
Game Theory and Algorithms∗

Lecture 6: The Lemke-Howson Algorithm

March 15, 2011

Summary: We introduce an algorithm that finds Nash equilibria of finite 2-
player strategic games. Hence we prove the special case of Nash’s theorem where
there are only 2 players.

The Lemke-Howson algorithm was introduced in 1964 [1]. It resembles the simplex
algorithm (from linear programming), especially since the algorithm consists of iterated
pivoting. On a related note, we have already seen that the entire set of Nash equilibria in
zero-sum 2-player games can be found (and proved to exist) by using linear programming
methods. Here is one similarity and one difference between the two methods.

• The simplex algorithm can take an exponential number of iterations [Klee and Minty
1969] and so can the Lemke-Howson algorithm [Savani and von Stengel 2004].

• Other techniques to solve linear programs are known that run in polynomial time (e.g.,
the ellipsoid and interior point methods) but no polynomial time technique is known
for finding Nash equilibria (even for 2-player games). In fact Chen and Deng [2005]
proved finding 2-player Nash Equilibria is “PPAD-complete” which is evidence that no
polynomial-time algorithm exists.

In the first part, we describe the Lemke-Howson algorithm at a high level. In the second
part, we show how the algorithm can be executed using tableaux, using an example. In the
third part, we discuss degeneracy issues.

Our notation follows [2], which we repeat here. Let player 1 have m actions labeled
M = {1, . . . ,m} and player 2 have n actions labeled N = {m+ 1, . . . ,m+n}. We represent
the payoffs for our two-player game with m×n matrices. The matrix A represents the payoffs
for player 1, and the matrix B represents the payoffs for player 2. Call a vector stochastic if
it represents a probability distribution, i.e. it is non-negative and its entries add up to 1. We
think of player 1 picking rows and player 2 picking columns; so a mixed strategy for player
1 is an m-element row vector that is stochastic and similarly a mixed strategy for player 2 is

∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.

1

an n-element stochastic column vector. With these notations, the payoff to player 1 (resp.
2) under mixed action profile (x>, y) is x>Ay (resp. x>By). The support supp(·) of a vector
is the set of indices where the vector is nonzero. We use X to denote the set of all mixed
strategies of player 1 (i.e., X is the set of all stochastic m-element row vectors) and Y is
defined similarly. The symbol 0 represents the all-zero vector, whose size and orientation
should be determined from context.

Assumption 1. We assume that all entries of A and B are nonnegative, that A has no
all-zero columns, and B has no all-zero rows.

This assumption is without loss of generality, since adding the same large positive number
to every entry of A (or B) clearly does not change the structure of the Nash equilibria.

1. The Basic Idea

One brute-force algorithm for finding all Nash equilibria relies on guessing the support of
the equilibrium, and then solving a linear program to determine what values the nonzero
variables can take on. The Lemke-Howson algorithm uses a similar idea: we maintain a
single guess as to what the supports should be, and in each iteration we change the guess
only a little bit.

The easiest description of the algorithm, and the easiest proof of Nash’s theorem for
2-player games, relies on two polytopes which we now define. A polytope is the same as
the feasible region for an LP: a system of linear equalities and inequalities. Let Bj denote
the column of B corresponding to action j and let Ai denote the row of A corresponding to
action i. Here are the two polytopes:

P1 = {x ∈ RM | (∀i ∈M : xi ≥ 0) & (∀j ∈ N : x>Bj ≤ 1)}
P2 = {y ∈ RN | (∀i ∈ N : yi ≥ 0) & (∀i ∈M : Aiy ≤ 1)}

Note that we don’t restrict x and y to be stochastic here, only nonnegative. For a nonzero
nonnegative x, we can normalize it to a stochastic vector nrml(x) as follows,

nrml(x) := x/

(∑
i

xi

)
.

The inequalities that define P1 have the following meaning:

• if x ∈ P1 meets xi ≥ 0 with equality then i is not in the support of x

• if x ∈ P1 meets x>Bj ≤ 1 with equality then j is a best response to nrml(x)

So the polyhedra Pi somehow encode information about best responses and the support. We
now make this encoding explicit.

Let us say that x ∈ P1 has label k, where k ∈ M ∪N = {1, . . . ,m + n}, if either k ∈ M
and xk = 0, or k ∈ N and x>Bk = 1. Similarly y ∈ P2 has label k if either k ∈ N and yk = 0,
or k ∈ M and Aky = 1. As a consequence of the Support Characterization, we have the
following.

