
Game Theory and Algorithms∗

Lecture 1: Introduction

February 22, 2011

Summary: We give an overview of the course and some motivation. We give the most basic
model of a mathematical game, namely strategic games, which underlie everything else in the
course. We introduce notation that will be used throughout the course.

1 All About This Course

A game in mathematics is a situation where multiple distinct players make choices, and each player gets
some sort of a utility/payoff depending on their own choice and the choices of the other players. All analysis
of games is done under the assumption that each player wants to maximize their own utility; thus game
theory with just one player is, at least superficially, the theory of optimization. But when there are multiple
players whose choices affect one another, a much richer set of possibilities opens up. It becomes possible to
model competition and cooperation.

Some prototypical examples of situations which can be modelled with games are elections, auctions,
price-setting of competing companies, negotiation, evolution, sharing common goods (e.g. traffic conges-
tion), or building common infrastructure (e.g. network formation). We will see several of these examples
(some, multiple times from different angles). Traditional games like tic-tac-toe, chess, checkers, poker, and
backgammon also can be cast as mathematical games.
Q: Two casino games that are not suitable for this course are roulette and blackjack. Why?
A: These are essentially one-player games; we thus consider them just as optimization problems. (For example
in roulette, the payoffs to a gambler depend only on his choices and on a fixed randomized procedure of the
casino; different gamblers at the same table have no effect on one another.)

A common theme in game theory literature is that there is more than one way to model a given situation.
For example, we will start with strategic games, which are the most fundamental class of games since it is
in principle possible to cast any game as a strategic game. Then we will come to the class of extensive
games, where a notion of time/history comes into play and the players can make decisions dependent on
past actions. Although we can “typecast” any extensive game into a strategic game, we will find out that
some natural solutions (Nash equilibria) of the resulting strategic game don’t really make sense (leading to
subgame perfect equilibria).

Another example of multiple different models is price-setting competition by two firms (duopoly), where
we give two different strategic games to model the situation.

In short, the game-theoretic predictions made by a model are only accurate if we accurately modelled
the game in the first place.
Since game theory and algorithmic game theory are huge disciplines, we try to stick to the parts that are
simplest, most useful, and under least dispute. The intent is that a student completing the course should
be well-equipped to apply game theory in practice and to understand modern literature from (algorithmic)
game theory.

∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.
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1.1 Course Contents Overview

I give a point-by-point overview on the course website http://disopt.epfl.ch/gta but here is a more
informal summary.

First, we will study strategic games, where everyone makes one choice, all at the same time. This simple
model already contains most of the richness of game theory. We will look at one type of “prediction” which
is very natural, (iterated) elimination of strictly dominated strategies, illustrated at first by the prisoner’s
dilemma.

We move on to (pure) Nash equilbria, which has more predictive value than iterated elimination. We
give many examples of games where the Nash equilibria seem to give useful predictions, including duopoly
and elections.

Not all strategic games have a pure Nash equilibria, but all (finite) ones have a mixed Nash equilibrium,
where we allow players to randomize. This is Nash’s theorem and one of the cornerstones of the field; we will
give some examples and a sketch of the proof, which is topological. For 2 players we give direct algorithmic
proofs, including the Lemke-Howson algorithm which has connections to so-called PPAD-completeness and
deep results about the complexity of finding mixed Nash equilbria.

These topics (strategic games) should take up roughly 1/3 of the lectures. We then move on to:

• games with explicit histories — extensive games — and (infinitely) repeated games

• auctions, an example of mechanism design, where we want to design a game with specific properties,
rather than analyze the properties of a game

• elections and Arrow’s impossibility theorem

• the Price of Anarchy — can we quantify how badly the greedy nature of players hurts them?

• impartial combinatorial games: a family of games where we can compute optimal strategies

• finally, student presentations.

Some topics from game theory which we won’t cover are: games with incomplete information, such as
poker, and the related Bayesian games; coalitional games; and cost-sharing from algorithmic game theory.

1.2 Format of the Course and Requirements

We meet in 10:15-12:00 Tuesdays in MA A1 10 (except Mar 22) and Thursdays in a different
room, MA A3 30. There are three requirements in the course.

1. I will present several exercises every week. Approximately once per two weeks, we will replace a lecture
with an exercise session to discuss the solutions as a group. To get credit, you must participate in
this activity. I will schedule office hours on demand for anyone who wishes to get hints and advice
with exercises. You can also contact me by e-mail any time. You are expected to work alone on the
exercises; ask me for permission in advance if you want to collaborate with anyone else.

