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Ambitions 
• Revisit classical optimization from perspective of competition 

 

• Objective:  single-player cost minimization 

  outperform the opponent 
 

• Define framework for techniques to minmax-optimal strategies 
typically for exponentially large zero-sum games 
 

• Case studies: ranking / compression / search / hiring 
 

• Will players use the classic optimization solution in a dueling 
setting? 
 

• What strategies do players play at equilibrium?   [Immorlica] 
 

• Are these strategies still good at solving the optimization 
problem?         [me here and now] 
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Ranking Duel 

Problem 

• Design a search engine that ranks n webpages 

• Given a probability distribution over queries p 

• Have the rank of the webpage lower than the opponent’s 
one! 

 

1-player optimal strategy 

• Output greedy permutation 𝜔1, 𝜔2, ⋯ , 𝜔𝑛  s.t. 

 𝑝 𝜔1 ≥ 𝑝 𝜔2 ≥ ⋯ ≥ 𝑝 𝜔𝑛  

 

What should you play to beat me for a random 

distribution over queries 𝒑 𝒊 =
𝟏

𝒏
+ 𝒊 −

𝒏

𝟐
𝝐 ? 
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Ranking Duel 

What should you play to beat me for a random 

distribution over queries 𝒑 𝒊 =
𝟏

𝒏
+ 𝒊 −

𝒏

𝟐
𝝐 ? 

 

• I play 1,2,⋯ , 𝑛 − 1, 𝑛   

• You should reply with 2,3,⋯ , 𝑛, 1  

• To win duel with probability  1 −
1

𝑛
  

 

We say the 1-player optimal strategy is 𝟏 −
𝟏

𝒏
-beatable 

over a random probability distribution. 
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Beatability 

• If single player (monopolist) was solving the 1-player 

optimization problem 

 

• How badly could they be beaten if a second player 

suddenly entered? 

 

• Beatability of algorithm A over distribution p 

𝐸𝑟 𝑣 𝐴 𝑝, 𝑟 , 𝑝  

 

• Beatability of an algorithm A 

𝑖𝑛𝑓𝑝𝐸𝑟 𝑣 𝐴 𝑝, 𝑟 , 𝑝  
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Bounds on Beatability  [Ranking] 

• Immorlica et al. prooved the following bounds 
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Opt. Prob. Opt. 1-pl.-strat Upper bound Lower bound 

Ranking greedy 1-1/n 1-1/n 



Bounds on Beatability [Compression] 

• Immorlica et al. prooved the following bounds 

 

 

 

 

Informal description 
 

• Given a set of symbols and their weights (usually proportional 

to probabilities). 
 

• Find A prefix-free binary code (a set of codewords) with 

minimum expected codeword length (equivalently, a tree with 

minimum weighted path length from the root).  
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Opt. Prob. Opt. 1-pl.-strat Upper bound Lower bound 

Ranking greedy 1-1/n 1-1/n 

Compression Huffman Coding 3/4 2/3 



Bounds on Beatability [Compression] 
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Char Freq Code 

space 7 111 

a 4 010 

e 4 000 

f 3 1101 

h 2 1010 

i 2 1000 

m 2 0111 

n 2 0010 

s 2 1011 

t 2 0110 

l 1 11001 

o 1 00110 

p 1 10011 

r 1 11000 

u 1 00111 

x 1 10010 



Bounds on Beatability [Search] 

• Immorlica et al. prooved the following bounds 
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Opt. Prob. Opt. 1-pl.-strat Upper bound Lower bound 

Ranking greedy 1-1/n 1-1/n 

Compression Huffman Coding 3/4 2/3 

Search Binary search 5/8 5/8 



Bounds on Beatability [Hiring] 

 

• There is a single secretarial position to fill. 

• There are n applicants for the position, and the value of n is known. 

• The applicants can be ranked from best to worst with no ties. 

• The applicants are interviewed sequentially in a random order, with each order being 
equally likely. 

• After each interview, the applicant is accepted or rejected. 

• The decision to accept or reject an applicant can be based only on the relative ranks of 
the applicants interviewed so far. 

• Rejected applicants cannot be recalled. 

