages
113–124, 2008.

[2] A. B. Downey. Think Python. O’Reilly Media, 2012.
Earlier version: How to Think Like a Computer
Scientist: Learning with Python, Green Tea Press,
2008.

[3] C. Fidge and D. Teague. Losing their marbles:
syntax-free programming for assessing problem-solving
skills. In Proc. 11th ACE (Australasian
Conf. Comp. Ed.), pages 75–82, 2009.

[4] M. Forǐsek. Security of Programming Contest Systems.
In V. Dagiene and R. Mittermeir, editors, Information
Technologies at School, pages 553–563, 2006.

[5] P. Guo. Online Python Tutor, 2011–.
http://people.csail.mit.edu/pgbovine/python/.

[6] M. Haverbeke. CodeMirror (Version 2.x), 2011–.
http://codemirror.net/.

[7] D. M. Hoffman, M. Lu, and T. Pelton. A web-based
generation and delivery system for active code
reading. In Proc. 42nd SIGCSE (ACM
Tech. Symp. Comp. Sci. Ed.), pages 483–488, 2011.

[8] J. P. Leal and F. Silva. Mooshak: a web-based
multi-site programming contest system. Software:
Practice and Experience, 33(6):567–581, 2003.

[9] M. Lopez, J. Whalley, P. Robbins, and R. Lister.
Relationships between reading, tracing and writing
skills in introductory programming. In Proc. 4th ICER
(Int. Workshop Comp. Ed. Research), pages 101–112,
2008.

[10] M. Mareš and B. Blackham. A new contest sandbox.
Olympiads in Informatics, 6:100–109, 2012.

[11] B. Miller and D. Ranum. How to Think Like a
Computer Scientist/Learning with Python: Interactive
Edition (Using Python 3.x). Runestone Interactive,
2011. http://interactivepython.org/courselib/
static/thinkcspy/index.html.

[12] B. Miller and D. Ranum. Problem Solving with
Algorithms and Data Structures. Runestone
Interactive, 2012. http://interactivepython.org/
courselib/static/pythonds/index.html.

[13] B. N. Miller and D. L. Ranum. Beyond PDF and
ePub: toward an interactive textbook. In Proc. 17th
ITiCSE (ACM Conf. Innovation & Tech. in
Comp. Sci. Ed.), pages 150–155, 2012.

[14] D. Parsons and P. Haden. Parsons’ programming
puzzles: a fun and effective learning tool for first
programming courses. In Proc. 8th ACE (Australasian
Conf. Comp. Ed.), ACE ’06, pages 157–163, 2006.

[15] T. Roughgarden. “Algorithms: Design and Analysis,
Part 1”, June–August 2012. Coursera.
http://www.coursera.org/course/algo.

[16] A. Sweigart. Invent Your Own Computer Games with
Python. Self-published, 2008.
http://inventwithpython.com/.

[17] B. Victor. Inventing on principle. In 4th CUSEC
(Canadian University Software Eng. Conf.), 2012.
(Keynote talk) http://vimeo.com/36579366.

http://people.csail.mit.edu/pgbovine/python/
http://codemirror.net/
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.coursera.org/course/algo
http://inventwithpython.com/
http://vimeo.com/36579366

	Introduction
	Related Work

	Bird's-eye View
	Usage Statistics

	Features
	Student Tools
	Lesson Designer Tools
	Teacher Tools

	Implementation
	Future Work
	Acknowledgments
	References

