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Summary: We introduce the notion of a (weakly) dominant strategy : one which
is always a best response, no matter what the opponents play. If every player has
a weakly dominant strategy, they form a Nash equilibrium. One example we give
is Hotelling’s classic example of voting. We then give two other examples (group
decision-making, auctions) where the profile of weakly dominant strategies is also
truthful, which has the advantage that despite lots of unknown information, each
person can deduce their weakly dominant strategy, and it corresponds to playing
their private “true” value.

1 Weak Dominance

Previously we defined when one strategy strictly dominates another. We now define a weaker1

notion:

Definition 1. For player i, strategy ai weakly dominates strategy a′i if for all partial action
profiles a−i of the other players, ui(ai, a−i) ≥ ui(a

′
i, a−i).

Equivalently, ai weakly dominates a′i when playing ai is never worse than playing a′i. We
remark that weak dominance does not enjoy the same properties as strict dominance: for
example, iterated elimination of weakly dominated strategies can delete a Nash equilibrium.

The most important notion related to weak dominance is the following:

Definition 2. For player i, strategy ai is (weakly) dominant if it weakly dominates all other
strategies of player i.

Equivalently, a weakly dominant strategy is a best response no matter what your opponents
do. Consequently, we get the following fact.

Proposition 3. If each player i has a weakly dominant strategy ai, then (a1, a2, . . . , an) is
a Nash equilibrium.

∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.
1Aside: some sources also require “for at least one partial action profile a−i of the other players,

ui(ai, a−i) > ui(a
′
i, a−i).” (It prevents two strategies from weakly dominating one another.)
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2 Hotelling’s Election Model

In this 1929 example of Harold Hotelling, we have a game where the players are candidates
in an election. The general idea is that they are deciding their campaign platforms on a one-
dimensional scale (e.g., they can be 100% liberal, 100% conservative, or any combination
of the two). Intuitively, there are an infinite number of voters; each voter has their own
preference, and will vote for the candidate whose campaign platform is “closest” to their
preference.

We now make this idea precise. We will model the space of possible campaign platforms as
the unit closed interval [0, 1]. The sets of possible strategies are thus Ai = [0, 1], i = 1, . . . , n.

We imagine the voters’ preferences as uniformly distributed2 over the interval [0, 1]. Each
infinitesimal element x ∈ [0, 1] of the voters votes for the candidate i for whom |ai − x| is
minimal; in the case there are several, the votes are split equally. We give some example
calculations of the votes in this model:

• The action profile (0, 0.4, 0.6) splits the voters into three in-
tervals: those in [0, 0.2) vote for player 1, those in (0.2, 0.5)
vote for player 2, and those in (0.5, 1] vote for player 3. So
the vote distribution is v = (0.2, 0.3, 0.5).

• The action profile (0, 0.6, 0.6) splits the voters into two
intervals: those in [0, 0.3) vote for player 1, and those in
(0.3, 1] split their votes between players 2 and 3. So the
vote distribution is (0.3, 0.35, 0.35).

voting for player 2

voting for players 2 and 3

0 0.4 0.6

0 0.6

1

1

Finally, the utility for player i is determined in a way so that losing is worse than winning,
but tying is worse than winning alone:

ui =

{
0, if player i does not win (get the most votes);

1/k, if player i wins in a k-way tie.

2.1 Analysis

Claim 4. If there are two players, for each candidate, choosing the action 0.5 is a (weakly)
dominant strategy.

Proof. Fix the action a1 of player 1; we will prove that 0.5 is always a best response for
player 2.

Case 1 : a1 = 0.5. In this case, we claim the only best response of player 2 is 0.5. To see
this, first look at what happens in the action profile (0.5, 0.5): it is a tie vote. Second,
any other a2, WOLOG 0 ≤ a2 < 0.5, gives player 1 the interval ((0.5 + a2)/2, 1] which
is more than half of the votes, causing a2 to lose. So the claim is true.

2This actually follows WOLOG by “rescaling” from a weak assumption on the voters, namely that their
distribution has no “atoms” and no “holes.”
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Case 2 : a1 6= 0.5, WOLOG 0 ≤ a1 < 0.5. This is the same as the above calculation: in
the action profile (a1, 0.5), player 2 wins the vote alone, so 0.5 is a best response.

Consequently (by Proposition 3) we see that (0.5, 0.5) is a Nash equilibrium.

Exercise. Show that for two players, there are no other Nash equilibria in this game.

Thus, if you are willing to accept the axioms of the model, this says that in a two-party
electoral system, both parties have an optimal (dominant) choice chosen by setting their
policy to that of the “middle” voters, and there is no other stable situation. In some cases
this agrees with experience, that there is no practical difference between the candidates.

