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Ambitions

- Revisit classical optimization from perspective of competition

outperform the opponent

- Objective:

- Define framework for techniques to minmax-optimal strategies
typically for exponentially large zero-sum games

- Case studies: ranking / compression / search / hiring

- WIll players use the classic optimization solution in a dueling
setting?

- What strategies do players play at equilibrium? [Immorlica]

- Are these strategies still good at solving the optimization
problem? [me here and now]
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Ranking Duel

Problem
- Design a search engine that ranks n webpages
- Given a probability distribution over queries p

- Have the rank of the webpage lower than the opponent’s
onel

1-player optimal strategy
- Output greedy permutation (w4, w,,***, wy,) S.t.
p(wy) = p(wy) = - = p(wy)

What should you play to beat me for a random

distribution over queries p(i) = % + (i — g) €?
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Ranking Duel

What should you play to beat me for a random

: : : : ~ 1 . n
distribution over queries p(i) = ~+ (l — E) €?
-Iplay (1,2,:-,n—1,n)

- You should reply with (2,3,---,n,1)
- To win duel with probability 1 — -~

n

We say the 1-player optimal strategy is (1 — %)—beatable
over a random probability distribution.
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Beatability

- If single player (monopolist) was solving the 1-player
optimization problem

- How badly could they be beaten if a second player
suddenly entered?

- Beatability of algorithm A over distribution p
E’l‘ [U(A(p; T'), p)]

- Beatability of an algorithm A
inprT' [U(A(p) T'), p)]
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Dueling Algorithms

Bounds on Beatability  [Ranking]

- Immorlica et al. prooved the following bounds

Opt. 1-pl.-strat_|_Upper bound

Ranking greedy 1-1/n 1-1/n
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Bounds on Beatability [Compression]

- Immorlica et al. prooved the following bounds

Opt. Prob. Opt. 1-pl.-strat Upper bound

Ranking greedy 1-1/n 1-1/n
Compression Huffman Coding 3/4 213

Informal description

- Given a set of symbols and their weights (usually proportional
to probabilities).

- Find A prefix-free binary code (a set of codewords) with
minimum expected codeword length (equivalently, a tree with
minimum weighted path length from the root).
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Bounds on Beatability [Compression]

Char
space

XC“'OO_""U)DB_'S_“('DQJ

Freq

P P P P P P NDNDNDNMNMNDNDDNDDDND WS~ PN

w3 [i2

BE

Code
111
010
000
1101
1010
1000
0111
0010
1011
0110
11001
00110
10011
11000
00111
10010



Dueling Algorithms

Bounds on Beatability  [Search]

- Immorlica et al. prooved the following bounds

Opt. Prob. Opt. 1-pl.-strat Upper bound

Ranking greedy 1-1/n 1-1/n
Compression Huffman Coding 3/4 2/3
Search Binary search 5/8 5/8
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Bounds on Beatability  [Hiring]

Ranking greedy 1-1/n 1-1/n
Compression Huffman Coding 3/4 213

Search Binary search 5/8 5/8

Hiring n/e-stopping rule 0.82 0.51

- There is a single secretarial position to fill.

- There are n applicants for the position, and the value of n is known.

- The applicants can be ranked from best to worst with no ties.

- The applicants are interviewed sequentially in a random order, with each order being
equally likely.

- After each interview, the applicant is accepted or rejected.

- The decision to accept or reject an applicant can be based only on the relative ranks of
the applicants interviewed so far.

- Rejected applicants cannot be recalled.

- The objective is to select the best applicant. The payoff is 1 for the best applicant and
zero otherwise.
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Preliminaries

- Problem of optimization under uncertainty (X, Q,c,p)
- X feasible set

- p distribution over state nature w
-l SDw

- ¢ oObjective functionc: X X Q - R

- Costofx € X c(x) = E,plc(x, w)]
- 1-player optimum  opt = min,exc(x)
- Cost of algorithm A ¢(4) = E,[c(A(p,7))]
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Preliminaries

- 2-person constant-sum duel game D(X, Q, ¢, p)
- Players simultaneously choose x,x' € X
- Player 1's payoff

v(x,x",p) = Pryplclx, w) < c(x', w)] + %Prww [c(x,w) = c(x', w)]

