
Game Theory and Algorithms∗

Lecture 14: Maximizing Auctioneer Revenue, Part 2

April 19, 2011

Summary: Last class we looked at results of Myerson on finding truthful mech-
anisms which maximize profit when the bidders’ distributions are known and
independent. Today we look at the case where the bidders’ distributions are
unknown and we have digital goods where we can sell as many copies as we like.
Among truthful auctions, we find one to “approximately maximize” the income
no matter how the players bid.

1 Worst-Case Analysis

Consider the following scenario, which is the one-bidder case of what we will study today.
A single bidder walks in to your store, and you want to offer them a truthful mechanism for
buying an item. Recall that for a single player, truthful mechanisms are basically the same as
selling an item at a fixed price. Last class, we assumed their valuation was drawn from some
known distribution and in this case we were able to compute the optimal truthful auction
(sell at price P to maximize P ·Pr[b ≥ P ]). But if we have no information whatsoever about
the bidder’s valuation, to what extent can we still maximize our revenue? It turns out that
we cannot even approximately maximize our revenue within a constant factor, compared to
the optimal price (which would be b if we knew it in advance).

Remark: today we consider “randomized truthful auctions” which means that the algo-
rithm can flip some coins, and then choose a truthful auction depending on the outcome of
the coin flips. This is a smaller class than the the class of truthful-in-expectation auctions.
It’s also sometimes called “a probability distribution over truthful mechanisms” or a “uni-
versally truthful randomized mechanism.” A good way to think about it is that we still have
the same qualitative restrictions as a deterministic auction, but we allow the algorithm to
become randomized which makes probabilistic methods become available to us.

Claim 1. There does not exist a randomized truthful one-person auction with the following
property: for some constant C, for every bid b, the expected profit is at least b/C.
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Proof. Suppose for the sake of contradiction that this randomized truthful one-person auc-
tion did exist. Then in particular, if we randomize the bidder then the expected profit should
still be at least E[b]/C.

Let H be a positive integer to be fixed later. Pick the following distribution for the bid
b: the possible bids are b ∈ {1, 2, . . . , H} and

for all i = 1, . . . , H : Pr[b ≥ i] =
1

i
.

In other words, explicitly, we have Pr[b = i] = 1
i
− 1

i+1
for i < H and Pr[b = H] = 1/H.

On the one hand, it is straightforward to calculate that the expected bid is E[b] =
∑H

i=1
1
i
.

On the other hand, observe that every truthful (deterministic) auction does not have a very
high profit: selling at price x ∈ {1, . . . , H} gives expected profit

x · Pr[b ≥ x] = x · 1

x
= 1

and it is not hard to see no other price can do better than this. Likewise, every probability
distribution over truthful mechanisms has expected profit at most 1.

Since 1 < E[b]/C =
∑H

i=1
1
i
/C provided H is sufficiently large relative to C, we are

done.

So, no truthful mechanism can always (for all b) extract a constant fraction of the optimal
profit (b).

Exercise. Show that the above result also holds for truthful-in-expectation mechanisms.

1.1 Digital Goods/Lowering our Standards

For the rest of lecture we will consider selling digital goods to single-parameter agents: we
can declare any arbitrary subset of players as the winners (compare this to k-item auctions,
where we could only have k winners).

The proof at the end of the previous section rules out the type of mechanism which we
really desire for profit maximization, if we require truthfulness. Therefore, it makes sense to
“lower our standards:” rather than try to obtain the absolute maximum profit (sum of the
bids), we try to achieve nearly as much profit as a good “benchmark.”

Definition 2.

� For a vector x, let x(i) be the ith-largest number in x.

� The optimal single-price profit with hindsight S of a bid vector b is

S(b) :=
n

max
i=1

i · b(i).
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� The same as the previous, but requiring two or more sales, gives S(2) defined by

S(2)(b) :=
n

max
i=2

i · b(i).

Claim 1 shows that it is impossible for a truthful mechanism to extract a constant fraction
of S. Intuitively, S(2) is a somewhat more reasonable benchmark since we can use one bidder
as a reference point for another bidder, if we are comparing to sets of two or more bidders.
In fact, the main result of this lecture is:

Theorem 3. There is a truthful randomized mechanism for digital goods which obtains
expected profit at least S(2)(b)/4 on all bid vectors b.

The algorithm is “Random-Sample, Profit-Extraction” or RSPE. We thus say that RSPE
is 4-competitive, and likewise we call a mechanism k-competitive if it obtains profit at least
S(2)(b)/k on all bid vectors b; equivalently we call (the minimal) k its competitive ratio.

Example 4. Let us calculate the competitive ratio of the second-price auction, when there
are just two bidders. We claim that the competitive ratio is 2. First, the definition of
S(2)(b) becomes very simple for n = 2: S(2) is just 2 times the lowest bid. Second, the profit
extracted by a second-price auction equals the lowest bid. So in fact, the competitive ratio
is exactly 2 (even for any particular vector b).

We will work towards proving Theorem 3.

2 Profit Extraction

One basic tool we will use in RSPE is a truthful profit extractor. It takes a target profit R
as input and tries to extract it from the bidders.

