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Lecture 4: Mixed Strategies & Mixed Nash Equilibria

March 8, 2011

Summary: The ability for players to randomize their choices gives mixed strate-
gies, in contrast to the pure strategies we have considered previously. To analyze
mixed strategies we introduce a stronger assumption on players’ preferences. In
a later lecture we will prove a Nash equilibrium in mixed strategies (mixed Nash
equilibrium) exists for every finite strategic game.

1 Mixed Strategies

We previously saw the example of Matching Pennies:

p1 \p2 H T

H 1,−1 −1, 1
T −1, 1 1,−1

A mixed strategy for player i means a fixed probability distribution from which player i
will select their choice. We denote such a probability distribution by αi, which is a vector
containing a nonnegative real number αi(ai) for each ai ∈ Ai, such that their sum is 1:

αi(ai) ≥ 0∀ai ∈ Ai,
∑
ai∈Ai

αi(ai) = 1.

A motivating example occurs in Matching Pennies: if you have no idea what your opponent
will do, rather than commit to a fixed strategy where you could lose 1 dollar, if you make
your choice uniformly at random (50% of the time heads and 50% tails) then the expected
value of your gain/loss will be 0:

if α1(H) = α1(T ) = 1/2, the expected value of (u1, u2) is

p1 \p2 H T

α1
1
2
1 + 1

2
(−1) = 0, 1

2
(−1) + 1

2
1 = 0 1

2
(−1) + 1

2
1 = 0, 1

2
1 + 1

2
(−1) = 0

∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.
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(For a random variable x which takes on one of several values xi with probabilities pi, its
expected value is

∑
i xipi, i.e. its weighted mean value. This relates to repeated games since if

we take many samples x(1), x(2), . . . , the expected value equals the limit limn→∞
1
n

∑n
i=1 x

(i).)

Assumption (von Neumann-Morgenstern preferences & Bernoulli payoffs). We assume for
each player that a randomized outcome with expected utility x is equivalent to a determin-
istic outcome with utility x in terms of that player’s preferences.

Hence for a game with preferences and payoffs of the type described above, if we are
given all values ui(a) for players i and outcomes a, by extension we compute the utility of a
mixed strategy profile α by

ui(α) = E
each ai drawn independently according to αi

[ui(a)] =
∑

all outcomes a

ui(a)
n∏
i=1

αi(ai).

The above assumption is made almost universally; and in order to do any reasonable
probabilistic analysis with a game, an assumption along the above lines needs to be made.
However, keep in mind the following:

• Two games which are equivalent (in terms of players’ preferences over outcomes) for
pure strategies may not be equivalent under mixed strategies. For example, consider
the original Taxpayers’ game on the left, and version with actual dollar values on the
right.

p1 \p2 A DA

L 1,3 4,1
DL 2,2 3,3

p1 \p2 A DA

L -5000,0 15000,-15000
DL -200,-1000 0,0

So, a bad choice of utility function could make mixed-strategy modelling unrealistic.

• Modelling with dollar values is not von Neumann-Morgenstern in general. For example,
consider the following two scenarios. In scenario 1, I give you $1. In scenario 2, I flip
a fair coin and give you $1000002 if it lands heads, but you must give me $1000000 if
it lands tails. Are the scenarios equivalent from your perspective?

we will consider only situations where we restrict each player to randomize independently
of one another. (The alternative where players can coordinate their randomization, called
correlated strategies/equilibria, is also studied.)

