
Game Theory and Algorithms∗

Lecture 17: Network Games and Quality of Equilibria

May 10, 2011

Summary: We discuss a pair of games for routing traffic and connecting net-
works. They are games that take place within a network, where each player’s
action is to pick a path. We give examples showing how the social cost can go up
unexpectedly, due to greedy users. The prices of anarchy and stability measure
the social quality of Nash equilibria compared to optimal.

This week, we will see two network games:

1. network routing with a continuum of users (players drive on congested paths);

2. network formation with discrete users (players build paths & pay for their costs).

In both games we use the potential function method to compare equilibria to socially-optimal
solutions. We will start with some small examples of the routing game; then we introduce
potential functions and deal completely with the formation game; finally (next lecture) we
go back to the routing game and analyze it in more detail.

1 Selfish Routing: Examples

An instance of the routing game is specified by:

� A directed graph

� A designated source node and sink node in the graph

� For each edge e, its delay as a function of its congestion, specified by a function

delaye : [0, 1]→ R+.

∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.
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The idea is that we have a total 1 unit of traffic flow which we want to send from the source
to the sink. The delay time to traverse an edge depends on the fraction of the flow using it,
and the total time of a path is the sum of the delays of the individual edges. The interesting
part is now to imagine that each infinitesimal part of this flow is a greedy user, which will
prefer to switch from a high-delay path to a lower-delay path, if one is available. We will
study Nash equilibria in this setting.

We illustrate some details of the setup by way of an example. Suppose the graph consists
of two parallel edges t and b from the source to the sink, both of whose congestion functions
are the identity, delayt(z) = delayb(z) = z for all z ∈ [0, 1]. We illustrate in Figure 1.

source sink

t

b

delayb(z) = z

delayt(z) = z

source sink

t

b

delayb(1/2) = 1/2

delayt(1/2) = 1/2

Figure 1: A simple flow routing instance, and its Nash equilibrium.

In all cases, a flow can be specified in the following way: for every possible source-sink
path P , let fP be the fraction of the flow using path P . Then a flow is defined1 as a collection
of fP ≥ 0 such that

∑
P fP = 1. In our case, there are only two paths (each one edge long)

so a flow simply assigns some fraction to use t, and the rest to use b.
Next we define

� The congestion on edge e for flow f is fe :=
∑

P :e∈P fP ;

� the delay of edge e for flow f is delaye(fe);

� the delay of path P for flow f is delayP (f) :=
∑

e∈P delaye(fe);

� a flow is Nash if, for all paths P with fP > 0 and all paths P ′,

delayP (f) ≤ delayP ′(f),

i.e. for each path used by a positive fraction of users, no other path is faster.

In our example, which flows are Nash? Let 0 ≤ x ≤ 1 be the fraction of flow assigned to
the top path, so 1− x is assigned to the bottom; write fx for this flow. The delay of path t
is x and the delay of path b is 1−x. Notice that the flow f 1 with x = 1, i.e. all flow through
t, is not Nash since users on path t incurring delay delayt(f

1) = 1 would prefer to switch to
the faster path b with delayb(f

1) = 0. In fact, the only Nash flow has x = 1/2: at this point
no user on either path prefers to switch to the other path.

1Network flows also can be represented by edge values, which is a polynomial-size representation. The path
representation is equivalent, and although exponential-size in the worst case, it is easier for our exposition.
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1.1 Social Cost and Pigou’s Example

Nash flows correspond to Nash equilibria when there are a continuum of users who all want
to minimize their own delay. On the other hand, if a single designer were controlling all of
the flow, they would want to minimize the average delay/social cost

social-cost :=
∑
P

fP · delayP (f).

In the previous two-link example, the Nash flow also turned out to give a min-cost flow,
i.e. it minimized the average delay. Pigou’s example (1920) shows that this is not always
the case. Suppose we modify the previous example by changing the top path t to have a
constant delay of 1, no matter how many users take it: ∀z, delayt(z) = 1. We illustrate in
Figure 2.
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delayb(z) = z
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source sink

t

b

delayb(1) = 1

delayt(0) = 1

Figure 2: Pigou’s example: the Nash flow (right) is not socially optimal.

In this case, the flow f 1/2 is no longer Nash: the top users have delay 1, and would prefer
to switch to the bottom path with delay 1/2. In fact, if any positive fraction of users use
the top path, they prefer to switch to the bottom. The unique Nash flow is f 0 which sends
all of the flow along the bottom path.

On the other hand, the social cost of fx is∑
P

fP · delayP (fx) = x · 1 + (1− x) · (1− x) = 1− x+ x2;

thus the social cost is 1 for the Nash flow f 0, but is minimized at 3/4 for the flow f 1/2. So
Nash flows are not socially optimal.