Procedure Profit-Extract(R)

1: Initialize I to the set of all bidders
2: loop
3: If any i ∈ I has bi < R/|I|, remove i from I
4: Declare the set of winners to be I
5: Charge each winner R/|I|

We use the following facts:

� Profit-Extract is truthful. To prove this, we apply the (monotony + payment
rule) characterization from last lecture.

� Profit-Extract gives profit R when S ≥ R, and profit 0 otherwise.

Remark 5. Profit-Extract is an important special case of the Moulin(-Shenker) mech-
anism. It is useful in more general cost-sharing games where we charge different players dif-
ferent prices, and where these prices can depend on the set of winners in more general ways.
If the cost-sharing functions satisfy certain properties then it is even group-strategyproof,
but we don’t need this in today’s lecture.
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Exercise. Show that the specific mechanism Profit-Extract is group-strategyproof: if
a subset I of players deviate from truthfulness so that one of their utilities increase, show
that another of the players’ utilities decrease.

3 The RSPE Algorithm

If we need to offer a truthful mechanism against unknown bidders, the general idea which
gets us the furthest is to partition the bidders, and use one group as a reference point for the
others. This idea is used in many papers and it is for this reason that we are highlighting
the specific example of RSPE, which is defined as follows.

Procedure Random-Sample, Profit-Extraction

1: For each bidder, flip a coin: if it lands heads put that bidder in set I ′, otherwise put
that bidder in set I ′′

2: Let b′ be the bids of I ′ and b′′ be the bids of I ′′

3: Compute the optimal single-price profits with hindsight: S ′ := S(b′), S ′′ := S(b′′)
4: Run Profit-Extract(S ′) on I ′′ and Profit-Extract(S ′′) on I ′

For any choice of coin flips, the algorithm is truthful to each player (although possibly
non-group-strategyproof if players from I ′ collude with players from I ′′). In order to prove
that this algorithm is 4-competitive, we need the following lemma.

Lemma 6. If we flip j ≥ 2 coins, then E[min{#heads,#tails}] ≥ j/4.

We will prove it later, but here is how it is used.

Theorem 7. RSPE is 4-competitive (against S(2)).

Proof. Due to the properties of the profit extractor, the profit is the minimum of S ′ and S ′′.
It remains to show that E[min{S ′, S ′′}] ≥ S(2)/4.

From the definition of S(2), let j be the index achieving the optimal revenue, i.e. choose
j ≥ 2 such that S(2) = j · b(j); and let J be the set of winners, J = {i | bi ≥ b(j)}. In order to
use the lemma, let k be |J ∩ I ′|, so |J ∩ I ′′| = j − k. Note that the distribution of (k, j − k)
is the same as that obtained by flipping j coins and counting (#heads, #tails).

For any fixed k, we have that S ′ ≥ k · b(j) since one possible fixed sale price for I ′ is
to offer the price b(j), which everyone in I ′ would accept. Similarly S ′′ ≥ (j − k) · b(j) and
min{S ′, S ′′} ≥ min{k, j − k}b(j). So taking the expectation and factoring out the price, the
expected profit is

E[min{S ′, S ′′}] ≥ E[min{k, j − k}b(j)] = b(j)E[min{k, j − k}] ≥ b(j) · j/4

where the last inequality uses the Lemma.

Finally, we give the proof of Lemma 6.
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Proof. We will use double induction on j. To this end, we must manually verify the lemma
for j = 2 and j = 3. For j = 2, the expected value is 1

4
0 + 1

2
1 + 1

4
0 = 1

2
≥ j/4 as needed. For

j = 3, the expected value is 1
8
0 + 3

8
1 + 3

8
1 + 1

8
0 = 3

4
≥ j/4 as needed.

Next, we show that conditional on any specific sequence of the first j − 2 flips, the
expected increase in min{#heads,#tails} from the next two flips is at least 2/4. Removing
the conditioning and using linearity of expectation, this will complete the proof.

Case 1 : In the first j − 2 flips, there are an equal number of heads and tails. Then the
next two flips increase min{#heads,#tails} by 0 with probability 1/2, and by 1 with
probability 1/2, so the total expected increase is 1/2 as needed.

Case 2 : In the first j − 2 flips, the number of heads and tails is unequal. Then even just
one more flip causes min{#heads,#tails} to increase by 1/2 in expectation; the second
flip does not decrease the value.

3.1 Related Facts

� The competitive ratio of RSPE is exactly 4, even for just two players. This can be
verified by running it on the bid vector (1, 2).

� The best known truthful auction has competitive ratio 3.25. It is based on randomly
splitting the bidders into three groups, and then running the optimal three-player
auction on these “group bids.”

� No symmetric deterministic truthful mechanism for n players has competitive ratio
less than n; asymmetric deterministic ones have been obtained recently via derandom-
ization techniques. See Theorem 3.15 in Hartline.

� No randomized truthful mechanism for 2 players has competitive ratio less than 2. (So
even S(2) is somewhat too optimistic, as a worst-case benchmark; and the second-price
auction for 2 players has the optimal competitive ratio. The proof is similar to that of
Claim 1, see Lemma 3.22 in Hartline.)

� More generally, there are constants c2 = 2, c3 = 13/6, . . . tending to 2.42 so that no
randomized truthful mechanism for n players has competitive ratio less than cn.
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