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Multiplayer Games

Players i = 1...n

each with a finite set of pure strategies Ai

for simplicity we will assume that the action chosen by player i
ai ∈ {0, 1}, (binary actions)
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Normal Form

The payoffs to player i are given by a matrix Mi

This matrix is indexed by a joint action ~a ∈ {0, 1}n

The value Mi(~a) (wlog ∈ [0, 1]) is the payoff for player i if players
play the joint action ~a
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Normal Form (mixed strategies)

In our binary setting a mixed strategy for player i is given by the
probability pi ∈ [0, 1] that the player will play 0

The expected payoff to player i from the joint mixed strategy ~p is
then defined as

Mi(~p) = E~a∼~p[Mi(~a)]
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ε-

Nash Equilibrium

~p[i : p̄i ] denotes the joint mixed strategy which is the same as ~p
except that player i deviates to p̄i

Then ~p is a

ε-

NE for the game iff ∀i , p̄i ∈ [0, 1]

Mi(~p)

+ε

≥ Mi(~p[i : p̄i ])
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Issues with Normal Form

Assuming n players and 2 actions, as we have here, leads to the need
for : n matrices Mi (one for each player) each of size 2n

Furthermore tabular form fails to capture structure inherently present
in the game
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Structure in Games

It is assumed that the payoff Mi for player i is a function of all the
components aj , (j = 1....n) in the joint action vector ~a

However the payoff for player i may be dependent only on the actions
of a subset of players N(i)

−→ conditional independence payoff assumption
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Cond. Ind. Payoff
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Graphical Games

An undirected graph G

I n vertices one for each player i

I N(i) is the neighborhood of player i
−→ there is an edge (i , j),∀j ∈ N(i)
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Graphical Games Payoff Representation

Local payoff matrix for M̄i depends only on the actions taken by
players in N(i)

Mi(~a) = M̄i(~a[N(i)])
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Representation Complexity
|N(i)| is the degree of local interaction for node i

The maximum k over the graph k = maxi |N(i)| defines the
complexity of the representation O(n2k)

F

D

E

A

B

C

G

Michael Kearns () Graphical Games May 23, 2011 12 / 30



Why this is cool

I Computational Specific topological properties can be used to
yield effficient algorithms for finding Nash equilibria

I Structural

Provide a tool for examining whether the topology
of G implies structural properties of the equilibria

I Interdisciplinary

Allow the use of powerful methods from
different fields (e.g. machine learning , statistics)
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Tree Graphical Games
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Tree Games

←− Parents of V −→U1

V

U2

W
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Tree Games

←− V ’s Child

U1

V

U2

W
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Tree Games

GV → the subgraph rooted at

U1

V

U2

W
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Tree Games

GV → the subgraph rooted at

MV
W=w → payoff matrices of

GV with W = w

U1

V
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W
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Tree Games

GV → the subgraph rooted at

MV
W=w → payoff matrices of

GV with W = w

A NE for (GV ,MV
W=w ) is a

cond. “upstream” equilibrium
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TreeNash Algorithm

Two pass algorithm.

I Downstream

Calculates cond. equilibria and passes “witness”
lists down the tree

I Upstream

Selects “witness” lists going from the root to the
leaves and calculates a NE
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TreeNash Downstream
Each parent sends a table T (V ,Ui) such that T (v , ui) = 1 iff there
exists a NE in (GU ,MU

V=v ) for which Ui = ui

T (V ,U1)

U1

V
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W
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TreeNash Downstream
If Ui is a leaf then T (v , ui) = 1 iff ui is a best response to v

T (V ,U1)

U1

V

U2

W
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TreeNash Downstream
T (w , v) = 1 iff v is a best response to w and T (v , ui) = 1,∀i

~u is then added to the “witness” list of T (w , v)

U1

V

U2

W

T (W ,V )
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TreeNash Downstream
At the root, the algorithm computes the table T (W ) where
T (w) = 1 iff w is a best response to ~v and T (w , vi) = 1,∀i

U1

V

U2

WT (W )
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TreeNash Upstream
The algorithm chooses a value w for which T (w) = 1, then passes
this value plus the witness v to its parent (instructing it to “play“ v)
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W

w , v
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TreeNash Upstream

V receives w , v and sends the witness ~u of T (w , v) = 1 to its parents

U1

V

U2

W

v , u1 v , u2
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TreeNash (A slight issue)

The actions (u, v ,w ...) are continuous variables → Can T (w , v) be
represented compactly?
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Approximate TreeNash

Discretization of the action space

Player i can now only play action qi ∈ {0, τ, 2τ, ..., 1}

Algorithm takes an extra input parameter ε

At each node the ε-best response is computed (τ = O(ε/d))

Theorem Approximate TreeNash computes a ε-NE for the game
(G ,M) in time polynomial in the representation of (G ,M)
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Exact TreeNash ?

Yes! However its complexity is exponential in the number of vertices
of G

Computing an exact equilibrium in time polynomial in the size of the
tree remains an open issue
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The End
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