
Game Theory and Algorithms∗

Lecture 9: Extensive Games: Simultaneous Moves and
(Infinite) Repetition

March 28, 2011

Summary: The goal of this lecture is to give a rigorous model in which “always
cooperate” is a plausible outcome for the Prisoners’ Dilemma: namely, the model
of infinitely repeated strategic games with discounting. To get to this model,
we introduce the ability to have simultaneous moves in extensive games, and
we describe an alternate “single deviation” characterization of subgame perfect
equilibria.

1 Simultaneous Moves in Extensive Games

Previously, we defined extensive games in such a way that for every internal node h of the
tree, exactly one player made a choice. (We also think of h as a state or a history or a decision
node.) We now extend this as follows, for the model of extensive games with simultaneous
moves :

• Each internal node h specifies a set P (h) of one or more players who move at h.

• For each player i ∈ P (h), they have a set Ai(h) of valid actions at h.

• For each outcome in
∏

i∈P (h)Ai(h), either it is a terminal history giving utilities to
each player, or else the game continues with more decisions.

The players i ∈ P (h) are thought of as making their choices simultaneously.
Remark. The special case where |P (h)| = 1 for all h is the model of extensive games

without simultaneous moves described last class. Strategic games, on the other hand, corre-
spond to any game where there is exactly one non-terminal history (namely, the root).

∗ Lecture Notes for a course given by David Pritchard at EPFL, Lausanne.
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p1\p2 B S

B 3, 1 0, 0
S 0, 0 1, 3

2, 2

concertbook

An example: Bach, Stravinsky or Book.
First, player 1 decides either that both play-
ers will stay home and read a book, or they
will go see a concert. If they decide to see
a concert, then they proceed to play a game
of Bach or Stravinsky. Both players prefer
reading a book to listening their un-preferred
composer.

1.1 Finitely Repeated Prisoners’ Dilemma

Recall the example of a Prisoners’ Dilemma from the first lecture:

p1 \p2 Q F

Q 2,2 0,3
F 3,0 1,1

Our first example of a finitely repeated strategic game is the following: the players get
to play two “rounds” of the Prisoners’ Dilemma, and their utility will be the sum of their
payoffs in the two rounds. For example if their actions in the first round are (Q,F ) and their
actions in the second round are (F, F ), then for this history h = ((Q,F ); (F, F )) we have
u1(h) = 0 + 1 = 1 and u2(h) = 3 + 1 = 4.

p1\p2 Q F

Q
Fp1\p2 Q F

Q 4,4 2,5
F 5,2 3,3

p1\p2 Q F

Q 5,2 3,3
F 6,0 4,1

p1\p2 Q F

Q 2,5 0,6
F 3,3 1,4

p1\p2 Q F

Q 3,3 1,4
F 4,1 2,2

Q: How many pure strategies does each player have in this game?
A: Each player has a total of 5 possible decisions in the game “tree.” So, the total number
of strategies for each player is 25 = 32.

Let us try to use backwards induction on this game to predict the outcome. (It is a little
informal but matches the formal descriptions to come later.)

• We need to start from the bottom of the game. For example, consider the subgame
starting from history (Q,Q). If both players stayed quiet in the first round, what do
we predict in the second round? Notice that the second round is still a Prisoners’
Dilemma, the only difference is that both players each won 2 units of utility in the first
round. So for player 1, in this subgame strategy F should strictly dominate strategy
Q (indeed, 5 > 4 and 3 > 2). As we assume player 1 is greedy and rational, they will
fink in the second round, and likewise for player 2.

• Similarly we deduce that no matter what happens in the first round, both players will
fink in the second round.
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• Now we can analyze what happens at the start of the game. Based on our analysis
of the second round, we deduce that the effect of the first round on the payoffs is
p1 \p2 Q F

Q 3,3 1,4
F 4,1 2,2

or in other words that the players will get a constant utility of

1 unit each in the second round (from both finking). Again, this is the same as the
original Prisoners’ Dilemma up to an additive constant and the same calculations can
use strict dominance to predict that both players will fink in round 1.

So backwards induction (together with strict dominance) predicts the strategy profile where
both players will fink no matter what, leading to the outcome ((F, F ); (F, F )). This strategy
profile will indeed turn out to be the only subgame perfect equilibrium of this game.

