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Lecture 13: Maximizing Auctioneer Revenue

April 14, 2011

Summary: We introduce seminal results of Myerson [2] on “optimal mechanism
design.” This pertains to the case that each player in the auction is drawn from
a random distribution which is known in advance. Our goal is to maximize the
revenue of the auctioneer, while keeping the auction truthful-in-expectation. One
very interesting consequence is that for a broad class of distributions, the income-
maximizing auction for n bidders from this distribution is just the second-price
auction with a reserve price which is independent of n.

1 Single-Parameter Auctions

We will consider today “single-parameter auctions.” This means that for each bidder, there
are only two kinds of outcomes as far as they are concerned, winning ones and losing ones.
Hence, each alternative is equivalent to specifying a set of “winners” and the rest of the
players as losers. Without loss of generality, we assume players have 0 utility for losing; they
have a private non-negative value vi ∈ R+ for winning, and the bid they submit consists of
a single number bi ∈ R+. As before, we assume quasi-linear utilities: the utility of winning
is vi − paymenti and the utility of losing is −paymenti.

Examples of single-parameter auction are when we have one item to sell, or k copies
to sell and each player can win at most one copy. However, the most general form is the
following:

� For each vector b of n bids from the players, the mechanism declares some winners and
the rest losers, and charges some payments to each player.

So formally, a mechanism is a function Rn
+ → 2n × Rn

+ where the inputs are the bids and
the outputs are the winners and payments. We’ll write

winners(b) ⊆ {1, 2, . . . , n}
∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.

1



to denote the players who win for a given set of bids, in a given mechanism. As usual we are
interested in truthful auctions. It turns out for truthful mechanisms the winners(b) function
will also implicitly determine the prices!

The first result we will talk about can be thought of as a warm-up. A mechanism is said
to be normalized if losers always pay 0; this assumption is intuitive, and also without loss of
generality if we care only about Nash equilibria, weak dominance, or truthfulness (using the
h−i lemma the from last lecture). We call a mechanism voluntary if every player who bids 0
pays 0.

Theorem 1. A voluntary normalized mechanism (for single-parameter bidders) is truthful
if and only if it has the following properties.

monotony Whenever bid vector b causes player i to win, so does any bid vector (b′i, b−i)
such that b′i > bi.

payment rule If player i wins an item when bid vector b is submitted, then paymenti equals
the critical bid

inf{b′i ≥ 0 | i ∈ winners(b′i, b−i)}.

Proof. First, let us see why monotony is necessary for the mechanism to be truthful (i.e.,
for bi = vi to be weakly dominant). Suppose the mechanism is truthful but for the sake
of contradiction that monotony is violated for some b−i, bi < b′i : i ∈ winners(b) and i 6∈
winners(b′i, b−i). Let p be the payment made by player i when they win in b. Fix the bids of
the opponents at b−i. For a player i with true value vi = bi, truthfulness implies

bi − p︸ ︷︷ ︸
utility with truthful bid

≥ 0.︸︷︷︸
utility with bid b′i

Similarly for a player with true value b′i, we get 0 ≥ b′i−p. This gives bi ≥ b′i, a contradiction.
Next, why is the payment rule necessary? Note that for any fixed b−i, monotony implies

the set of bids bi for which i ∈ winners(b) is a subset of R+ which is “up-closed:” it is ∅
or an infinite interval of the form (x,+∞) or [x,+∞). The payment for player i under two
different winning bids cannot change, since a truthful bidder paying the higher price would
have incentive to lie and report the smaller one. Finally, the constant price p paid in all
winning situations can neither be higher than x (or else a bidder with x < vi < p would have
incentive to lie and report 0, using voluntariness) nor lower than x (or similarly a bidder
with p < vi < x would have incentive to lie and report a winning bid).

Finally, we prove the converse: every monotonic voluntary normalized mechanism with
critical bid payments is truthful. Every winner gets a non-negative utility (since by the
payment rule their payment is no more than their bid=value), and deviating can only cause
them to lose, getting utility 0; every loser gets utility 0 and deviating can only cause them
to win, similarly getting nonpositive utility.

