Game Theory and Algorithms*
Lecture 2: Nash Equilibria and Examples

February 24, 2011

Summary: We introduce the Nash FEquilibrium: an outcome (action profile)
which is stable in the sense that no player has incentive to deviate. (The concept
is most famous since a mized equilibrium exists in every finite strategic game,
but in this lecture we consider only pure equilibria.) We discuss the relation
between iterated elimination and Nash equilibria. Then we give some examples
of games where Nash equilibria explain the most plausible outcomes: duopoly
(price competition by 2 firms), elections, and auctions. To easily explain the last
two, we define weakly dominant strategies. Finally, we mention potential games,
which always have Nash equilibria.

1 Best Responses and Nash Equilibria

In the last lecture we saw that for some games, iterated elimination (of strictly dominated
strategies) leaves just a single outcome, which is arguably the only plausible outcome (if the
players seek to maximize their own utility, and are greedy). The Nash equilibrium is another
solution concept for strategic games.

Definition 1. Let a_; be a partial action profile for all players but i. Action a; is a best
response to a_; if for all actions a of player i,

uiag, a_;) > ui(aj,a_;).
Note that there is always at least one best response (if A; is finite), and possibly more.

Definition 2. The action profile a is a Nash equilibrium if for each player i, a; is a best
response to a_;.
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Equivalently, an action profile is a Nash equilibrium under the following conditions: if each
player ¢ believes everyone else will play according to the profile, then player i can maximize
their own utility by also playing according to the profile. (It’s possible that some players
could have additional actions that would also maximize their utility.) Sometimes we will
write NE for “Nash equilibrium.”

Nash introduced this concept in 1951, but it generalizes solution concepts considered
earlier for particular games by Cournot (1838, oligopoly), Bertrand (1883, oligopoly), von
Neumann (1926, zero-sum two-player games), and Hotelling (1929, voting).

For example, let us determine the Nash equilibria of the Prisoners’ dilemma game.
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For both players, let us compute all of their best responses to their opponent’s actions. The
following diagram illustrates this idea, where we put a star over w;(a) when a; is a best
response to a_;. For example, when player 1 chooses Q, the best response by player 2 is F,
so in the (Q, F) outcome we change 0, 3 to 0, 3*.

pl\p2| Q | F
Q 22 | 0,3
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The definition of a Nash equilibrium is an outcome where each player is using a best response
to the other players. So, we conclude that this game has exactly one Nash equilibrium, (F,

In any game given explicitly by a table (even for more than 2 players), this starring
method can be used to find all the NE. More generally, even if there are infinitely many
actions, to find the NE it suffices to determine the intersections of the n sets {(a;, a_;) |
a; is a best response to a_;}, for i =1,... n.

1.1 Properties

Q: Is it always true that a game has exactly one Nash equilibrium?

A: No: there can be zero equilibria, or more than one equilibrium. The taxpayers’ game is
an example with no NE. Another example is the game “matching pennies:” two players each
choose heads or tails; player 1 wins a dollar from player 2 if they make the same choices,
otherwise player 1 loses a dollar to player 1.

pl \p2 H H ‘ T pl \p2 H B ‘ S
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The second example is “Bach or Stravinsky” which has two NE. The story is that two friends
want to see a concert, and there are two concerts, one by Bach and one by Stravinsky. Player
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1 prefers Bach, player 2 prefers Stravinsky, but if they cannot agree on which concert to visit,
they both stay home, which is the least preferred outcome. Coordination games typically
refer to games like this where the players need to have external coordination of their actions
in order to get a reasonably good solution.

Nash equilibria have the following relation to the “iterated elimination” algorithm we
saw earlier.

Exercise. Show that when we perform iterated elimination of strictly dominated strategies,
all Nash equilibria survive (i.e., for every Nash equilibrium a and each player i, the algorithm
never deletes action a;).

Exercise. Show that if the final result of iterated elimination is a single outcome, then that
outcome is a Nash equilibrium of the original game. [We solved this exercise in lecture.]