2

Theorem 1. Suppose that x ∈ P1 and y ∈ P2, and neither x nor y is the all-zero vector.
Then x and y together have all labels from 1 to k if and only if (nrml(x), nrml(y)) is a Nash
equilibrium. All Nash equilibria arise in this way.

Proof. For each i ∈M , we know that either xi = 0 or i is a best response by player 1 to the
normalized strategy corresponding to y. Thus (by the S. C.) player 1 is using a best mixed
response. Similarly player 2 is using a best mixed response, so we have a NE.

On the other hand, given any Nash equilibrium (x′, y′) let λ1 be the value that player 1
obtains and λ2 be the value that player 2 obtains. It is easy to check that x′/λ2 ∈ P1 and
y′/λ1 ∈ P2, and the S. C. again quickly proves that x′ and y′ together have all labels.

Next we employ one other useful assumption. Assumption 1 ensures that the polyhedron
P1 is bounded and m-dimensional, and P2 is bounded and n-dimensional. A bounded poly-
hedron is called a polytope. A d-dimensional polytope is simple if every vertex (i.e., every
extreme point) meets exactly d of the defining inequalities with equality.

Assumption 2 (Nondegeneracy). The polytopes P1 and P2 are simple.

As a remark, nondegenerate games have the following characterization.

Proposition 2. A 2-player finite strategic game satisfies Assumption 2 if and only if, for
any mixed strategy α of a player, the number of pure best responses by their opponent does
not exceed |supp(α)|.

A game that does not satisfy Assumption 2 is called degenerate. Intuitively, degeneracy
involves a special relationship amongst the payoffs, and so “most” games are non-degenerate.
(More specifically, in the 2mn-dimensional space of all games, the degenerate ones occupy
regions of dimension at most 2mn − 1.) There is a standard way to deal with degenerate
cases called perturbation, where we change all the payoff values by a little amount (either
numerically with random numbers, or symbolically). We will explain later in concrete terms
how to apply the Lemke-Howson algorithm to games that are degenerate.

For a point x in a polyhedron P , a defining inequality ℵ is binding if x meets ℵ with
equality. The binding subsystem β(x) corresponding to x is the set of all defining inequalities
that are binding. The following facts are basic elements of polyhedral theory; intuitively, it
is easy to see that they hold in dimension at most 3. (The first item is just the definition of
“simple”).

Theorem 3. In a simple d-dimensional polytope,

1. every vertex v has |β(v)| = d, i.e., is incident on exactly d faces;

2. for two distinct vertices v, v′ we have β(v) 6= β(v′);

3. (pivoting) every vertex is incident on exactly d edges; in particular, for each ℵ ∈ β(v),
there is a unique neighbour v′ of v with β(v′) ∩ β(v) = β(v)\{ℵ}

3

Notice that in P1 and P2, binding inequalities correspond to the labels we defined earlier.
E.g., x has label i ∈ M iff xi ≥ 0 is binding for x, and x has label j ∈ N iff x>Bj ≤ 1 is
binding for x. Because of this, applying Theorem 3(c) to P1 or P2 will be called removing the
label k from v and obtaining new vertex v′, where k is the label corresponding to inequality
ℵ. Similarly, since v′ in Theorem 3(c) has exactly one new label that v didn’t have, namely
the label k′ corresponding to the unique inequality in β′(v)\β(v), we will say that the label
k′ was added.

We are now able to state the Lemke-Howson algorithm and prove its correctness (in the
nondegenerate case). Throughout the algorithm, x is a vertex of P1 and y is a vertex of P2.

Algorithm 1 The Lemke-Howson algorithm.

1: Let x (resp. y) be the all-zero vector 0 of length m (resp. n)
2: (The labels of x are {1, . . . ,m} and of y are {m+ 1, . . . , n}.)
3: Let k0 be any label of x
4: Let k := k0
5: loop
6: In P1, remove the label k from x; redefine x as the new vertex and k as the label added
7: If k = k0, stop looping
8: In P2, remove the label k from y; redefine y as the new vertex and k as the label added
9: If k = k0, stop looping
10: Output (nrml(x), nrml(y))

Claim 4. The Lemke-Howson algorithm outputs a Nash equilibrium.

Proof. Each time we apply Theorem 3(c) and update the point x or y it will be called a
pivot. Let us define a configuration to be any pair (x, y) such that x is a vertex of P1, y is
a vertex of P2, and every label in M ∪ N − k0 is had by either x or y (or both). The key
point is that, at every point during the algorithm, x and y together form a configuration.
(To see this, recall that x has exactly m labels, y has exactly n labels, there are m+n labels
in total, and use induction on the number of pivots.)