Voluntariness can be removed if one is willing to make the theorem a tiny bit more compli-
cated; see Theorem 9.36 of Nisan et al. A new possibility arises: a player could always win
an item and pay some fixed positive price.
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Assumption 1. In the rest of the lecture, we will assume all mechanisms are normalized
and voluntary.

The income in an auction is the sum of the payments.

Exercise. Consider auctioning a single item (i.e. there is always exactly one winner) to
two bidders. The VCG auction/second-price auction awards the item to the highest bidder
(breaking ties arbitrarily), and charges them the second-highest bid b(2). Show that for any
truthful voluntary normalized mechanism, if its income is at least b(2) for all b, then the
mechanism is a second-price auction.

Exercise. Now consider auctioning two items (we want |winners(b)| = 2 for all b), this
time to three players. The VCG mechanism awards the items to the two highest bidders,
and charges them each the third-highest price b(3). Find a truthful voluntary normalized
mechanism such that (i) for all b, its income is at least 2b(3) (ii) for some b, the winners don’t
correspond to the top two bids (so unlike VCG it does not maximize social welfare).

1.1 Maximizing Income

With Theorem 1 we can start to address the type of problem which is the main subject
today.

Example 2. As a warm-up, we consider the case of just a single bidder and selling just a
single item. This bidder arrives with a valuation/bid b drawn from some distribution F (we
conflate bids with true values since we will only look at truthful mechanisms.) We want to
design a single-parameter mechanism (namely, either we sell them the item, or we don’t)
which maximizes our expected income (with respect to the bidder’s probability distribution).

Theorem 1 implies that our mechanism is truthful so long as the set of winning bids is
up-closed (by monotony). If we define the set of winning bids as [x,+∞) then we have to
sell the item at price x, by the payment rule. Therefore the expected income is

x · Pr[b ≥ x]

and we simply pick x which maximizes this quantity. (Note setting the winning bids to a
set of the form (x,+∞) is also possible but never better.) We call x the optimal monopoly
price.

The resulting auction is the same as a one-player second-price auction with reserve price
x. It is useful to look at one concrete example: suppose the distribution F is uniform on
[0, 1], then the expected income for reserve price x is

x · Pr[b ≥ x] = x(1− x)

which is maximized at x = 1/2, with expected income 1/4.
To motivate the next part, now consider two bidders arriving, both with independent

random bids drawn uniformly from [0, 1], where we want a truthful mechanism to sell just
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a single item. Write b1, b2 for the bids. If we use a second-price auction, we get income
min{b1, b2} and thus the expected income is∫ 1

0

∫ 1

0

min{b1, b2}db1db2 = 1/3.

On the other hand, adding the same reserve price of 1/2 (from the single-bidder case) actually
increases the expected income to∫ 1/2

0

∫ 1/2

0

0db1db2+

∫ 1/2

0

∫ 1

1/2

1

2
db1db2+

∫ 1

1/2

∫ 1/2

0

1

2
db1db2+

∫ 1

1/2

∫ 1

1/2

min{b1, b2}db1db2 =
5

12
.

What happened is that we lost some money some of the time (when both players have bids
less than 1/2) but gained even more money other times. This 5

12
turns out to be the best we

can do for two-player auctions — even if rather than a truthful deterministic mechanism we
allow a randomized mechanism that is truthful-in-expectation. We will aim to prove this in
a general setting.

2 Truthful-in-Expectation Mechanisms

Myerson’s results consider truthful-in-expectation auctions, when players have valuations
coming from independent random distributions. Here is one useful tool.