• The objective is to select the best applicant. The payoff is 1 for the best applicant and 
zero otherwise. 
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Opt. Prob. Opt. 1-pl.-strat Upper bound Lower bound 

Ranking greedy 1-1/n 1-1/n 

Compression Huffman Coding 3/4 2/3 

Search Binary search 5/8 5/8 

Hiring n/e-stopping rule 0.82 0.51 



Preliminaries 

• Problem of optimization under uncertainty 𝑋, Ω, 𝑐, 𝑝  

• 𝑋  feasible set 

• 𝑝  distribution over state nature 𝜔 

• Ω  ∋ 𝜔 

• 𝑐 objective function 𝑐: 𝑋 × Ω → 𝑹 

 

• Cost of 𝑥 ∈ 𝑋  𝑐 𝑥 = 𝐸𝜔~𝑝 𝑐 𝑥, 𝜔  

• 1-player optimum opt = min𝑥∈𝑋𝑐 𝑥  

• Cost of algorithm A  𝑐 𝐴 = 𝐸𝑟 𝑐 𝐴 𝑝, 𝑟  
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Preliminaries 

• 2-person constant-sum duel game 𝐷 𝑋, Ω, 𝑐, 𝑝  

• Players simultaneously choose x, x′ ∈ 𝑋   

• Player 1’s payoff 

𝑣 𝑥, 𝑥′, 𝑝 = 𝑃𝑟𝜔~𝑝 𝑐 𝑥, 𝜔 < 𝑐 𝑥′, 𝜔 +
1

2
𝑃𝑟𝜔~𝑝 𝑐 𝑥, 𝜔 = 𝑐 𝑥′, 𝜔  

• Value of a strategy 𝑣 𝑥, 𝑝 = 𝑚𝑖𝑛𝑥′∈𝑋𝑣 𝑥, 𝑥
′, 𝑝  

• 𝜎 is a best response to strategy 𝜎′ if it maximizes 𝑣 𝜎, 𝜎′  

• Set of minmax strategies 

𝑀𝑀 𝐷 𝑋,Ω, 𝑐, 𝑝  = 𝜎 ∈ ∆ 𝑋 |𝑣 𝜎 = 1
2

 

• Von Neumann (1928) : For constant-sum games, the set of 

Nash equilibria is the cross-product of the minmax startegies 

for players 1 and 2. 

16 Dueling Algorithms                          Kauth 



Bilinear duels 

• Feasible set of strategies are points in n-dimensional Euclidian space 

 𝑋 ⊆ 𝑅𝑛  and  𝑋′ ⊆ 𝑅𝑛
′
 

 

• Payoff to player 1 is 𝑣 𝑥, 𝑥′ = 𝑥𝑡𝑀𝑥′  for some 𝑀 ∈ 𝑅𝑛×𝑛
′
 

 

• Let K be the convex hull of X 

• Every point in K is achievable in expectation as a mixed strategy 

• K is a polytope defined by the intersection of m half-spaces 

  𝐾 = 𝑥 ∈ 𝑅𝑛|𝑤𝑖 ∙ 𝑥 ≥ 𝑏𝑖      for i=1,2,..,m 

  𝐾′ = 𝑥′ ∈ 𝑅𝑛
′
|𝑤𝑖′ ∙ 𝑥′ ≥ 𝑏𝑖′    for i=1,2,..,m’ 
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LP formulation 

• Typical way to reduce to an LP for constant-sum games is 

 𝑚𝑎𝑥𝑣∈𝑅,𝑥∈𝑅𝑛𝑣  s.t. 𝑥 ∈ 𝐾 and 𝑥𝑡𝑀𝑥′ ≥ 𝑣  for all 𝑥′ ∈ 𝑋′  
 

• Exponential number of constraints 𝑚 + |𝑋′| 
 

• The following LP has linear number of constraints and can be solved 
in polynomial time 

   𝑚𝑎𝑥
𝑥∈𝑅𝑛,𝜆∈𝑅𝑚

′  𝜆𝑖
𝑚′

𝑖=1 ∙ 𝑏𝑖′  s.t. 𝑥 ∈ 𝐾 and 𝑥𝑡𝑀 =  𝜆𝑖 ∙ 𝑤𝑖′
𝑚′

𝑖=1  

 

• Lemma (Immorlica) : For any constant-sum game with strategies 
𝑥 ∈ 𝐾 and payoffs xtMx′, the maximum of the above LP is the value of 
the game to player 1, and any maximizing x is a minmax optimal 
strategy. 
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Reduction to bilinear duels 

• Reduction of a duel 𝐷 𝑋, Ω, 𝑐, 𝑝  to bilinear form requires 

 

1. An efficiently computable function 𝜑:𝑋 → 𝐾 that maps each 

strategy 𝑥 ∈ 𝑋 to a feasible point in 𝐾 ⊆ 𝑅𝑛 

 

2. A matrix M such that 𝑣 𝑥, 𝑥′ = 𝜑 𝑥 𝑡𝑀𝜑 𝑥  

 

3. A set of polynomially many feasible constraints that defines 𝐾 

 

19 Dueling Algorithms                          Kauth 



Outline 
• An introduction 

• Snake/Tron 

• Ambitions 
 

• Ranking duel 
• Example 

• Beatability 
 

• Bilinear duel framework 
• Beatability of classical algorithms 

• Zero-sum  => Min-max => Linear programming 
 

•  Hiring duel 
• Optimal single-player strategy 

• Competitive strategy 

• The price of optimality/anarchy 
 

• Conclusion 

20 Dueling Algorithms                          Kauth 



Hiring – bilinear mapping 
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• Objective  hire better candidate than opponent 

 

• Strategies  Mappings from any prefix and permutation of  

   workers’ ranks in that prefix to a binary hiring decision 

 

 The permutation of ranks in a prefix does not affect the  

  distribution of the rank of the just interviewed worker! 