2. I will ask each student to act as a scribe (at least once, more if people are interested). There is a LATEX
template on the course website for this purpose. The main reason for scribing is that, since there is
no textbook, I don’t want everyone to spend their time copying everything down in lecture. However,
since there is a delay in getting the scribe notes online, and since we might not scribe every lecture, I
will upload scans of my hand-written lecture notes when needed.

3. Finally, each student will present a paper of their choice at the end of the term. This serves as the
final exam for the course. Each presentation will be about half of a lecture period (approx. 40 minutes
long).
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2 Strategic Games

Definition 1. A strategic game consists of three things:

• A finite set {1, 2, . . . , n} of players

• For each player i, a set Ai of actions (sometimes called strategies)

• For each player i, a payoff function ui :
∏

i Ai → R (sometimes called utility functions)

It is worthwhile to unpack the term
∏

i Ai in this definition. Each element a ∈
∏

i Ai is a list of strategies,
one per player, and such an a is called an action profile (or an outcome). So a = (a1, . . . , an) where each
ai is some element of Ai. The meaning if the payoff function is that it represents, for each player, their
preferences over the outcomes. When ui(a) > ui(a

′) for two outcomes a and a′, this means that player i
prefers outcome a to outcome a′.

In analyzing strategic games, we will assume for now that players make their choices simultaneously,
and that every player knows each Ai and ui (complete information). Initially we assume nothing else but
later definitions (e.g. Nash equilibria) will model stronger assumptions by players on the actions of the other
players.

Example 2. We will model a situation where player 1 is a taxpayer and player 2 is the Swiss Revenue
Agency. The action set A1 for player 1 is {lie (L), don’t lie (DL)} and the action set A2 for player 2 is {audit
(A), don’t audit (DA)}. (Although in real life player 1 moves before player 2, we can equivalently model
their moves as simultaneous since player 2 needs to act without knowing what player 1 chose.) We choose
preferences to model the fact that there is a cost to the SRA for auditing, but it is compensated by a penalty
assessed when the taxpayer is caught lying :

u1(L,DA) > u1(DL,DA) > u1(DL,A) > u1(L,A)

u2(L,A) = u2(DL,DA) > u2(DL,A) > u2(L,DA).

This is a little arbitrary but not hard to imagine, e.g. u1(DL,DA) > u1(DL,A) represents that being audited
is annoying.

By giving the ui specific numeric values, we can represent the game by a table.

p1 \p2 A DA

L 1,3 4,1
DL 2,2 3,3

Here and later the convention is that the entry in row a1 and column a2 is u1(a), u2(a) for a = (a1, a2).

Note: these values don’t accurately represent dollar amounts. We’ll come back to a related issue when
we discuss how probabilistic preferences are modelled.

2.1 All Games are Strategic

In principle, any game can be converted to a strategic form. We will return to this later, but sketch the
general idea on an example game. At the start of a football game, team 1 decides to kick (K) or receive (R),
and then team 2 decides to play westwards (W) or eastwards (E). Converting this game to strategic form
doesn’t seem possible on face value, since in a strategic game each player makes their choices simultaneously,
while in this football scenario we want to allow team 2 to make different choices depending on the choice of
team 1.

The fix this, we define the set of strategies for player 2 in such a way that each strategy indicates a pair of
choices: first the choice of what team 2 would do when team 1 picks K, and then the choice of what team 2
would do when team 1 picks R. In other words, take A1 = {K,R} and A2 = {(W,W ), (W,E), (E,W ), (E,E)}.
This is indeed a strategic game: for any action profile (a1, a2) the payoffs are well-defined. We will return
to this later.
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2.2 The Prisoners’ Dilemma, and Dominated Strategies

Two suspects in a major crime have been arrested and are being held in separate cells. There is enough
evidence to convict each of them of a minor offense, but not enough evidence to convict either one of a major
crime unless the other one confesses against the other (“finks”). They will be interrogated separately and
both will be given the option of keeping quiet (Q) or finking (F).

If they both stay quiet, they will both be convicted of a minor crime. If one player finks and the other
stays quiet, the finker is set free and the quiet one will be convicted of a major crime. But if both of them
fink, they will share the penalty for the major crime. This leads to the following payoffs:

p1 \p2 Q F

Q 2,2 0,3
F 3,0 1,1

3: set free
2: minor conviction
1: share major conviction
0: major conviction alone
e.g. u2(F, F ) = 1

What will happen when the prisoners play this game, if we assume they are interested in maximizing
their utility? Next we will give a logical argument showing that the outcome (F, F ) is most likely. This gives
each player payoff 1; this is counterintuitive because if they both picked Q instead, they would both get a
better payoff of 2. This notation helps explain the argument and a more general approach.