Here is a question just for fun: what happens if the voters are not distributed on a line
segment, but instead in a disc, or in a (Borg) cube?

Exercise. For three players (on [0, 1]), show that there is no Nash equilibrium of the form
(x, x, x); find a Nash equilibrium of the form (x, y, y).

3 Truthfulness: Collective Decision-Making

We now give another setting with a dominant strategy equilibrium. It models the situation
where multiple people need to combine their opinions to make a single joint decision. We
have n players, and each one has a different opinion ti on a single axis, modelled by real
numbers as in Hotelling’s game. However, players are allowed to lie: so while their action
set is R, it is not necessarily true that ai = ti.

We will actually describe several different games, which we will also call mechanisms, for
picking a policy p(a1, a2, . . . , an) depending on the player’s actions. The utility for a player
decreases with the distance between the chosen policy and their true opinion:

ui(a) = −|p(a)− ti|.

A first likely candidate is to pick p to be the mean or average, i.e., we first consider
defining p(a) = (a1 + a2 + · · ·+ an)/n. However, this doesn’t work very well:

Proposition 5. When p is the mean, the collective decision-making game has no Nash
equilibrium (unless all players have the same ti value).

Proof. Consider any action profile a and two players i and j with ti 6= tj. Since it is
impossible for p(a) to simultaneously equal both ti and tj, it must be that in a, at least one
player has negative utility: say, p(a) 6= ti and so ui(a) < 0. The crux is that player i can
deviate in such a way that their utility increases: by picking

a′i = nti −
∑
k 6=i

ak

we find that the mean of (a′i, a−i) equals ti, the true opinion of player i, and so this deviation
increased player i’s utility from negative to 0. Consequently a was not a Nash equilibrium.
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More generally, this is a very impractical game to play: you can’t really make any sensible
judgement about what is a “good” action without knowing your opponents’ future choices;
and when the game is played, it may not reveal much about the players’ true opinions.

3.1 The Median Mechanism

The above problem gives our first experience with mechanism design: we’d much prefer a
rule p for choosing the group policy such that individuals have incentive to tell their true
opinion. We will give an example of a p where the “true” action is weakly dominant for each
player. Thus with this p each player can choose an optimal action without knowing anything
about the other players (neither their ti nor the ai they will choose); and the person running
the game has some confidence that they are eliciting the true opinions of the players.

Finding games where the truthful action is weakly dominant is a central theme in game
theory and algorithmic game theory. Some terms for this type of concept are incentive
compatible and truthfully implementable in dominant strategies. Here we’ll call it a truthful
mechanism.

We will assume the number of players is odd. Then to get our truthful mechanism define
p(a1, a2, . . . , an) to be the median of the ai (sort these numbers, then the median is the n+1

2
th

one, i.e. the in the middle position). E.g., the median of (7, 9, 3, 0, 9) is 7.

Theorem 6. In the policy-setting game, if p is the median, then telling the truth is a dom-
inant strategy for each player.

Proof. Fix a player i and actions a−i of the other players. We need to show that ai = ti is
a best response for player i. This entails determining ui(ai, a−i) for each x ∈ R, and in turn
this requires computing the median (ai, a−i) as ai varies.

How does the median of (ai, a−i) vary with ai, when the a−i are fixed? Let ` (resp. r) be
the value in a−i which is n−1

2
th smallest (resp. n+1

2
th smallest). Then the median is

p(ai, a−i) =


`, if ai < `;

ai, if ` ≤ ai ≤ r;

r, if ai > r.

` r

ai

`

r

p(a) = median(a)

To check if the mechanism is truthful, we need to see if the choice ai = ti maximizes ui,
i.e. if ai = ti gets p(ai, a−i) as close to ti as possible.

• If ti < `, then the closest that p can get to ti is if p = `; indeed, ai = ti < ` achieves
this optimum.
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• The case ti > r is analogous.

• If ` ≤ ti ≤ `, then the choice ai = ti makes p(a) = ai = ti and ui(a) = 0, the maximum
possible.

Thus, ai = ti is indeed a dominant strategy.

In sum, the game is truthful. One consequence is that (t1, . . . , tn) is a Nash equilibrium.
Note, however, that there are other Nash equilibria, such as (13, 13, . . . , 13). We mention
one other truthful mechanism below.

Exercise. Show that the following randomized mechanism is truthful in expectation (i.e., if
each player wants to maximize the expected value of their utility, then ai = ti is a weakly
dominant strategy): pick i uniformly at random from {1, . . . , n}, and then set p = ai. How
does the expected social welfare −

∑
i |ti − p(t)| of this mechanism compare to the median

mechanism?

4 Auctions

Auctions form a huge portion of the literature on algorithmic game theory. In this lecture we
give only a small introduction; we will give a more thorough treatment later in the course.