- Value of a strategy v(x,p) = min,,cxv(x, x’, p)
- ¢ is a best response to strategy ¢’ if it maximizes v(o, ")
- Set of minmax strategies

MM(D(X,Q,¢,p) ) = {o € AX)|v(0) =3

- Von Neumann (1928) : For constant-sum games, the set of
Nash equilibria is the cross-product of the minmax startegies
for players 1 and 2.
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Bilinear duels

- Feasible set of strategies are points in n-dimensional Euclidian space
XS R™ and X' € R™

- Payoff to player 1 is v(x,x") = x!Mx' for some M € R"™ "

- Let K be the convex hull of X
- Every point in K is achievable in expectation as a mixed strategy
- K is a polytope defined by the intersection of m half-spaces
K ={x € R™"|w; - x = b;} fori=1,2,...m

K' = {x’ c R"’|Wi’ x> bl-’} fori=1,2,...m’
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LP formulation

- Typical way to reduce to an LP for constant-sum games is
Maxyeg xegnV S.t.x € K and x*Mx' > v for all x' e x’

- Exponential number of constraints m + | X'|

- The following LP has linear number of constraints and can be solved
In polynomial time

!/ /
max oAb st.xeKandxtM=3Y",1;-w;

/
XERM™ AeR™

- Lemma (Immorlica) : For any constant-sum game with strategies
x € K and payoffs x*Mx’, the maximum of the above LP is the value of
the game to player 1, and any maximizing X is a minmax optimal
strategy.
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Reduction to bilinear duels

- Reduction of a duel D(X, Q, ¢, p) to bilinear form requires

1. An efficiently computable function ¢: X — K that maps each
strategy x € X to a feasible pointin K € R"

2. A matrix M such that v(x,x") = @(x)!Mp(x)

3. A set of polynomially many feasible constraints that defines K
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Hiring — bilinear mapping

* Objective hire better candidate than opponent

- Strategies Mappings from any prefix and permutation of
workers’ ranks in that prefix to a binary hiring decision

The permutation of ranks in a prefix does not affect the
distribution of the rank of the just interviewed worker!

WOLOG strategies are mappings from the round number and
current rank to a hiring decision.

* Notation (X,Q,c,p)
- X are functions h:{1,---,n}? - {0,1} indicating, for any round i and
projected rank j of the current interviewee, the hiring decision h(i, j)
« Q are all permutations o of interviewees, p a uniform distribution

* c(h,o) = rank of hired candidate
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Hiring — Stopping rule (1-player)

Payoff is 1 iff hire best candidate, else O

No bounds on scores known a priori => stopping rule strategy

Accumulate knowledge by interviewing applicants and rejecting
them. How many?

Rule 1 : never accept applicant with score lower than any previous
applicant!

Def. A candidate satisfies rule 1
Strategy : @each interview :
* |s applicant a candidate?
* If so, compare Prwinning by accepting]
Pr|winning by rejecting]|
Def. a strategy STRAT(S) : reject first s applicants, then accept first
candidate
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Hiring — Stopping rule
. What is P(WIN by STRAT(S))?

« Hyp: highest score at position k.
« if k<=s, P=0
« SO P(WIN by STRAT(s))

N
3 P(WIN by STRAT(s) N maximum is at k)
k=s+1

iP(WIN by STRAT(S) | maximum is at k)- P(maximum Is at k)

- Random order implies  P(maximum is at k)=%

 For the other P, we have to ensure that applicant k is the first
candidate after s. This happens only if the maximum of the
first k-1 candidates lies within the first s, which occurs with
probability s/(k-1)

* Finally

PWIN by STRAT (s)):% ZN: 1
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Hiring — Stopping rule

* The strategy s* that maximizes P(WIN by STRAT(S))
for given N can be found by DP in linear time or by
ODDS algorithm in sub-linear time.