We say that configurations (x, y) and (x′, y′) are adjacent if either

1. x = x′ and an edge of P2 connects y to y′, or

2. y = y′ and an edge of P1 connects x to x′.

First, notice that each pivot of the algorithm moves us from one configuration to an adjacent
configuration. Next, consider the following two kinds of configurations:

x and y together have all labels: this configuration is adjacent to exactly one other con-
figuration, since exactly one of x or y has label k0, and we need to remove that label
from whichever one has it.

4

x and y share a duplicate label: this configuration is adjacent to exactly two other con-
figurations, since we can remove the duplicate label from x and pivot in P1, or remove
the duplicate label from y and pivot in P2.

Consider a graph whose nodes are all the configurations, and whose edges are all pairs of
adjacent configurations. The above analysis shows that every node has degree 1 or 2; hence
every connected component is a path or a cycle. Viewed in this graph, the Lemke-Howson
algorithm begins at the configuration (0,0); this configuration has all labels and is therefore
an endpoint of a path component. The algorithm walks along this path until it finds another
degree-1 node. From the above analysis we see that such a node has all labels; furthermore,
it cannot be that the final configuration is (0,0). (It still might be possible to end at a
configuration of the form (x,0) or (0, y), but we leave it as an exercise to show that this is
not possible.) Hence, using Theorem 1 we end at a configuration corresponding to a Nash
equilibrium.

In the proof it is also clear that the “configuration graph” has an even number of degree-1
nodes, and all of them except (0,0) are Nash equilibria. With a little more work we can
hence prove the following:

Corollary 5. A nondegenerate two-player strategic game has a finite, odd number of Nash
equilibria.

In particular, of course, the game cannot have 0 equilibria.

2. Tableau Method and Example

To apply the tableau method to find Nash equilibria using the Lemke-Howson algorithm, we
use the following four steps.

1. Preprocessing.

2. Initialization of tableaux.

3. Repeated pivoting.

4. Recover Nash equilibrium from final tableaux.

In the tableau method, we introduce slack variables, and use the terminology basic and
non-basic variables. For our purposes the basic variables and set of labels have opposite
meanings since labels imply a tight inequality and basic variables are not tight. Hence,
“enters the basis” means the same as “label is removed” and “leaves the basis” means that
“label is added.”

5

Step 1. Preprocessing

Recall that iterated elimination of strictly dominated strategies preserves all Nash equilibria.
Elimination reduces the size of the game, and therefore will reduce the amount of work in-
volved with the pivoting later on. Hence, one should apply this elimination before beginning.
Strict domination by mixed strategies also applies here!

Next, to ensure that the game satisfies the conditions of Theorem 1, add a suitably large
constant to the entries of each payoff matrix.

Step 2. Initialization of Tableaux

For the purposes of solving the game we need two tableaux, one for each player. Let ri be
the slack in the constraint Aiy ≤ 1 and let sj be the slack in the constraint x>Bj ≤ 1. We
then obtain the system

Ay + r = 1, B>x+ s = 1, and x, y, r, s are nonnegative.

In the initial tableaux, the basis is {ri | i ∈ M} ∪ {sj | j ∈ N} and so we rewrite the
equations so as to solve for them.

As an example we will use the following game.

p1\p2 4 5 6

1 1,2 3,1 0,0
2 0,1 0,3 2,1
3 2,0 1,0 1,3

Notice that the entries are positive, no strict domination occurs, and furthermore that there
are no pure Nash equilibria. The game satisfies Assumption 1 and it happens to also satisfy
Assumption 2.

The initial tableaux are r = 1− Ay,

r1 = 1 −y4 −3y5 [A1]
r2 = 1 −2y6 [A2]
r3 = 1 −2y4 −y5 −y6 [A3]

and s = 1−B>x,

s4 = 1 −2x1 −x2 [B1]
s5 = 1 −x1 −3x2 [B2]
s6 = 1 −x2 −3x3 [B3]

Step 3. Pivoting

We need to arbitrarily choose some x or y variable to bring in to the basis, corresponding
to the arbitrary choice k0 of label that we remove. Let’s bring x1 in. By considering the
min-ratio rule (i.e., looking at the coefficients of x1 in the [B] tableau) it is s4 that must leave

6

the basis. Therefore we solve [B1] for x1, obtaining a new equation [B’1], and we substitute
the new equation into [B2] and [B3] obtaining

x1 = 1/2 −1/2s4 −1/2x2 [B’1]
s5 = 1/2 +1/2s4 −5/2x2 [B’2]
s6 = 1 −x2 −3x3 [B’3]

The main feature of the Lemke-Howson algorithm, as we discussed in the first section,
is that the variable which just left the basis determines the variable to enter the basis next.
There are m+n complementary pairs of variables: {ri, xi} for i ∈M and {sj, yj} for i ∈ N .
Each pair corresponds (in an inverse sense) to the labels we mentioned earlier, e.g., xi is
basic iff x does not have label i and sj is basic iff x does not have label j.