 

 WOLOG strategies are mappings from the round number and  

  current rank to a hiring decision. 

 

• Notation  𝑋, Ω, 𝑐, 𝑝  

• 𝑋 are functions : 1,⋯ , 𝑛 2 → 0,1  indicating, for any round i and 

projected rank j of the current interviewee, the hiring decision  𝑖, 𝑗  

• Ω are all permutations 𝜎 of interviewees, 𝑝 a uniform distribution 

• 𝑐 , 𝜎 = 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑖𝑟𝑒𝑑 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
 



Hiring – Stopping rule (1-player) 
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• Payoff is 1 iff hire best candidate, else 0 
 

• No bounds on scores known a priori   => stopping rule strategy 
 

• Accumulate knowledge by interviewing applicants and rejecting 

them. How many? 
 

• Rule 1 : never accept applicant with score lower than any previous 

applicant! 
 

• Def. A candidate satisfies rule 1 
 

• Strategy : @each interview : 
 

• Is applicant a candidate? 
 

• If so, compare   𝑃𝑟 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑏𝑦 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔   

   𝑃𝑟 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑏𝑦 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔  
 

• Def. a strategy STRAT(s) : reject first s applicants, then accept first  

  candidate 



Hiring – Stopping rule 
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• What is P(WIN by STRAT(s))? 
 

• Hyp: highest score at position k. 
 

• if k<=s, P=0 
 

• So 

 

 
 

 
 

• Random order implies  
 

• For the other P, we have to ensure that applicant k is the first  

  candidate after s. This happens only if the maximum of the  

  first k-1 candidates lies within the first s, which occurs with  

  probability s/(k-1) 
 

• Finally 

 

 

   katismaximumkatismaximum|STRAT(s)byWIN

katismaximumSTRAT(s)byWIN

STRAT(s)byWIN

1

1

PP

P

P

N

sk

N

sk















 
N

P
1

katismaximum 

  
 


N

sk kN

s
sSTRATbyWINP

1 1

1
)(



Hiring – Stopping rule 
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• The strategy s* that maximizes P(WIN by STRAT(s)) 

   for given N can be found by DP in linear time or by  

   ODDS algorithm in sub-linear time. 

 

• Winning strategies for some N 

 

 

 

 

 

• For large N, 𝑠 →
𝑛

𝑒
 and the winning probability 

converges to 
1

𝑒
≈ 36.8% 

 

n 1 2 3 4 5 6 7 8 9 

s 0 0 1 1 2 2 2 3 3 

P 1.000 0.500 0.500 0.458 0.433 0.428 0.414 0.410 0.406 



Hiring duel – shared information 
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• Context Same set of applicants for both employers 

  Each employer observes when the other hires 
 

• Strategy strategy 𝜋 is a symmetric equilibrium 

       - if opponent already hired: hire anyone who beats his employee 

       - else :  hire as soon as the current applicant has a  ≥ 50%  

    chance of being the best of the remaining ones. 
 

• Lemma  𝜋 is efficiently computable 
 

• Algorithm let 𝑡𝑖 a threshold such that at round i, 𝜋 hires iff the  

   projected rank j of the current candidate is at most 𝑡𝑖 
 

 Probability that 𝑡𝑖th best applicant among the i  

  observed applicants is better than all remaining ones is 
𝑖
𝑡𝑖
𝑛
𝑡𝑖

  

       Hire whenever j-th best so far observed on round i and 

𝑖
𝑗
𝑛
𝑗
 ≥

1

2
 



Hiring duel – shared information 
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• Lower Bound Beatability of classical algorithm is at least 0.51 

 

• Proof  

• 𝜋 guarantees a payoff of at least 0.50 in any case 

• for 𝑞 >
1

𝑒
, consider the event that classical algorithm hires in 

𝑛

𝑒
, 𝑞𝑛 . 

• This happens when best among first 𝑞𝑛 is not among first 
𝑛

𝑒
, which  

  occurs with probability 1 −
1

𝑞𝑒
  

• Conditioned on that, 𝜋 wins whenever best candidate is among last 

𝑛 1 − 𝑞  applicants [loose lower bound] , which occurs with 

probability 1 − 𝑞 . 