A pure strategy means a deterministic strategy, i.e. with no randomness, the type we
have studied up until today. Of course, every pure strategy ai can also be viewed as a mixed
strategy, where αi has one component αi(ai) equal to 1 and all other components equal to 0.
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1.1 Application: Strict Domination

One important possibility in games is that a mixed strategy can strictly dominate some pure
strategy. Consider the following game, where we only show the payoffs for player 1 :

p1 \p2 L R

T 3 0
M 0 3
B 1 1

If player 1 seeks to maximize their own (von Neumann-Morgenstern) utility, then it is never
a good idea to play B, since it is strictly dominated by the mixed strategy1 (T +M)/2:

p1 \p2 L R

(T+M)/2 3/2 3/2
B 1 1

Similarly, any mixed strategy for player 1 which assigns positive probability to B can be
strictly improved (regardless of the opponents’ actions) by setting the probability of B to
zero and moving half of this probability each to T and M. Iterated elimination of strictly
dominated strategies using mixed dominators enjoys the same properties as with pure dom-
inators:

• The output of the algorithm does not depend on which choice we make when there are
multiple dominated actions.

• Mixed Nash equilibria (see the next section) are never eliminated.

On the one hand, this new iterated elimination algorithm is better than the old algorithm in
the sense that we always eliminate at least as much as before, and sometimes strictly more.
But can it be efficiently implemented? (Previously, we could check for dominated strategies
by checking all possibilities, but that is no longer possible.)

Exercise. Show, by using a polynomial-time algorithm to decide feasibility of linear inequal-
ity systems2, that there is a polynomial-time algorithm to determine whether a given game
has any pure strategy that is strictly dominated by any mixed strategy.

2 Mixed Nash Equilibria

The definition of Nash equilibria extends naturally to mixed strategies.

1This denotes the mixed strategy α1 such that α1(T ) = α1(M) = 1/2 and α1(B) = 0.
2I.e., a polynomial-time algorithm whose input is a series {

∑
j Aijxj ≥ bi}i of linear inequalities, and

which either outputs a feasible solution x or determines that none exist.
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Definition 1. A mixed strategy profile α is a mixed Nash equilibrium if for each player i
and each of their mixed strategies α′i,

ui(α) ≥ ui(α
′
i, α−i).

Equivalently, each player uses a best mixed response to their opponents.
It is easy to check that mixed Nash equilibria generalize pure Nash equilibria:

Theorem 2. Let a be a strategy profile. Let α be the mixed strategy profile corresponding to
a. Then α is a mixed Nash equilibrium if and only if a is a Nash equilibrium.

Proof. One direction,“α is mixed NE” implies “a is NE” is trivial: if α is a mixed NE, since
any pure deviation ai by player i also can be thought of as a mixed deviation, there cannot
be any profitable pure deviation from a.

The direction “a is NE” implies “α is mixed NE” is non-trivial: if player i has no profitable
pure deviation, is it also true that they have no profitable mixed deviation? Yes: any random
variable (here u(ai, a−i) with ai drawn from distribution αi) whose value is always less than
some constant (u(a)) also has its expected value less than that constant. In detail,

u(α′i, α−i) = u(α′i, a−i) =
∑
ai∈Ai

α′i(ai)u(ai, a−i)

≤
∑
ai∈Ai

α′i(ai)u(a)

≤ u(a) = u(α)

Thus as needed, no player has a profitable mixed deviation from α.

One important fact about mixed Nash equilibria is Nash’s Theorem:

Theorem 3 (Nash, 1950). Every strategic game with a finite number of players and a finite
number of actions per player has a mixed Nash equilibrium.

This is why they are called Nash equilibria. After some small examples, we will give prove
Nash’s Theorem in three increasingly general settings:

• First, we prove it for zero-sum two-player games, using linear program duality and
maxminimization.

• Next, we prove it for all two-player games, using the existential non-polynomial-time
algorithm of Lemke and Howson.

• Finally, we prove it for all finite games, using a topological fixed-point theorem.

Zero-sum two-player games are the most general class for which a polynomial-time al-
gorithm is known to find a NE. For anything more general (non-zero-sum, or > 2 players)
the problem is “PPAD-hard.” We will make this more precise later; conventional (unproven)
wisdom says there is no polynomial-time algorithm for PPAD-hard problems. This is most
interesting: we know a Nash equilibrium exists, but we cannot efficiently find it!
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3 Examples

Consider the Matching Pennies game again. It has no pure Nash equilibria. But we can
easily check that the mixed action profile ((H+T )/2, (H+T )/2) is a mixed Nash equilibrium:
it gives both players a utility of 0, and if either player deviates to another mixed strategy,
they still get an expected payoff of 0. In fact, this is its only mixed Nash equilibrium.