The m+ n complementarity conditions

rixi = 0, i ∈M sjyj = 0, j ∈ N.
tell us when to stop. Initially, all complementarity conditions are satisfied. We keep per-
forming pivots until the complementarity conditions are again satisfied. Equivalently, we
pivot until, between the two tableaux, in each complementary pair of variables, exactly one
is basic and exactly one is non-basic.

In this case, since s4 just left the basis, y4 must be brought in. Examining the [A] tableau
we see that r3 is the winner of the min-ratio rule, and is therefore leaves the basis. We obtain
the following.

r1 = 1/2 +1/2r3 −5/2y5 +1/2y6
r2 = 1 −2y6
y4 = 1/2 −1/2r3 −1/2y5 −1/2y6

Since r3 left, now x3 enters the other tableau, and by the min-ratio rule s6 leaves.

x1 = 1/2 −1/2s4 −1/2x2
s5 = 1/2 +1/2s4 −5/2x2
x3 = 1/3 −1/3x2 −1/3s6

Since s6 left, now y6 enters, and by the min-ratio rule r2 leaves.

r1 = 3/4 +1/2r3 −5/2y5 −1/4r2
y6 = 1/2 −1/2r2
y4 = 1/4 −1/2r3 −1/2y5 +1/4r2

Since r2 left, now x2 enters, and by the min-ratio rule s5 leaves.

x1 = 2/5 −3/5s4 +1/5s5
x2 = 1/5 +1/5s4 −2/5s5
x3 = 4/15 −1/15s4 +2/15s5 −1/3s6

Since s5 left, now y5 enters, and by the min-ratio rule r1 leaves.

y5 = 3/10 +1/5r3 −2/5r1 −1/10r2
y6 = 1/2 −1/2r2
y4 = 1/10 −3/5r3 +1/5r1 +3/10r2

7

Step 4. Output

Since x1 was the initial variable to enter the basis, and r1 just left, the complementarity
conditions are now satisfied. (More generally, if xi was the initial variable to enter, we stop
when xi or its complement leaves.) In a tableau, we obtain values for the basic variables by
setting the non-basic variables to zero. Hence the variables’ values are

r = (0, 0, 0), s = (0, 0, 0), x = (2/5, 1/5, 4/15), y = (1/10, 3/10, 1/2).

Therefore, the Nash equilibrium we just found is

(nrml(x), nrml(y)) = ((6/13, 3/13, 4/13), (1/9, 3/9, 5/9)).

3. Degeneracy

The effect of nondegeneracy on the tableau method is the following:

Proposition 6. When running the Lemke-Howson algorithm in tableau form on a nonde-
generate game, in each iteration there is a unique variable that wins the min-ratio test.

However, degenerate games occur frequently in practice. In a general game, we can still
use the tableau method, but we will be faced with the problem of breaking ties in some
manner. Furthermore, just as in the simplex algorithm, if we have a “bad” tie-breaking rule,
then our program can enter a loop and run forever.

By using infinitesimal perturbations, we can obtain a “good” tie-breaking rule that can
be performed in polynomial time; see the section of [2] on the lexicographic method. However,
this rule is impractical to perform by hand, so we will not describe it here, and no simpler
one appears to be known in the literature.

One method that will work for any game is the following: when faced with a tie to break,
make the choice arbitrarily; if you later come back to the same basis, then break the tie in
a different way.

References

[1] X. Chen and X. Deng. Settling the Complexity of Two-Player Nash Equilibrium. In
Proc. 47th FOCS, 261–272, 2006.

[2] C. E. Lemke and J. J. T. Howson. Equilibrium points of bimatrix games. SIAM Journal
on Applied Mathematics, 12(2):413–423, 1964.

[3] B. von Stengel. Computing equilibria for two-person games. In R. J. Aumann and
S. Hart, editors, Handbook of Game Theory, Vol. 3, pages 1723–1759, 2002.

8