Lemma 3. Fix a (voluntary normalized) mechanism. Fix a distribution on bid vectors for
player i’s opponents. As a function of player i’s bid bi, let 0 ≤ xi(bi) ≤ 1 be the probability
that player i is a winner. The mechanism is truthful in expectation to player i (w.r.t. the
distribution on b−i) if and only if

monotony xi(bi) is a weakly monotonically increasing function

payment rule E[paymenti(bi)] =
∫ bi
0

(xi(bi)− xi(z))dz.

The salient points are that the interaction with other players only shows up in xi(bi), and
that there is a formula for payments. We won’t give the proof since it’s very similar to
Theorem 1; it also reduces to Theorem 1 in the case that b−i is a singleton distribution and
x is integer-valued. The complete proof is given as Theorem 9.39 in Nisan et al.; it also holds
if we allow the mechanism to have some randomness of its own (so you can actually take the
randomness in b−i and move it into the mechanism).

From now on, we think of each player i’s bids/true values as being drawn from a distri-
bution Fi. Our goal is to determine, among all truthful voluntary normalized mechanisms,
the one which maximizes the expected income. Myerson’s results won’t exactly give us the
whole picture, but they work in a pretty broad setting which we will make precise as we go
along. There is an ironing procedure to try to fix distributions not meeting our assumptions
but we don’t discuss it in detail. We will have two sets of assumptions: here is the first one.
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Definition 4. We write Fi(x) := Prbi∼Fi
[bi ≤ x] for the cumulative density function of Fi.

The probability density function, denoted fi(x), is F ′i (x).

Assumption 2. Fi is continuous, differentiable, and the range of values with positive prob-
ability density is an interval (0, h).1

Definition 5. The virtual valuation of player i with value bi is

φi(bi) := bi −
1− Fi(bi)

fi(bi)
.

These definitions are valuable because of the following, which we will prove later, and
which extends Lemma 3:

Lemma 6. Fix a distribution for b−i and so define x(bi), as before. Fix a distribution Fi for
player i, which defines φi. Assuming truthfulness, the expected payment of player i equals
the expected value of φi(bi)xi(bi).

Given our definition of virtual valuation, and noting that
∑

i bixi is the expected social
welfare, it makes sense to call

E[
∑
i

φi(bi)xi(bi)]

the expected virtual social welfare. Then adding Lemma 6 over all players gives:

Corollary 7. The expected profit of a mechanism equals its expected virtual social welfare
(for independently distributed bidders, under our assumptions).

Moreover, we have a truthful mechanism which maximizes social welfare (VCG)! Once
we have this fact, it is tempting to try running VCG on the virtual valuations:

Virtual-VCG

1. Given the bids b, compute the virtual bids φi(bi) for each i

2. Run VCG on the virtual bids:

pick the feasible winner set W maximizing
∑

i∈W φi(bi)

compute virtual prices p′i for winners, using the VCG formula on the virtual bids

3. Charge each winner i the price φ−1i (p′i)

1The continuity is not essential but makes our calculations more straightforward; we could relax differen-
tiability to differentiability “almost everywhere;” the last part “no holes” is essential and without it Lemma 6
would be false, in short since we could get two different xi that behave the same on the range of bi.
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Before proceeding further, it is helpful to return to the example Fi = uniform(0, 1) for all
i when we want to auction a single item. The probability density function is a constant, 1. So
the virtual valuation of bi is φi(bi) = bi− (1− bi)/1 = 2bi− 1. Running VCG — maximizing
the virtual social welfare — for an auction on the virtual bids would award the items to the
top virtual bid (or to none, if all are negative). The winner would be charged the 2nd largest
bid (or φ−1(0) = 1/2 if only one is positive). This is equivalent to the VCG-with-reserve-1/2
studied earlier! Thus we have proven among all truthful-in-expectation mechanisms for these
bidders, the one maximizing the income is this simple deterministic one.

Exercise. What happens if we have k identical items to auction away (and each player can
win only one)?

However, this special case is not totally representative. It can be that Virtual-VCG is
not truthful! We have shown that VCG is truthful on its inputs, but here the inputs are the
virtual bids.

Assumption 3. The function φi(bi) is monotonically increasing in bi.