1.2 Discussion

The NE concept is obviously not able to predict the outcome of a game (since there can be
0 or > 2 of them) and it doesn’t typically help us to figure out a “good” strategy for ourself.
Nonetheless, here are some ways that Nash equilibria arise naturally.

e The definition is the weakest notion of a predictable state: if we make a global prediction
that all players will abide by a Nash equilibrium, and all players believe that their
opponents will abide by this plan, then each player has no incentive to deviate from
this plan.

e Consequently, if a game has any single plausible “obviously” predictable outcome, it
should be a Nash equilibrium.

e You can think of a Nash equilibria as a self-enforcing agreement or a stable social
convention similarly: an agreement from which no player has incentive to deviate.
This is illustrated by the two equilibria of the following “Drive on which side of the
road?” game, modelling two cars driving in opposite directions on the same road.

pl\p2|| L | R
L 00 [—-1,—-1
R —-1,-1| 0,0

e Nash equilibria are fixed points of the following process, called best response dynamics.
First, we start at an arbitrary action profile a. Then, each player 7 in turn is given
a chance to adjust their choice a; — they want to increase their own utility w;(a) if
possible. We repeat this, giving all players a chance to change. We stop once we go
through an entire round of players and nobody wants to change. Then the possible
action profiles where this process can terminate are precisely Nash equilibria.
Q: What happens when we execute best response dynamics in the taxpayer game?



e Similar to best response dynamics, NE can be viewed as the final fixed result of a
learning or evolution process. (There is a more specific notion of an evolutionarily
stable strategy but it is beyond the scope of our course.)

e Possibly the most important reason is Nash’s theorem, that every finite game has a
mized Nash equilibrium (more on this in a later lecture). Thus, it is a concept that
can be applied to any game.

e The NE concept unifies results from many examples studied before Nash. We will see
some of these historical examples next.

2 Examples

2.1 Tragedy of the Commons

Consider the game with n companies, each of which owns a factory. It costs 3 dollars to
install a pollution-controller in their factory. For each player who does not install a pollution-
controller, each player pays 2 dollars. So A; = {Install, Pollute} and

—2(# of Psin a), a; =P
u;i(a) = '
—2(# of Psina) —3, a;=1.

What are the Nash Equilibria of this game? Consider the best response functions. Fix a
player ¢ and the choices a_; of their opponents, and let k& be the number of Ps in a_;. Then
w;(I,a_;) is —2k — 3, while u;(P,a_;) is —2k — 2. So Polluting is always a better response
than Installing (in fact P strictly dominates I); there cannot be any Installer in a NE since
they have incentive to deviate to P, and we see the all-P outcome is a Nash equilibrium.

The result is a little surprising since the equilibrium outcome gives utility —2n to each
player, whereas if they all installed pollution-controllers they would each have utility —3.
(Note, for n = 2 this is a Prisoners’ dilemma.)

2.2 Voter Participation

For a non-trivial example of finding Nash equilibria in a many-player game, we give the
following exercise from Martin Obsorne’s book.

Exercise. In an election, there are 2k players: k of them support the candidate A, and k of
them support the other candidate B. Each player can Vote or Abstain. The candidate with
the largest number of voting supporters wins the election (they tie if they have the same
number). Each voter gets a payoff of 42 if their candidate wins, 0 in a tie, and —2 if their
candidate loses. Since the voters are lazy, their utility incurs a charge of —1 if they vote. (So
each player’s utility function can take on 6 values, the best is 42 (winning without voting),
and the worst is —2 (voting and losing).) Find the Nash equilibria of this game.



Exercise. Consider the same game with 3 players, where A has 2 supporters and B has
1 supporter. What are the Nash equilibria? (Hint: it is qualitatively different from the
previous exercise.)

2.3 Duopoly

We now give a classical example of modelling price competition by two companies. Just like
monopoly means a sector of the economy controlled by a single company, duopoly means one
controlled by two companies, and oligopoly means control by many companies. There are
two prominent historical examples; in both of them, consumers make a choice modelled by
a supply-demand curve.

Cournot Oligopoly Bertrand Oligopoly
- companies pick amounts to sell - companies pick prices
- consumers determine price - consumers determine amount to buy

One major difference from the games considered so far is that the A; will not be finite sets;
players will be able to make a continuum of choices.

2.3.1 Cournot Duopoly

In this game, each firm ¢ = 1,2 picks a quantity ¢; of goods to produce (A; = R>o). They
produce the same type of good, so we let ) = ¢ + ¢» denote the total amount of goods
produced. Each company incurs a cost C;(g;) to produce their goods. The market is willing
to buy all of the goods, at a price per unit P(Q) depending on the total amount produced.
The utility to each company is its income minus their costs.

For simplicity, we study the model where C; and P are as simple as possible:

Ci(g;) = ¢ g, P(Q) = max{0,a — Q}

or in essence, linear production cost, and inverse-linear demand. Thus the game has

it +¢<a

g1 (@ —q1—q2—C),
ui(q) = Plgi + @) - ¢: — C(a) :{ e g -a-d )
G otherwise.