1.2 Subgame-Perfect Equilibria and Backwards Induction

The subgame-perfect equilibrium concept applies without modification to games with simul-
taneous moves:

Definition 1. A strategy profile s is a subgame-perfect equilibrium if for all players i, all
strategies s′i, and all histories h,

ui(h(s′i, s−i)) ≤ ui(h(s)).

As before h(s) means the leaf node reached starting from h when players play according to
s. Remark: The same definition works too when s, s′ are mixed. The definition also works
for games of infinite duration.

Now it is a good time to go back to the concept of backwards induction, for which we
gave no formal proof last time. The backwards induction algorithm can be described in the
following way, which is actually forward-recursive instead of backwards-inductive:

// finds all subgame-perfect equilibria of a finite game G
Procedure BackwardsInduction(h) // Gh is a subgame

1: If h is a leaf node this game is trivial, return ∅
2: Call BackwardsInduction on each child {(h; a) | a ∈∏

i∈P (h)Ai(h)} of h
3: for each combination s̃ of SPEs returned by the recursive calls, do
4: Consider the one-round strategic game with players P (h) and action sets Ai(h) with

utilities u(a) = u((h; a)(s̃))
5: for every Nash equilibrium a∗ of this game do
6: output the combination of a∗ and s̃ as an SPE

Output BackwardsInduction(∅) //call it on root node/whole game G

This is the same as the algorithm we introduced last class, but generalized to handle ties
and simultaneous moves. Be aware that we are intentionally using the same notation in a
couple of different ways to make the algorithm description more succinct.
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Remarks. The same algorithm works to find all mixed SPEs, but it is inefficient in
general since one subroutine is find all mixed NEs of a strategic game. Even considering only
pure equilibria, once ties are allowed there can be exponentially many SPEs, all of which are
found by this algorithm, so it may not run in polynomial time.
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Example 1. This is a game introduced
in the last lecture. There is only one
nontrivial subgame other than the whole
game, h = (B). (We name each internal
node according to the sequence of actions
which lead to it.) In this subgame, player 2
has two optimal actions. (The BI algorithm
will construct a one-player game with two
actions, which gives two Nash equilibria.)
So the subgame has two SPEs, C and D. For
the whole game each SPE of the subgame
leads to a new case: if we take SPE C in the
subgame then the root node gives optimal
action A, and if we take SPE D in the
subgame, the root node gives optimal action
B. So there are two SPEs: AC and BD.

Example 2. Now consider finding all (pure) SPEs of Bach, Stravinsky or Book. The
subgame has two NE, (B,B) and (S, S). Each SPE of the subgame gives one case when
computing the SPEs of the whole game. In the (B,B) case the optimal starting action for
player 1 is concert and otherwise it is book. So there are 2 SPE: ((concert, B), B) and ((book,
S), S).

Example 3. The argument before for the Prisoners’ Dilemma generalizes as follows: in
any strategic game with only one (pure/mixed) NE, for any finite k the k-repeated version
has only one (pure/mixed) SPE, namely the one in which all players always play according
to the NE.

We eventually want to get to infinitely-repeated games to contrast with this last example.
We digress a moment to another useful concept.

1.3 The One-Deviation Property

We haven’t yet formally proved that backwards induction gives all SPEs. We will prove this
now. As a side benefit it lets us mention a property which can be used to replace backwards
induction once we talk about infinite games. (Clearly, if the game has infinite duration,
backwards induction cannot be applied.)
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Definition 2. A strategy profile s satisfies the one-deviation property if for all histories h,
for all players i ∈ P (h), and all strategies s′i which differ from si only at h,

ui(h(s′i, s−i)) ≤ ui(h(s)).

If we delete which differ from si only at h then we recover the definition of a SPE. Therefore,
the following claim is trivial:

Claim 3. Every SPE satisfies the one-deviation property.

To prove that the backwards induction algorithm is correct, we will prove the converse
of the above claim, and use the following:

Claim 4. The backwards induction algorithm outputs s if and only if s satisfies the one-
deviation property.

Proof. Backwards induction precisely finds all strategy profiles satisfying the following: at
each h each player i ∈ P (h) picks an optimal action (locally at h), if we assume their future
actions, and the actions of their opponents, are fixed. But this is directly the same as the
definition of strategy profiles satisfying the one-deviation property.

Claim 5. In a finite game (extensive with simultaneous moves), if s satisfies the one-
deviation property, then s is a SPE.

