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Summary: We show that potential functions can also be used to analyze the
traffic routing game. This brings us to a discussion of convexity, and sufficient
conditions for the Nash equilibrium to be unique. Then, we show marginal costs,
a sort of inverse of the potential function, which can be used as taxes to induce
greedy users to route themselves optimally.

1 Price of Stability

Recall the traffic routing game: we are given a directed graph with a source, a sink, and
delaye : [0, 1]→ R+ for all edges e. A flow f is Nash if every path used is at least as fast as
every alternate path, whereas the social cost of the flow equals the “sum”

∑
e fedelaye(fe)

of all delays.
In the previous class, we saw a potential function for the discrete network formation

game, where decreases in the potential function correspond to decreases in cost due to a
unilateral change. This idea generalizes in a straightforward way to this continuous routing
game: assume delays are integrable (e.g., increasing) and define

Φ(f) :=
∑
e

∫ fe

u=0

delaye(z)dz.

The interpretation is that if we move an ε amount of flow from path P to path P ′, the
decrease in delay from the old path to the new path equals the decrease in the potential
function. So analogously to last class1,

f is Nash⇔ f is a local minimum of Φ.

∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.
1Technically we showed this for “component-wise local minima” but it is not hard to show every

component-wise local minimum is a local minimum.
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Moreover, the social cost for a flow is

social-cost(f) :=
∑
e

fedelaye(fe).

Analogously to last class, if C · social-cost(f) ≤ Φ(f) ≤ C ′ · social-cost(f) for all flows f ,
then the Price of Stability (ratio of “socially best NE” cost to optimal social cost) is at most
C ′/C.

Exercise. Show that if all edge delay functions are nondecreasing nonnegative affine func-
tions, then the Price of Stability is at most 2. What bound can you get if each edge delay
function is a quadratic of the form z 7→ aez

2 + bez + ce for ae, be, ce ≥ 0?

1.1 Anarchy is Stability! (If you’re unique)

Assuming nondecreasing delays, the routing game turns out to have (essentially) only one
Nash equilibrium. In this case, the worst NE is also the best NE, which means that the
prices of anarchy and stability are the same.

We need to cover a little bit of background material on convex functions. A function
g(z) of one variable is strictly convex if

g(λz + (1− λ)z′) < λg(z) + (1− λ)g′(z)

whenever z 6= z′ and 0 < λ < 1. Notice that if z = z′ or λ ∈ {0, 1} then the inequality
holds with equality. The definition of convex functions has a nice geometric interpretation:
a function is convex if and only if a chord of the graph always lies strictly above the graph.

Next, we need the following fact from analysis:

Fact 1. A differentiable function is (strictly) convex if and only if its derivative is (strictly)
increasing.

In other words, the second derivative (assuming it exists) is positive.
This gets us to the main result of this section:

Theorem 2 (Uniqueness of NE). Assume each edge delay function is strictly increasing.
Then any two Nash equilibria f, f ′ have fe = f ′e for all edges e.

To simplify notation, let Delaye(z) denote
∫ z

u=0
delaye(u)du, so Φ(f) =

∑
e Delaye(fe).

Proof. The crux is that the potential Φ : [0, 1]E → R+, expressed as a function of the edge
loads, is a strictly convex (multivariable) function. This means that for any two distinct
flows f, f ′ and any 0 < λ < 1,

Φ(λf + (1− λ)f ′) < λΦ(f) + (1− λ)Φ(f ′)
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where λf + (1− λ)f ′ is a vector sum, i.e. a weighted-average flow “between” flows f and f ′.
To prove this in detail, we expand the definition of Φ: we want to prove∑

e

Delaye(λfe + (1− λ)f ′e) <
∑
e

λDelaye(fe) + (1− λ)Delaye(f
′
e)

but this holds since each Delaye is a strictly convex univariate function and at least one
fe 6= f ′e.

Now that we have shown Φ is convex, we claim it has a unique local minimum. Indeed,
if there were two distinct local minima f and f ′, without loss of generality Φ(f) ≤ Φ(f ′),
the flows “between” them would contradict the local-minimality of f ′.

Since there is only one local minimum, and Nash equilibria are the same as local minima
of Φ, we are done.

Aside: since there is only one local minimum, it is the global minimum.
Remark: Under the weaker assumption that the edge delay functions are nondecreasing,

there might be more than one Nash equilibrium, but we get the weaker theorem (Theorem
18.8 in Nisan et al.) that delaye(fe) = delaye(f

′
e) which (with a little work) implies all Nash

equilibria have the same cost. So again, the prices of anarchy and stability are the same.
Another useful fact about convex functions is that there are efficient algorithms to com-

pute their minima. Therefore, we can efficiently compute a Nash equilibrium for this game.

2 Potentials Backwards = Marginal Costs

Nash equilibria are, by definition, local characterizations. Potential functions give a charac-
terization of Nash equilibria in terms of global minima, provided that the potential function
is convex. For social cost minimizers in place of Nash equilibria, we can do the reverse op-
eration: instead of the natural global-minimizer definition of social cost, we can write it as
a local-minimizer.

For this to work, we need the social cost function to be convex. So for the rest of this
section we assume:

Assumption 1. For each edge e, the function z · delaye(z) is convex.