Definition 1. The price of anarchy is the maximum social cost of any Nash flow divided
by the optimal social cost:

PoA := max{social-cost(f) | f Nash}/min{social-cost(f) | any f}.

In Pigou’s example, the price of anarchy is 1/(3/4) = 4/3. Can the price of anarchy be
bounded? It turns out that for nondecreasing affine (= linear + constant) delay functions,
4/3 is exactly as bad as it gets! This will be an exercise next class, using variational
inequalities.
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Exercise. Modify Pigou’s example by replacing the bottom function with a power function,
delayb(z) = zc. What lower bound does Pigou’s bound give on the price of anarchy? How
does this change as c→∞?

In fact, variational inequality methods show that Pigou-like examples give the worst-case
example for PoA for many natural classes of functions; see page 473 of Nisan et al.

1.1.1 Braess’ Example

An even more striking example was given by Braess (1968). Consider the network at left,
where the arcs have either constant unit delay or identity delaye(z) = z. Then, add a “free
arc” with delaye(z) = 0 for all z. We illustrate in Figure 3.
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Figure 3: Braess’ example: a free edge increases the social cost of the Nash equilibrium.

In the original network, a little calculation (like in our two-link example) shows that
the only Nash flow puts half of the traffic on the top path, and half on the bottom path,
giving delay 3/2 for every path and social cost 3/2. But in the new network, any positive
traffic using a unit-delay edge has incentive to switch to the longer path svwt. So the only
Nash flow has fsvwt = 1 and social cost 2. By adding a free arc, the delay went up! This
phenomenon has been reported, for example, in New York City: when a certain road was
under repair, the traffic sped up.

Exercise (Short but important). Using the fact that the price of anarchy is at most 4/3,
show that the factor 4/3 is the worst that can arise in Braess’ paradox, for nondecreasing
affine delay functions.

2 Network Formation and Potential Functions

Now we switch gears to another game, where there are a discrete set of players building a
network. We have:

� A directed graph,
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� n players each with a source si and sink ti (possibly overlapping),

� construction costs ce for each directed edge e.

From this we construct a strategic game:

� The action set of each player is the set of all si-ti paths; Pi is player i’s choice;

� all edges on
⋃

i Pi are built;

� the cost of each edge e is split amongst all players using it, so

ui(P ) := −costi(P ) = −
∑
e∈Pi

ce/usage(e, P )

where usage(e, P ) = |{j | e ∈ Pj}|.

2.1 Price of Anarchy

This time, an action profile P is Nash if it forms a Nash equilibrium of the strategic game,
i.e. if no player can save money by switching unilaterally to a different path. The social cost
of a strategy profile is the negative sum of all utilities, which equals the sum of all edges
constructed:

social-cost(P ) =
∑
i

costi =
∑

e∈
⋃

i Pi

ce.

Claim 2. The price of anarchy is at most n, the number of players.

Proof. Consider a P with optimal social cost. We claim that in any Nash equilibrium,
costi ≤ social-cost(P ); indeed, i can switch to their path Pi in P and even if they don’t share
edges, they pay only for Pi ⊆

⋃
i Pi and so their personal cost is at most social-cost(P ).

So in any Nash equilibrium P ′,

social-cost(P ′) =
n∑

i=1

costi(P
′) ≤

n∑
i=1

social-cost(P ),

proving the price of anarchy is at most n.

In fact, this bound is tight. Consider the graph shown on the left of Figure 4. The social
optimum sends everyone on the top path, and has social cost 1. But if everyone uses the
bottom path, they each pay n/n = 1 and cannot improve by deviating to the top path. The
bottom path has social cost n.
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Figure 4: Left: the price of anarchy is at least n since some Nash equilibrium has social cost
n. Right: the price of stability is at least Hn/(1 + ε) since all Nash equilibria have social
cost Hn. Edge costs are shown.

2.2 Stability and Potentials

The network formation game has a much better cost if we compare to the best equilibrium.

Definition 3. The price of stability is the minimum social cost of any Nash flow divided by
the optimal social cost:

PoS := min{social-cost(f) | f Nash}/min{social-cost(f) | any f}.

So you can imagine that the social designer only needs to put the users in a stable state
(Nash equilibrium) where they will stay; whereas in anarchy the users will arrive at some
Nash equilibrium the designer cannot control. Today we will show:

Theorem 4. In the network formation game, the price of stability is Hn = 1 + 1
2

+ · · ·+ 1
n
∼

lnn.

The lower bound is shown by a simple example; the upper bound introduces the very
important potential function method.