• Overall payoff   1 1 − 𝑞 1 −
1

𝑞𝑒
+
1

2

1

𝑞𝑒
 

 

 

• Optimizing for 𝑞 yields 𝑞∗ = 2𝑒, and payoff equal to 0.51  



Hiring duel – shared information 
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• Upper Bound Beatability of classical algorithm is at most 0.82 

 

• Proof  

• Classic algorithm has probability 
1

𝑒
  of hiring best applicant. 

• The best an opponent could possibly do is hiring always the best 

applicant. 

 

• Payoff is then 
1

2

1

𝑒
+ 1 1 −

1

𝑒
, equal to payoff equal to 0.82  



Hiring duel – shared information 
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Upper bound 

Lower bound 

~63% 



Hiring duel – shared information 
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• Fairness 

  

 The competitive algorithm uses information on  

  when the single-player algorithm hires. The  

  reverse is not true. Is this a fair game? 

 

 

• Portability 

  

 How could the competitive algorithm solve the  

  classical problem? 

 => Don’t tell it when the opponent hires 



Hiring duel – 𝜋 without information 
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Hiring duel – no shared information 
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• Represent strategy π  by vectors 𝑝𝑖𝑗  

• 𝑝𝑖𝑗 total probability of hiring j-th best seen so far on round i 

 

• Let 𝑞𝑖 be the probability of reaching round i 

   𝑞1 = 1 

  𝑞𝑖+1 = 𝑞𝑖 −  𝑝𝑖𝑗
𝑖
𝑗=1  

 

• 𝜋 𝑖, 𝑗  is the probability of hiring j-th best so far on round i, conditioned on 

seeing j-th best at round i. 

 

• Bayes’ rule allows efficient bijective mapping between 𝜋 𝑖, 𝑗  and 𝑝𝑖𝑗 , 

our 𝜑. 



Hiring duel – no shared information 
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• Feassible set K 

 

• Probability of hiring j-th best in round i cannot exceed probability of 

reaching round i and seeing j-th best. 

 

 𝑝𝑖𝑗 ≤
𝑞𝑖

𝑖
 

 

• Recursive definition of reaching round i 

 𝑞1 = 1 

  𝑞𝑖+1 = 𝑞𝑖 −  𝑝𝑖𝑗
𝑖
𝑗=1  

  

• Mapping 𝜑 

𝑝𝑖𝑗                 =                   𝑞𝑖                       𝜋 𝑖, 𝑗                       1/𝑖 

 

P(hire j in i) P(reach i) P(hire j in i | in i with j) P(see j in i) 



Hiring duel – no shared information 
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• Payoff matrix 𝑀𝑖𝑗𝑖′𝑗′ 

 

• 𝐸𝑟   Event that last candiate has overall rank r 

• 𝐹𝑖𝑗 Projected rank of last candiate in prefix of size i is j 

 

𝑀𝑖𝑗𝑖′𝑗′ =  𝑃𝑟 𝐸𝑟|𝐹𝑖𝑗
𝑟,𝑟′:1≤𝑟<𝑟′≤𝑛

∙ 𝑃𝑟 𝐸𝑟′|𝐹𝑖′𝑗′                        

+ 0.5  𝑃𝑟 𝐸𝑟|𝐹𝑖𝑗
1≤𝑟≤𝑛

∙ 𝑃𝑟 𝐸𝑟 |𝐹𝑖′𝑗′  

   

• Bayes 𝑃𝑟 𝐸𝑟|𝐹𝑖𝑗 = 𝑃𝑟 𝐹𝑖𝑗|𝐸𝑟 ∙ 𝑃𝑟 𝐸𝑟 /𝑃𝑟 𝐹𝑖𝑗  



Hiring duel – no shared information 
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• 𝑃𝑟 𝐸𝑟 =
1

𝑁
 

 

• 𝑃𝑟 𝐹𝑖𝑗 =
1

𝑖
 

 

• 𝑃𝑟 𝐹𝑖𝑗|𝐸𝑟 =

𝑟−1
𝑗−1

𝑛−𝑟
𝑖−𝑗

𝑛−1
𝑖−1

 

• Wrapp it all into an LP, code it and simulate  



1-player algorithm in duel 

Dueling Algorithms                          Kauth 35 

Upper bound 

Lower bound 

~59% 
Price of optimality 



Competitive algorithm in optimization 
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Price of anarchy 
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Conclusion 
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• Bilinear framework was presented and applied to 

Hiring duel 
 

• Bounds on beatability of optimization algorithms 

 

 

 

 

 

• There is a price of optimality & anarchy (not in Immorlica) 

  Hiring(60)  

Opt. Prob. Opt. 1-pl.-strat Upper bound Lower bound 

Ranking greedy 1-1/n 1-1/n 

Compression Huffman Coding 3/4 2/3 

Search Binary search 5/8 5/8 

Hiring n/e-stopping rule 0.82 0.51 

1-player optimal Competitive algorithm 

37% 30% 



Thank you! 

Dueling Algorithms                          Kauth 39 


