Graphical Games

Michael Kearns

May 23, 2011

M.Kearns, M. Littman, and S.Singh

Graphical Models for Game Theory

Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence

Multiplayer Games

Players $i = 1...n$

each with a finite set of **pure** strategies A_i

for simplicity we will assume that the action chosen by player *i* $a_i \in \{0,1\}$, (binary actions)

The payoffs to player *i* are given by a matrix M_i

This matrix is indexed by a joint action $\vec{a} \in \{0,1\}^n$

The value $M_i(\vec{a})$ (wlog \in [0, 1]) is the payoff for player *i* if players play the joint action \vec{a}

Normal Form (mixed strategies)

In our binary setting a mixed strategy for player i is given by the probability $p_i \in [0, 1]$ that the player will play 0

The expected payoff to player *i* from the joint mixed strategy \vec{p} is then defined as

$$
M_i(\vec{p})=E_{\vec{a}\sim\vec{p}}[M_i(\vec{a})]
$$

Nash Equilibrium

 $\vec{p}[i:\bar{p}_i]$ denotes the joint mixed strategy which is the same as \vec{p} except that player i deviates to \bar{p}_i

Then $\vec{\rho}$ is a $\;\;\mathsf{NE}\;$ for the game iff $\forall i, \bar{p_i} \in [0,1]$

 $M_i(\vec{p}) \geq M_i(\vec{p}[i:\bar{p}_i])$

ϵ -Nash Equilibrium

 $\vec{p}[i:\bar{p}_i]$ denotes the joint mixed strategy which is the same as \vec{p} except that player i deviates to \bar{p}_i

Then \vec{p} is a ϵ -NE for the game iff $\forall i, \vec{p}_i \in [0, 1]$

 $M_i(\vec{p}) + \epsilon \geq M_i(\vec{p}[i:\bar{p}_i])$

Issues with Normal Form

Assuming n players and 2 actions, as we have here, leads to the need for : n matrices M_i (one for each player) each of size 2^n

Issues with Normal Form

Assuming *n* players and 2 actions, as we have here, leads to the need for : n matrices M_i (one for each player) each of size 2^n

Furthermore tabular form fails to capture structure inherently present in the game

Structure in Games

- It is assumed that the payoff M_i for player i is a function of all the components $a_j, (j=1....n)$ in the joint action vector $\vec a$
- However the payoff for player i may be dependent only on the actions of a subset of players $N(i)$
- \rightarrow conditional independence payoff assumption

Cond. Ind. Payoff

Graphical Games

An undirected graph G

- \triangleright n vertices one for each player *i*
- \triangleright $N(i)$ is the neighborhood of player *i* \rightarrow there is an edge $(i, j), \forall j \in N(i)$

Graphical Games Payoff Representation

Local payoff matrix for \bar{M}_i depends only on the actions taken by players in $N(i)$

 $M_i(\vec{a}) = \overline{M}_i(\vec{a}[N(i)])$

Representation Complexity

 $|N(i)|$ is the degree of local interaction for node i

The maximum k over the graph $k = \mathsf{max}_i \, |N(i)|$ defines the complexity of the representation $O(n2^k)$

Why this is cool

- \triangleright **Computational** Specific topological properties can be used to yield effficient algorithms for finding Nash equilibria
- \triangleright Structural
- \blacktriangleright Interdisciplinary

Why this is cool

- \triangleright Computational
- \triangleright Structural Provide a tool for examining whether the topology of G implies structural properties of the equilibria
- \blacktriangleright Interdisciplinary

Why this is cool

- \triangleright Computational
- \triangleright Structural
- \triangleright Interdisciplinary Allow the use of powerful methods from different fields (e.g. machine learning , statistics)

Tree Graphical Games

Tree Games

TreeNash Algorithm

Two pass algorithm.

- \blacktriangleright Downstream
- \triangleright Upstream

TreeNash Algorithm

Two pass algorithm.

- \triangleright Downstream Calculates cond. equilibria and passes "witness" lists down the tree
- \triangleright Upstream

TreeNash Algorithm

Two pass algorithm.

- \triangleright Downstream
- \triangleright Upstream Selects "witness" lists going from the root to the leaves and calculates a NE

Each parent sends a table $T(V, U_i)$ such that $T(v, u_i) = 1$ iff there exists a NE in $(\,G^{\,U},\, M^{\,U}_{V=\nu})\,$ for which $\,U_{i}=\,u_{i}\,$

If U_i is a leaf then $\mathcal{T}({v},{u}_i)=1$ iff ${u}_i$ is a best response to ${v}$

 $T(w, v) = 1$ iff v is a best response to w and $T(v, u_i) = 1, \forall i$

 $T(w, v) = 1$ iff v is a best response to w and $T(v, u_i) = 1, \forall i$ \vec{u} is then added to the "witness" list of $T(w, v)$

At the root, the algorithm computes the table $T(W)$ where $T(w) = 1$ iff w is a best response to \vec{v} and $T(w, v_i) = 1, \forall i$

TreeNash Upstream

The algorithm chooses a value w for which $T(w) = 1$, then passes this value plus the witness v to its parent (instructing it to "play" v)

TreeNash Upstream

V receives w, v and sends the witness \vec{u} of $T(w, v) = 1$ to its parents

TreeNash (A slight issue)

The actions $(u, v, w...)$ are continuous variables \rightarrow Can $T(w, v)$ be represented compactly?

Approximate TreeNash

Discretization of the action space

Player *i* can now only play action $q_i \in \{0, \tau, 2\tau, ..., 1\}$

Approximate TreeNash

Discretization of the action space

Player *i* can now only play action $q_i \in \{0, \tau, 2\tau, ..., 1\}$

Algorithm takes an extra input parameter ϵ

At each node the ϵ -best response is computed $(\tau = O(\epsilon/d))$

Approximate TreeNash

Discretization of the action space

Player *i* can now only play action $q_i \in \{0, \tau, 2\tau, ..., 1\}$

Algorithm takes an extra input parameter ϵ

At each node the ϵ -best response is computed $(\tau = O(\epsilon/d))$

Theorem Approximate TreeNash computes a ϵ -NE for the game (G, M) in time polynomial in the representation of (G, M)

Exact TreeNash ?

Exact TreeNash

Yes! However its complexity is exponential in the number of vertices of G

Exact TreeNash

Yes! However its complexity is exponential in the number of vertices of G

Computing an exact equilibrium in time polynomial in the size of the tree remains an open issue

The End