This assumption is a special case of a so-called monotone hazard rate from economics; see
Section 13.2.2 of Nisan et al. If we assume this, monotony of x in virtual bids is equivalent to
monotony of x in real bids. Consequently, using Theorem 1 and the fact that VCG satisfies
monotony,

Theorem 8. Under our assumptions, Virtual-VCG gives the maximum possible expected
income among all truthful-in-expectation mechanisms.

To prove this, it only remains to prove Lemma 6.

Proof of Lemma 6. We want to show E[paymenti] = E[φixi]. Shorten paymenti(bi) to pi(bi),
and let us drop all i subscripts for convenience.

When b is drawn according to F , calculus tells us the expected value of any function g(b)

equals the integral
∫ h

b=0
g(b)f(b)db. We likewise have that 1−F (u) = Pr[b > u] =

∫ h

z=u
f(z)dz.

Thus we want to show that∫ h

b=0

p(b)f(b)db =

∫ h

b=0

x(b)φ(b)f(b)db. (1)

We expand φ using its definition, and p using the formula from Lemma 3.

(1)⇔
∫ h

b=0

∫ b

z=0

l(x(b)− x(z))dzf(b)db =

∫ h

b=0

x(b)

(
b− 1− F (b)

f(b)

)
f(b)db.

⇔
∫ h

b=0

bx(b)f(b)db−
∫ h

b=0

∫ b

z=0

x(z)f(b)db =

∫ h

b=0

bx(b)f(b)db−
∫ h

b=0

(1− F (b))x(b)db

⇔
∫ h

b=0

∫ b

z=0

x(z)f(b)db =

∫ h

b=0

∫ h

z=b

f(z)x(b)db

and the last line is true by exchanging the order of integration.
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Exercise. Suppose the auctioneer attaches a value v0 > 0 to keeping the item: so instead
of revenue they want to maximize their (expected) surplus, which equals income if they sell
them item, and equals v0 otherwise. Under the same assumptions as above, what truthful
mechanism maximizes the expected surplus?

A remark: we assumed that the auctioneer has some valid winner sets, and others which
are invalid. Myerson’s results actually apply to the case that every winner set W ⊆ {1, . . . , n}
is possible but each has a cost c(W ) to the auctioneer. (The valid-invalid setting is equivalent
to c(W ) ∈ {0,+∞} for all W ). What we find is that (under our assumptions) the truthful-
in-expectation mechanism which maximizes E[income - c(W )] is a modified virtual VCG,
where the virtual social welfare of W is

∑
i∈W φi(bi)−c(W ) (and the payment rule is modified

similarly). For example, if c(W ) = |W |, the optimal truthful mechanism makes every player
with bi ≥ 1 a winner, and charges them 1.

Exercise. Myerson’s result proves that for the class of F ’s meeting all our assumptions,
the revenue-maximizing auction for a single item among n players is a second-price auction
with reserve x, where x does not depend on n. Show that this conclusion does not hold for
all distributions. (Hint: one possible counterexample is a discrete distribution on a small
number of values, where the optimal reserve price for 1 player is not equal to the optimal
reserve price for 2 players.)

Exercise. (Bulow-Klemperer [1]) We will compare two auctions. You can perform the first
three parts independently of one another.

1. Under both assumptions, show that the expected virtual valuation for player i is 0.

2. Show for any two independent random variables x, y, E[max{x, y}] ≥ E[max{x,E[y]}].

3. Take F as described above; assume all bidders have independent valuations drawn
according to F . Consider two second-price auctions: (i) we auction one item to n
bidders, using the optimal reserve price; and (ii) we auction one item to n+ 1 bidders,
using no reserve price. Show that the expected income of (ii) is at least as large as
that of (i). (Moral: rather than be smart and compute the optimal reserve price, it’s
better to just attract one more bidder and use no reserve price.)

4. Generalize the previous result to k-item auctions: how many more bidders must you
attract?
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