Claim 4. In Matching Pennies, the only mixed Nash equilibrium is ((H+T )/2, (H+T )/2).

Proof. We will use a mixed best response argument. To simplify things, let x be the proba-
bility that player 1 picks H (so they pick T with probability 1− x) and y be the probability
that player 2 picks H. We abuse notation and identify the mixed strategies of player 1 with
their single choice x ∈ [0, 1] and similarly for player 2. What x is a best response to any
given y? The utility for player 1 is

xy − (1− x)y − (1− y)x+ (1− x)(1− y) = 4xy − 2x− 2y + 1 = x(4y − 2) + (1− 2y).

x

y

y = B2(x)

x = B1(y)

0 1

0

1

The last version makes it easy to compute
the best response function B1 for player 1: if
y > 1/2 then the only best response is x = 1,
if y < 1/2 the only best response is x = 0,
and if y = 1/2 then all x are best responses.
Similarly (but we skip the details), the best
response for player 2 when x < 1/2 is y = 1,
when x > 1/2 it is y = 0, and when x = 1/2
all y are best responses. If we plot both of
the best response functions, we see that they
have exactly one point in common, x = y =
1/2. This implies the claim.

The same method from this proof works for any 2-player game with 2 actions per player:

Exercise. Find all mixed Nash equilibria of the Bach or Stravinksy game,

p1 \p2 B S

B 2, 1 0,0
S 0,0 1, 2

By combining this approach with iterated elimination, you can solve the following question:

Exercise. Find all mixed Nash equilibria of the following game:

p1\p2 L C R

T 3, 4 5, 3 2, 3
M 2, 5 3, 9 4, 6
B 3, 1 2, 5 7, 4

Here is a 2-player example where the number of choices per player is larger than 2:

Exercise. Consider Matching n-ies, the 2-player strategic game where both action sets Ai
are {1, . . . , n}; when a1 = a2 player 1 wins $1 and player 2 loses $1; when a1 6= a2 player 1
loses $1 and player 2 wins $1. Find all mixed Nash equilibria of this game.
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3.1 Support Characterization

Here is one tool that will be very useful to compute Nash equilibria in some games.

Definition 5. For a mixed strategy αi, its support supp(αi) is the subset of Ai receiving
positive probability,

supp(αi) := {ai ∈ Ai | αi(ai) > 0}.

Theorem 6 (Support Characterization). Let α be a mixed strategy profile. Let Bi(α−i)
denote the best pure responses of player i to their opponents,

Bi(α−i) := arg max
ai∈Ai

ui(ai, α−i).

Then α is a mixed Nash equilibrium if and only if, for each player i, supp(αi) ⊆ Bi(α−i).

Note that this agrees with the characterization of best responses we saw in Matching
Pennies.

Proof. The theorem is a combination of two observations:

• α is a mixed NE iff each player is using a best mixed response to their opponents
(which follows from the definition of a mixed NE)

• αi is a best mixed response for player i if and only if supp(αi) ⊆ Bi(α−i).

We only need to prove the second observation. Let X = maxai∈Ai
ui(ai, α−i) denote the value

of player i’s best pure response to α−i. So

ui(a
′
i, α−i)

{
= X, if a′i ∈ Bi;

< X, if a′i 6∈ Bi.

The first step is to show that player i using any mixed strategy against α−i can obtain at
most X (i.e., ui(α

′
i, α−i) ≤ X for all α′i) — this is similar to the proof of Theorem 2.