Winning strategies for some N

n 1 2 3 4 5 6 7 8 9
S 0 0 1 1 2 2 2 3 3
1.000 0.500 0.500 0.458 0.433 0.428 0.414 0.410 0.406

For large N, s — g and the winning probability

converges to i ~ 36.8%
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Hiring duel — shared information

« Context Same set of applicants for both employers
Each employer observes when the other hires

e Strateqy strategy m Is a symmetric equilibrium
- if opponent already hired: hire anyone who beats his employee
- else : hire as soon as the current applicanthas a = 50%
chance of being the best of the remaining ones.

« Lemma m IS efficiently computable

« Algorithm let t; a threshold such that at round i, = hires iff the
projected rank j of the current candidate is at most t;

Probabillity that t;th best applicant among the |

l
observed applicants is better than all remaining ones is (ti)/(n)

l
Hire whenever j-th best so far observed on round i and (1)/(n) > %
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Hiring duel — shared information

* Lower Bound Beatability of classical algorithm is at least 0.51

* Proof

m guarantees a payoff of at least 0.50 in any case
for g > i consider the event that classical algorithm hires in {g qn}.

This happens when best among first gn is not among first g which

occurs with probability (1 — é)

Conditioned on that, m wins whenever best candidate is among last
n(1 — q) applicants [loose lower bound] , which occurs with
probability (1 — q).

Overall payoff 1(1—q) (1 — q—le) + %q—le

Optimizing for q yields q* = v/2e, and payoff equal to 0.51
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Hiring duel — shared information

« Upper Bound Beatability of classical algorithm is at most 0.82

Proof

Classic algorithm has probabilityi of hiring best applicant.

The best an opponent could possibly do is hiring always the best
applicant.

Payoff is then %i +1 (1 — i) equal to payoff equal to 0.82
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Hiring duel — shared information
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Hiring duel — shared information

« Fairness
The competitive algorithm uses information on

when the single-player algorithm hires. The
reverse is not true. Is this a fair game?

 Portability

How could the competitive algorithm solve the
classical problem?
=> Don't tell it when the opponent hires
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Hiring duel — = without information

Optimal Hiring (shared information)
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Hiring duel — no shared information

* Represent strategy by vectors {pi j}
* p;; total probability of hiring j-th best seen so far on round |

* Let g; be the probability of reaching round |
71 =1 .
di+1 = q; — §'=1 Dij

« 1(i,j) is the probability of hiring j-th best so far on round i, conditioned on
seeing J-th best at round I.

- Bayes' rule allows efficient bijective mapping between 7(i, j) and {p; j},
our ¢.
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Hiring duel — no shared information

« Feassible set K

« Probability of hiring j-th best in round | cannot exceed probability of
reaching round i and seeing j-th best.

qi
Pij =

« Recursive definition of reaching round i
7 =1 _
di+1 = qi — 5-:1 Dij

« Mapping ¢
Dy q; (i, }) 1/i

P(hire jini) P(reachi) P(hirejini|iniwithj) P(seejini)
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Hiring duel — no shared information

* Payoff matrix M; ;s

- E. Event that last candiate has overall rank r
* Fj Projected rank of last candiate in prefix of size i Is |

My jr = z Pr|E.|Fij| - Pr|Eq|Fy ]

rri:1sr<r’sn

+ 0.5 Z Pr[ErlFij] 'Pr[Er |Fi'j’]
1=sr<

n

. Bayes PT'[ErlFij] = PT[Filer] ] PT[ET]/Pr[Fi]']



+ PrlFy] =1

==
(i1)

« Pr|F;|E.| =

« Wrapp it all into an LP, code it and simulate ©
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1-player algorithm in duel

Hiring duel (isolated)
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Competitive algorithm in optimization

Optimal Hiring (isolated)

— competition-optimal

—— 1-player-optimal

-

Optimality [%]
&

10

\/\’\JM i Price of anarchy
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Conclusion

- Bilinear framework was presented and applied to
Hiring duel

- Bounds on beatability of optimization algorithms

Opt. 1-pl.-strat_|_Upper bound

Ranking greedy 1-1/n 1-1/n
Compression Huffman Coding 3/4 2/3

Search Binary search 5/8 5/8

Hiring n/e-stopping rule 0.82 0.51

- There is a price of optimality & anarchy (not in immoriica)

Hiring(60) 1-player optimal Competitive algorithm

37% 30%



Thank you!