Example 5 (Lower bound). Consider the network shown on the right of Figure 4, where
all users have separate sources, and one common sink, as well as a vertex v providing an
alternate path to the sink. There is only one Nash equilibrium, since user n is forced to use
the direct route in a Nash equilibrium, which forces user n− 1 to use the direct route, etc.
Since the all-direct route has social cost Hn, and the all-indirect route has social cost 1 + ε,
the best bound on the price of stability cannot be better than Hn.

2.3 Potential Games

A strategic game (A1, A2, . . . , An, u1, u2, . . . , un) is called a potential game when there exists
a function Φ : A1 × A2 × · · · × An → R such that for all i, all a, and all a′i,

u(a′i, a−i)− u(ai, a−i) = −(Φ(a′i, a−i)− Φ(ai, a−i)),
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or in words every unilateral improvement in utility (decrease in cost) corresponds to an equal
decrease in the potential function.

Not every strategic game is a potential game. Also, a potential game has more than one
potential, but Exercise: show that all potential functions Φ for a given potential game differ
only by a constant.

Why are potential games important? Here is the first reason.

Theorem 6. Every potential game with a finite number of actions has a pure Nash equilib-
rium.

Proof. Let a∗ be an action profile which minimizes the potential function. Any deviation by
any player cannot decrease the potential function, so it cannot increase their utility.

The theorem also generalizes to infinite action sets that are compact, provided the utilities
are continuous. Moreover, the proof also shows that

� best response dynamics must eventually terminate in potential games, since the poten-
tial function cannot be decreased an infinite number of times;

� Nash equilibria are the same as coordinate-wise local minima of the potential function.

We will see several other applications of potential functions this week. Both the network
routing and formation games are potential games; we show the latter next.

Proposition 7. The network formation game is a potential game with

Φ(P ) =
∑
e

ce ·Husage(e,P ) =
∑
e

ce(1 +
1

2
+ · · ·+ 1

usage(e, P )
).

Proof. We need to show that if a single player deviates, their decrease in cost equals the
decrease in the potential function. Let P be some action profile and (P−i, P

′
i ) be the result

of player i deviating.
What is the effect of the deviation on player i’s utility? Their cost shares for edges in

Pi ∩P ′i , or in E\(Pi ∪P ′i ), do not change. For each edge e in Pi\P ′i they save ce/usage(e, P );
for each edge e in P ′i\Pi they are lose ce/(usage(e, P ) + 1).

Likewise, look at the definition of Φ and how the contribution by each edge e changes from
P to (P−i, P

′
i ): it goes down by ce/usage(e, P ) for edges in Pi\P ′i , up by ce/(usage(e, P ) + 1)

for edges in P ′i\Pi, and is unchanged for other edges.

Now we combine one easy general fact with one easy specific fact.

Proposition 8. In a game with potential Φ, if for some constants C,C ′ and all action
profiles a we have

C · social-cost(a) ≤ Φ(a) ≤ C ′ · social-cost(a),

then the price of stability is at most C ′/C.
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Proposition 9. In the network formation game, social-cost(P ) ≤ Φ(P ) ≤ Hn·social-cost(P ).

Together, this gives the tight upper bound Theorem 4 on the price of stability for forma-
tion games.

Proof of Proposition 8. Essentially, the proposition holds because minimizing the potential
gives a Nash equilibrium, and minimizing the potential is “almost” the same as minimizing
the social cost.

In detail, take any minimizer a of the potential function, which is a Nash equilibrium.
For any other a′,

social-cost(a) ≤ Φ(a)/C ≤ Φ(a′)/C ≤ social-cost(a′) · C ′/C.

Sine this holds when a′ is socially optimal, the price of stability is at most C ′/C.

Proof of Proposition 9. Recall

social-cost(P ) =
∑

e:usage(e,P )>0

ce and Φ(P ) =
∑
e

ce ·Husage(e,P ).

Unused edges contribute 0 to both sums; used edges contribute ce to the social cost, and
between ce and ce ·Hn to the potential function.

This potential function method will also give us a bound on the price of stability for
network flow games; and it will turn out that for a large class of delay functions, there is a
unique Nash equilibrium, so the price of anarchy equals the price of stability. Afterwards,
we will show a few more facts about the network routing game.

Remark: Finding the optimal social cost for this network formation game amounts
to the directed Steiner forest problem, which is quite hard to approximate (“label-cover-
hard”). Moreover, be wary that additional ingredients (e.g. fast convergence of best response
dynamics) would need to be added to the previous results to get a polynomial-time algorithm
for finding a Nash equilibrium with O(α lnn)-approximately optimal social cost. (I do not
know if such a result is actually known.)
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