What mixed strategies are optimal for player i? First we claim that if supp(αi) ⊆ Bi(α−i),
then αi is a best response. Intuitively, this is clear since if player i uses a probability
distribution over certain strategies, each of which attain a value of X, his expected value
over this distribution is also X. We write it explicitly for clarity,

ui(αi, α−i) =
∑
ai∈αi

αi(ai)ui(ai, α−i) =
∑

ai∈supp(αi)

αi(ai)ui(ai, α−i) =
∑

ai∈supp(αi)

αi(ai)X = X · 1

where in the last inequality we factored out the X and used the fact that the probabilities
in αi add up to one.

Finally, if supp(αi) * Bi(α−i) we need to show that αi is not a best response. Note that
supp(αi) * Bi(α−i) is the same as saying there is some a∗i with αi(a

∗
i ) > 0 and ui(a

∗
i , αi) < X.

So with respect to the probability distribution αi, player i never obtains more than X, and
has positive probability of obtaining strictly less than X. Similar to the other calculations
we deduce ui(αi, α−i) < X, i.e. αi is not a best response, and we are done.
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The Support Characterization exemplifies a theme in algorithmic game theory we will
see again: we replace some condition on the player and their preferences with an equivalent
combinatorial characterization. To practice using the Support Characterization, solve the
following exercise.

Exercise. Consider the following game, the Moose-Goose Hunt. There are n players who
are hunting a large moose. However, each one can either hunt the moose with the rest of the
group, or choose to go off alone and hunt a goose instead. So Ai = {M,G} for each player
depending on what they choose to hunt. The utilities are given as follows, where m > g > 0
are fixed constants:

• any player who chooses G gets a utility of g

• if all players choose M , they all get a utility of m

• if player i chooses M , but at least one player chooses G, then player i gets 0 utility.

The idea is that hunting a moose is more profitable, but risky since it takes everyone to
coordinate their efforts.

Find all symmetric mixed Nash equilibria of this game. (A mixed action profile is sym-
metric if each player assigns the same probability to M .)

Here is one consequence of the Support Characterization, and a warm-up to the Lemke-
Howson algorithm:

Corollary 7. Given a two-player strategic game with finite Ai and where the ui are rational
numbers, it has a mixed Nash equilibrium where all the probabilities are rational.

Proof. Using Nash’s theorem, we know that the game has at least one Nash equilibrium
(α1, α2), but it might have irrational probabilities. We will use the following fact:

Fact 8. If a linear inequality system is feasible, and all numbers Aij, bj in the program are
rational, then the system has a solution which is rational.

Continuing, for notational simplicity, we rename the actions of player 1 to {1, 2, . . . ,m}
and the actions of player 2 to {1, 2, . . . , n}. Consider the following linear inequality system:

V there is a variable pj for each action j ∈ A1 of player 1 and another variable Y

C1 there are constraints ∀j : pj ≥ 0 and
∑

j pj = 1 to ensure the pj correspond to a
probability distribution

C2 for all pj in A1 but not in B1(α2) there is a constraint pj = 0

C3 for all k in supp(α2) there is a constraint
∑m

i=1 pju2(j, k) = Y.

C4 for all k not in supp(α2) there is a constraint
∑m

i=1 pju2(j, k) ≤ Y.
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The system is feasible: take each pj = α1(j) and let Y = u2(α1, α2) be player 2’s utility
in this equilibrium.

The key fact, more generally, is that whenever p is a feasible solution to this system,
together with α2 it makes a Nash equilibrium. To prove this we use the Support Char-
acterization: the constraints C2 ensure player 1 only uses best responses to α2; and the
constraints C3, C4 ensure that each action used by player 2 is a best response to player 1’s
mixed strategy.

So by Fact 8, the system has a rational solution. Thus there is a mixed Nash equilibrium
(α′1, α2) where α′1 is rational. Repeating the argument for player 2, we are done.

The Lemke-Howson algorithm will extend Corollary 7 to give a proof which is more
satisfying, since it will not rely on Nash’s theorem.

Exercise. Using the ideas in Corollary 7, give an (exponential-time) algorithm to find a
Nash equilibrium of a 2-player strategic game.

Note that the rationality proven by Corollary 7 does not extend to 3-player games: the
Moose-Goose hunt is an example.
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