In other words, we know that every s output by the backwards induction algorithm is
locally optimal; we want to prove that actually there is no way to adjust (deviate) it in two
or more moves so that any player profits. The proof is a little subtle and here we use an
“extremal” argument.

Proof. Suppose that any strategy profile s is not an SPE. We will show that s does not
satisfy the one-deviation property, which will complete the proof.

Since s is not an SPE, there is a history h, a player i, and a strategy s′i so that
ui(h(s′i, s−i)) > ui(h(s)). Define h∗ as follows: h∗ is the lowest node in the subgame rooted
at h, of those where i plays, such that ui(h

∗(s′i, s−i)) > ui(h
∗(s)). In other words, the new

value to player i of h∗ is greater than its old value. Because all subgames strictly below h∗

did not increase in value, it follows that the actions chosen by player i at h∗ must be different
in si and s′i, and that this single deviation increased his utility. Specifically, let s′′i be the
same as si, except that it takes the same deviation as s′i at h∗; then

ui(h
∗(s′′i , s−i)) ≥ ui(h

∗(s′i, s−i)) > ui(h
∗(si, s−i))

where the first inequality holds since subgames strictly below h∗ did not increase in value.

As mentioned above, the three claims together give:

Theorem 6. The output of the backwards induction algorithm is the set of all SPEs.
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2 Infinitely Repeated Games

We now move to infinitely repeated games, which lie in the generalized extensive-with-
simultaneous-moves model wherein the game tree can be infinite. Our earlier definitions of
subgame-perfect equilibria and the one-deviation property still make sense, but they are not
always the same thing.

Exercise. Give an example of an infinite extensive game (with just one player) and one of
its strategies s, such that s satisfies the one-deviation property, but s is not an SPE.

2.1 Discounting

As we alluded to earlier, the naive approach of “add your utilities from each round” does not
give a good way to define payoffs in infinitely repeated games, since 1 + 1 + 1 + · · · = +∞ =
2 + 2 + 2 + · · · although clearly one of these sequences is “better” than the other. There
are several approaches to fix this but we will focus on one easy, general, and well-motivated
approach, which is discounting.

Definition 7. Let (x1, x2, . . . ) be an infinite sequence of payoffs (xi is from round i). For
0 < δ < 1, the δ-discounted sum of the sequence is x1 + δx2 + δ2x3 + · · · = ∑∞

i=1 xiδ
i−1.

Provided that the xi are bounded, this is a geometric series whose value is finite.

• We call this discounting since it agrees with the idea that (due to inflation), one dollar
today is only worth δ < 1 dollars tomorrow.

• Another equivalent view is that we are playing an infinitely repeated game which
could terminate at any moment. Specifically, after each round, the game ends with
probability 1− δ, otherwise it continues. Then given an infinite sequence of outcomes
leading to utility (x1, x2, . . . ) for some player, its expected value if we terminate it in
this random way equals its δ-discounted value.

So, we imagine in infinitely repeated games that each player wants to maximize their δ-
discounted payoff.
Q: As δ increases, are people more patient, or less patient?

An important fact about this model of discounting is the following:

Theorem 8. Under δ-discounted payoffs for any fixed 0 < δ < 1, for any infinitely repeated
finite game, the strategy profile s is a subgame-perfect equilibrium if and only if it satisfies
the one-deviation property.

We give a proof in the appendix to the lecture notes. It uses the fact that the payoffs are
“continuous:” on every infinite path, for every ε > 0, there is a point on the path so that all
payoffs below it differ by at most ε for every player.

We want to apply this to the infinitely-repeated Prisoners’ Dilemma, in order to give
a plausible reason for people to repeatedly cooperate. As we saw last lecture, a subgame-
perfect equilibrium is specified by giving a complete strategy for each player that says what
to do in every round and in every situation.
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Exercise. Show that the following strategy profile s is not a subgame-perfect equilibrium
(not even a Nash equilibrium): each player always cooperates.

To get what we want, the easiest fix is to look at a strategy profile which provides a
credible threat.

Definition 9. The Grim Trigger (GT) strategy plays Q if your opponent has always played
Q, and plays F otherwise. The Modified Grim Trigger (MGT) strategy plays Q if both
players have always played Q, and plays F otherwise.