In our simple example we have exactly one item to sell, and there are n players who
will each make a bid on the item. Thus the action set for each player is R≥0. We will
consider auctions which give the item to the player whose bid is maximal (using any form
of tie-breaking, which we won’t specify unless needed). As the auctioneer, we need to figure
out what price or payment the bidder should pay for winning the item.

We model the players’ utility functions in the following way: a player who does not win
the item gets a utility of zero; and for each player, they have a private valuation vi, and
their utility upon winning and paying price p is vi − p. Thus, getting an item and paying vi
is equivalent to not getting the item; paying less/more than vi is better/worse than losing.

For auctions, we will often use the symbol bi (bid) instead of ai (action).
The most obvious type of auction would be to charge the winning player i a price p = bi

equal to their bid. This is called a first-price auction.

Exercise. Consider a two-person auction with v1 > v2. Show that a first-price auction is
not truthful, by showing that (v1, v2) is not a Nash equilibrium. Show that depending on
how we break ties, there may be zero, one, or many NE.

Generally speaking, the problems are similar to what we encountered before: the best re-
sponse for a player depends on the choices of their opponents.
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4.1 Second-Price Auctions

In a second-price auction, we change the amount paid to be the second-highest bid. (In the
case that the two largest bids are equal, say to x, then the second-highest bid is x.)

For example, suppose the vector of bids is b = (3, 10, 7). Then player 1 has the highest
bid and wins the item; their payment would be 7, the second-highest bid. This has the same
nice properties as the median mechanism due to the following fact:

Proposition 7. In a second-price auction, bidding your true valuation (bi = vi) is a domi-
nant strategy.

Proof. As with the median mechanism, we must show that for any collection b−i of bids by
the other players, vi maximizes the utility ui(b) of player i.

Let bj be any maximal bid amongst the players distinct from i, i.e. bj = max{b−i}. As
player i varies their bid, their utility changes as follows.

• When bi < bj, player i loses the auction and gets a utility of zero.

• When bi > bj, player i wins the auction and gets a utility of vi − bj.

• (For bi = bj, one of the above cases happens depending on the tie-breaking rule.)

(There is an important fact here which will help our intuition later: the price paid by player
i does not depend on bi! All that player i can change is whether she wins the item (and
pays bj) or loses it. This prevents the strategic manipulation which happened in first-price
auctions.)

To finish the proof, consider two cases according to how vi − bj compares to zero.

1. If vi > bj, then it is better (optimal) for player i to win the auction. Indeed, bidding
the true valuation bi = vi causes this.

2. If vi < bj, then it is better (optimal) for player i to lose the auction. Indeed, bidding
the true valuation bi = vi causes this.

3. (If vi = bj, all bids are optimal for player i.)

Thus, bidding the true valuation is weakly dominant.

There are some other auctions which are essentially second-price auctions in disguise:

• In an English auction/ascending auction, bidders sit in a room and every bid is an-
nounced to everyone. Each individual can bid 0, 1, or multiple times; each bid must
be larger than the previous one. The last bidder wins, and pays an amount equal to
their last bid. Although the largest bid is paid (like a first-price auction), in order for
you to pay more than the second-highest valuation, one of your opponents would have
to risk getting a negative utility.
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• eBay uses a proxy system which effectively runs an English auction, but you only
need to enter one value and it will automatically place bids for you until nobody else
competes, or the competing bids are larger than your value.

Another nice property of second-price auctions is that you cannot improve your situation
by introducing a second “meat-puppet” voter to act as another player under your control.
However, it is possible for two people to collaborate with a bribe and improve their situation:
e.g. if there are two voters with valuations ($3, $2), whereas truthful bids give a utility of
($1, $0), if the voters collude and player 1 pays player 2 a one-dollar bribe to bid $0, then
the utilities (including the bribe) become ($2, $1), an improvement for both players. These
facets, and other distinct notions like group-strategyproof mechanisms, are studied in the
literature.

4.2 Coming Up Later

When we return to auctions we will discuss several topics:

• What if we have several copies of an item to sell? What if we have several different
items, and the bidders want different subsets of them? These will be handled by the
Vickrey-Clark-Groves mechanism, a truthful mechanism which generalizes second-price
auctions. There is a lot of literature which then stems from the fact that VCG is not
always computationally tractable.

• We will consider the perspective of an auctioneer who wishes to maximize their profit,
subject to the constraint of truthfulness. If the customers’ preferences are drawn from
random distributions, an approach of Myerson solves this problem (so-called optimal
mechanism design) by adding a reserve price to the auction.

• We consider a generalization of the previous problem to when the bidders’ distributions
are unknown.
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