We assume o > ¢ > 0 (if a < ¢, no profit is possible).
Q: If there were only one firm, what would the optimal profit be?
A: In this case pick we would pick ¢ to maximize ¢(ow — ¢ — ¢), which happens at ¢ =
The utility would be @.
Q: Back in the two-player game, what are the Nash equilibria, and the equilibrium profits?
The most direct way to answer this question is to find the best response functions for
each player: Bi(qz) = argmaxy, cr., t1(q1,¢2) and likewise for Bs(gr). (These may be set-
valued functions in general, or have no value, but we ignore this when possible for ease of
exposition.) Then, (¢, ¢2) is an equilibrium exactly when ¢; = Bi(g2) and ¢2 = Bs(q1) both
hold: we find the intersection of the graphs of the best response functions.
To compute the best response function, we seek to maximize u;(qi, ¢2) for a fixed go.

a—cC
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e First, note that if ¢ > o — ¢, then P(Q) < ¢ no matter how we pick ¢;, so a nonzero
profit is impossible for firm 1. In fact the unique best response is ¢; = 0.

e Otherwise, when ¢s < o — ¢, a positive profit is obtained for any positive ¢; < a — c.
In this regime the utility is given by ¢ - (o« — ¢1 — g2 — ¢), a quadratic in ¢; maximized
at ¢ = (o —c— q2)/2.

Thus, the best response function can be written as Bi(g2) = max{0, (o« — ¢ — q2)/2}.

To compute the intersection of the best response curves, it is helpful to draw a diagram
with ¢; on one axis and ¢, on the other (above); it shows that there is exactly one intersection
of ¢ = Bi(q2) and ¢2 = By(q1). It occurs at the intersection of the lines ¢; = (o — ¢ — ¢2)/2
and g2 = (o« — ¢ — ¢1)/2. Solving, this gives the unique Nash equilibrium

G =q¢=(—c)/3

We then compute that the equilibrium profit for each firm is (o — ¢)?/9.
Q: How can both of the firms do better?
A: Recall that in the single-player variant, a profit of (O‘;CF was possible, which is greater than
the total profit 2(av — ¢)?/9 in this equilibrium. Moreover from the consumers’ perspective,
and for the linear production functions C;, two companies “look” the same as one company
producing their aggregate amount. They can do better by both producing half of the single-
player optimal quantity, i.e. in ¢ = ¢o = (o — ¢)/4 they both increase their profits to
(a —c)?/8.

You can make some observations about this result: it is similar to the Prisoners’ dilemma;
and it suggests that monopolies do better than duopolies.




2.3.2 Bertrand Duopoly

This alternative model of oligopoly was given as a response to Cournot’s model. As men-
tioned earlier, this time the action set for each company is its choice of price p; (so its price
is selected from A; = Rs). We will assume that the consumers choose to buy only from the
cheapest company, and that they purchase a quantity stipulated by a demand function (in
contrast with the inverse-demand function in Cournot’s model). Being simple again, we’ll
pick the demand function

D(p) = max{0, o — p}

where p is the minimum price. As mentioned, the consumers will buy D(p) units of the
good, from the company with the lowest price; in the event of a k-way tie, they will split
their demand equally amongst the companies. Again, take the cost of producing ¢ units to
be the linear function c¢ - ¢ for a fixed ¢ < . The utility is again the income minus the cost,
which we reiterate in a simplified form for clarity,

0, if p1 > po;
ur(p1,p2) = 4 (1 — ¢) -max{0,a —p1},  if p1 < py;
(p1 —¢) - max{0, — p1 }/2, if p1 = ps.

(ug is symmetric). Here is the main, surprising, difference of this model from Cournot’s
model:

Theorem 3. The only Nash equilibrium is (c,c).

This is surprising when you calculate the profits in equilibrium: both firms are selling exactly
at the same cost as the manufacturing cost, and have a profit of zero!

The straightforward way to prove this theorem is to use the same general strategy we used
earlier: compute the best response functions for both players, and then find all intersections
of their graphs. It is, however, more complicated in this case since the utility functions are
not continuous. Here is an outline of a simplified version of the proof, which is easier to see
after you finish the proof once the “hard way.”

Exercise. 1. Show that (¢, c) is a Nash equilibrium.
2. Show that (p1,p2) is not a Nash equilibrium if p; < ¢ or py < c.
3. Show that (p1,ps2) is not a Nash equilibrium if p; = ¢ and py > ¢ (or vice-versa).

4. Show that (p1,ps) is not a Nash equilibrium if p; > ¢ and py > c.