Note, the outcome of both (GT, GT) and (MGT, MGT) is that both players stay quiet
forever. But (GT, GT) is not quite an SPE:

Exercise. Show (GT, GT) is not a subgame-perfect equilibrium.

Proposition 10. (MGT, MGT) is a subgame-perfect equilibrium, if δ is large enough.

Proof. To show this, we use Theorem 8: we need now only to show this strategy profile has
the one-deviation property.

Consider a history h and a potential deviation by (WOLOG) player 1 at h. We need to
show that if player 1 does the opposite of the action specified by MGT at h, their payoff
does not increase.

Notice that the players have already accumulated some payoffs in the previous rounds.
Since this value is unaffected by future choices, we may ignore it in our calculations. Also,
we may multiply the utilities by δ−|h| where |h| is the length of h, in order to simplify the
calculations.

• If everybody stayed quiet so far in h, and player 1 plays according to MGT, then
everyone remains quiet. Player 1’s payoff is the δ-discounted average

2 + 2δ + 2δ2 + · · · .

If player 1 deviates then the next round is (F, Q) and all future rounds are (F, F). So
player 1’s payoff would be

3 + δ + δ2 + · · · .
Thus, provided 2/(1−δ) ≥ 2+1/(1−δ), i.e. δ ≥ 1/2, this is not a profitable deviation.

• The other case is that someone already defected in h. Then it is straightforward to see
that everyone will continue to fink according to MGT in h, whereas deviating leads to
a loss of utility (0 in one round for staying quiet, rather than 1).

This completes the proof.

There are other strategies that do well (and in some ways better than MGT) in practice.
There was a famous computerized tournament for the iterated Prisoner’s dilemma held by
Axelrod where tit-for-tat was the winner, beating out many more complex strategies:

Tit-for-tat: copy your opponent’s last move.
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This strategy does very well when δ = 1 and there is a finite ending time, since it never under-
performs its opponent by more than an additive constant. Another interesting variant, which
we’ve copied for use in this class in some past years, is to extend the Prisoners’ Dilemma to
3 players.

Exercise (Gibbons). Consider the following infinitely repeated extensive game for some
fixed 0 < δ < 1. Two players want to split $1. Player 1 moves first, and they propose to
a split of the dollar (two nonnegative numbers adding to 1, one for each player). Player 2
can either accept this offer (then each player gets utility equal to the specified amount) or
reject it. If player 2 rejects, then the $1 becomes $δ, and player 2 makes the next proposal
(splitting $δ), which player 1 can accept or reject. Next player 1 again proposes a split
of $δ2, etc., with the players alternating proposals. Find a subgame-perfect equilibrium of
this game. What are the players’ utilities if they play according to this subgame-perfect
equilibrium? (Hint: it can be useful to first think about a variant where after 2 rounds, the
dollar is automatically split (c, δ2 − c).)

Appendix: Proof of Theorem 8

As in finite games, SPEs trivially have the one-deviation property; we need to show the other
direction.

Take some s which satisfies the one-deviation property and assume for the sake of con-
tradiction that it is not an SPE. So ui(h(s′i, s−i)) > ui(h(s)) for some h, i, and s′i. Let
x = ui(h(s′i, s−i)) and y = ui(h(s)), so x > y.

Since all players but i are fixed, it is helpful to ignore them: thus we get a game tree
where the only player making a decision at each node is player i.

Let the old value of a node h̃ be v(h̃) := ui(h̃(s)) and its new value be v′(h̃) := ui(h̃(s′i)).
Let (h = h0, h1, h2, . . . , ) be the sequence of nodes traversed in the tree starting from h

when player i plays according to s′i. We have v′(h0) = v′(h1) = v′(h2) = · · · = x since this is
the utility to player i using s′i starting from h.

Since s satisfies the one-deviation property, even if they modify si by playing s′i(h0) at
h0, their utility does not increase. So v(h1) ≤ v(h0). Likewise, even if they modify si by
playing s′i(h1) at h1, their utility does not increase, so v(h2) ≤ v(h1). Continuing, we get
v(hj) ≤ v(h) = y for all j.

Notice that the new and old outcomes hj(s
′
i, s−i) and hj(s) are the same for at least

the first j rounds. Since we are using δ-discounted payoffs, this implies that as j → ∞,
the difference in the utilities between the new and old outcomes tends to zero. But this
contradicts that their difference is at least v′(hj) − v(hj) ≥ x − y which is a fixed positive
number.
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