This assumption has the following effects, similar to what we saw previously:

1. The function social-cost(f) is a convex function (of the fe variables),

2. a socially-optimal flow can be found in polynomial time, and

3. the socially-optimal flows are a convex set (it is unique if the convexity is strict).

To proceed, now let us compare social-cost to Φ. Recall

social-cost(f) =
∑
e

fe · delaye(fe) and Φ(f) =
∑
e

∫ fe

z=0

delaye(z)dz.
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Also recall that minimizers of Φ (Nash equilibria) are characterized by∑
e∈P

delaye(fe) ≤
∑
e∈P ′

delaye(fe) (1)

for all paths P used by f and all other paths P ′. Just as delay is the derivative of
∫

delay,
let the marginal social cost msce(fe) be the derivative of fe · delaye(fe) with respect to fe:

msce(z) :=
d

dz
(z · delaye(z)) = z · delay′e(z) + delaye(z).

Then we would expect by analogy that social optima are characterized by:

Theorem 3 (Local characterization of social optima). Assume each function z 7→ z ·
delaye(z) is convex and differentiable. Then f is a socially optimal flow if and only if∑

e∈P

msce(fe) ≤
∑
e∈P ′

msce(fe)

for all paths P used by f and all other paths P ′.

This is really a theorem! I.e., the analogy’s final destination is correct.

Nash Equilibrium Social Optimum
Local-min of delay, by definition msc (assuming msc increasing)

Global-min of Φ (assuming Delay convex) social-cost, by definition

Remark: You can run the analogy in reverse, starting from first-order convex optimiza-
tion conditions and then deriving what the potential function should look like. See §18.3.1
of Nisan et al.

2.1 Application: Taxes to Induce Optimality

Suppose we are allowed to increase some of the edge costs by adding taxes to them. If we
are allowed to have the taxes depend on load of an edge, then we basically can replace the
original delay functions with whatever we like. So we focus on the more interesting case that
we are allowed to add only a constant tax to each delay function: we replace the delays with

d̃elaye(z) = delaye(z) + te

where te is some constant for each edge e.
The surprising application of marginal social costs is that we can coerce greedy users into

forming a socially-optimal flow.

Theorem 4. In a network flow game (where msc exists and is increasing), let f ∗ be a socially
optimal flow. Define the tax e for each edge by te = f ∗e ·delay′e(f

∗
e ). Then in the new instance

with taxes, f ∗ is a Nash flow.
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Proof. By Theorem 3, ∑
e∈P

msce(f
∗
e ) ≤

∑
e∈P ′

msce(f
∗
e )

for all paths P used by f ∗ and all other paths P ′. Let us expand the definition of msc :

msce(z) =
d

dz
z · delaye(z) = delaye(z) + z · delay′e(z).

So, ∑
e∈P

delaye(f
∗
e ) + f ∗e · delay′e(f

∗
e )︸ ︷︷ ︸

d̃elaye(f
∗
e )

≤
∑
e∈P ′

delaye(f
∗
e ) + f ∗e · delay′e(f

∗
e )︸ ︷︷ ︸

d̃elaye(f
∗
e )

for all paths P used by f ∗ and all other paths P ′. This (under the horizontal brackets) shows
f ∗ satisfies the characterization (1) of Nash equilibria for the taxed delays.

Q: Is f ∗ also socially optimal for the taxed delays?

Exercise. The unfairness of a flow f is the ratio

max{
∑
e∈P

delaye(fe) | fP > 0}/min{
∑
e∈P

delaye(fe) | fP > 0}.

What is the unfairness for a Nash flow? Show that for affine nonnegative nondecreasing
delay functions, the unfairness of any socially optimal flow is at most 2.

3 Wrap-up

Exercise. In this exercise, you will prove the stronger bound of 4/3 on the price of anarchy
for nonnegative nondecreasing affine delay functions.

1. Let f ∗ be a flow. Pin the edge delays at constants delaye(f
∗
e ). Show that f ∗ was an

equilibrium flow for the original delays iff it is an optimal flow for the new constant
delays. In other words, show f ∗ is Nash iff for all other flows f ,∑

e

f ∗e delaye(f
∗
e ) ≤

∑
e

fedelaye(f
∗
e ).

2. Show that for any nonnegative nondecreasing affine delay function d(z),

rd(r) ≤ 4

3
(xd(x) + (r − x)d(r))

for 0 ≤ r, x ≤ 1.

3. Show that for these delay functions, the price of anarchy is at most 4/3.
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Exercise. Consider any class of nonnegative nondecreasing delay functions which include
all of the nonnegative constant cost functions. Let α be minimal such that for all functions
d from this class and all 0 ≤ r, x ≤ 1,

rd(r) ≤ α(xd(x) + (r − x)d(r)).

By the previous exercise, the price of anarchy for instances with this class of delay functions
is at most α. Show that in fact the price of anarchy is exactly α.

One other very interesting fact about this network flow game has to do with resource
augmentation. Namely, no matter how bad the price of anarchy is for a collection of delay
functions (it can be arbitrarily bad, due to Pigou’s example), the bad cost due to greedy
users can be offset by scaling up all edge capacities by a function of 2. Formally,

Theorem 5. Assume delay functions are nondecreasing; define d̃elaye(z) = delaye(z/2).
Then the worst social cost of any Nash equilibrium for the new delays does not exceed the
optimum social cost for the original delays.

This is Theorem 18.29 in Nisan et al.
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