Definition 3. A partial action profile a−i is an (n− 1)-tuple consisting of one action for each player except
player i. That is to say each a−i is an element of

∏
j:j 6=i Aj . If a−i is such a partial action profile, and

ai ∈ Ai is an action for player i, we write (a−i, ai) for the (complete) action profile obtained by combining
them. I.e.,

(ai, b−i) = (b1, b2, . . . , bi−1, ai, bi+1, . . . , bn).

Definition 4. For player i, we say action ai strictly dominates action a′i if, for all partial action profiles a−i
of the other players,

ui(ai, a−i) > ui(a
′
i, a−i).

In other words, ai strictly dominates a′i if ai is always better than a′i for player i.

So assuming that a player i is rational and seeks to maximize their own utility, if ai strictly dominates
a′i, they will never choose the strictly dominated action a′i, rather in such a situation they should always
play ai.

Now look at the prisoners’ dilemma: for player 1, F strictly dominates Q, since 3¿2 and 1¿0. So we would
expect player 1 never to pick Q, and always to pick F. The same holds for player 2 since it is a symmetric
game. So, as claimed, the outcome (F, F ) is the one to logically expect.

2.2.1 Discussion

Is there any logical way for the players to pick (Q, Q)? No: even if they know about the upcoming situation
and “agree” to both stay quiet, the only rational action is to double-cross one another.
Q: What if they are friends and don’t want to see the other prisoner get punished?
A: Applying this sort of reasoning is equivalent to modifying their utility functions and thereby changing
the game. As usual, the result of the model is only as good as its accuracy.

Later we will see a modified “infinite” version of the game where cooperation becomes a plausible outcome.
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3 Iterated Elimination of Strictly Dominated Strategies

We can come up with a simple algorithm to predict the outcome of certain games:

Procedure IteratedElimination

1: while any player has a strictly dominated action ai, do
2: delete ai from Ai

3: end while

The argument in the last section amounts to saying the following: if the information of the game is
completely known, if each player seeks to maximize their utility, and all players know that fact, and all players
know that all players know that fact, etc., then IteratedElimination preserves all rational outcomes of
the game. And thus if IteratedElimination comes up with only one outcome, it is the unique rational
outcome of the game, and the one we should predict under the given assumptions.

Exercise. Compute the result of applying IteratedElimination to the following game.

p1 \p2 L M R

U 2,3 0,2 1,1
D 1,1 5,0 0,4

There is also a more organic (and informal) way to describe iterated elimination. Suppose the players
play the game many times. After a while, player 2 will learn that M is a bad choice, and stop playing it.
Later, although player 1 might continue to use D for a while hoping that player 2 would pick M, eventually
player 1 will stop choosing D. Once player 2 learns this, they will only pick L. (Note, in this setting, each
player does not even need to know anything about their opponents’ payoff functions!)

Exercise. Compute the result of applying IteratedElimination to the “income tax” game.

So, iterated elimination does not produce a single outcome for all games. The next topic we introduce
is a more specific solution concept for games, the Nash equilibrium. Eventually this leads to one kind of
“solution concept” that exists in all games.

Exercise. (A little subtle) In IteratedElimination, it may happen at a given point in time that there
are several possible choices of dominated strategies to eliminate. Prove that the final result of the algorithm
is independent of the choice made in each iteration.

3.1 Challenge Exercise

Here is a challenge exercise which uses the conversion of arbitrary games to strategic form.

Exercise. A linear inequality system {x ∈ Rn : 0 ≤ xi ≤ 1 for i = 1, . . . , n and Ax ≥ b} consists of a matrix
A ∈ Rm×n, a vector x of n real variables, and a vector b ∈ Rn. (Each row Ai, bi gives a linear constraint∑

i Aijxj ≥ bj .) The simplex algorithm can be used to determine whether a given linear inequality system
has any solution. Now, consider the quantified linear inequality system

∃x1 ∈ [0, 1]∀x2 ∈ [0, 1]∃x3 ∈ [0, 1]∀x4 ∈ [0, 1] · · · : (Ax ≥ b).

Give an algorithm to determine whether a quantified linear inequality expression of this form is true or false.
(Hint 1: it won’t be a polynomial-time algorithm. Hint 2: convert it to a game where the “∃ player” tries
to make the statement true and the “∀ player” tries to make the statement false. Hint 3: show that the ∃
player can assume the ∀ player only ever chooses the values {0, 1}.)
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