Complexity in elections

Dejan Novakovic Game Theory and algorithms EPFL, 2011

History ...

• Elections are important

Manipulations

Manipulations (examples)

- "Spendthrift election", 1768 (Northamptonshire)
- California gubernatorial election, 2002
 - Riordan/Simon/Davis

- Canadian general election, 2004
 - Liberal Party was able to convince many New Democratic voters to vote Liberal in order to avoid a Conservative government)

What should we do?

Outline

- Gibbard-Satterthwaite theorem
- Manipulations and Computational complexity
- Bartholdi's rules
 - Computational resistance
- More of the complexity
- Concerns

Gibbard–Satterthwaite theorem 1/3

- Recall Arrow's theorem:
 - Claim 1: Unanimity Preserving (if X>Y and candidate X is preferred by all voters then Y is not selected)
 - Claim 2: Independent Irrelevant Alternatives (If every voter's preference between X and Y remains unchanged, then the group's preference between X and Y will also remain unchanged (even if voters' preferences between other pairs like X and Z, Y and Z, or Z and W change).)
 - Arrow's Theorem: If players are truthful, claims 1 and 2 are only satisfied in a dictatorial system!

Gibbard–Satterthwaite theorem 2/3

- <u>Theorem (GS)</u>: For three or more candidates, one of the following three things must hold for every voting rule:
 - The rule is dictatorial.
 - There is some candidate who can never win, under the rule.
 - The rule is susceptible to tactical voting.

Gibbard–Satterthwaite theorem 3/3

- Properties:
 - Candidate cannot win 🗵
 - Dictatorial rule 🗵
 - All voting systems which yield a single winner either are manipulable or do not meet the preconditions of the theorem.
- Conclusion:
 - Manipulation is always possible. There is no perfect voting system.

How hard is it, computationally, to find a manipulating ballot?

If it is computationally intractable to actually find out how to vote in order to manipulate successfully, then this may be deemed an acceptable risk!

Computational complexity

- An algorithm is considered formally efficient if it requires a number of computational steps that is at most polynomial in the size of the problem.
- If we find a polynomial time algorithm for any NPcomplete problem, then we find for all (TSP, 3d matching ...).

Complexity of Manipulation in Voting

- Bartholdi, Tovey and Trick (1989)
 - "... manipulation is in fact easy for a range of commonly used voting rules ..."
 - Given: A set of candidates C, a set V of nonmanipulative voters, a set R of manipulative voters with $V \cap R = \emptyset$, and a distinguished member c in C.
 - Question: Is there a way to set the preference lists of the voters in R such that, under election system S, C is a winner of election $(C, V \cup R)$?
 - If this can be answered within polynomial time, then the voting scheme is "easily manipulable".

Manipulating the Plurality Rule

- Recall:
 - Each voter submits a ballot with exactly one name. The candidate receiving the most votes wins.
- It's easy to manipulate (trivial):
 - Vote for w (w is the candidate to be made winner by means of manipulation). If manipulation is possible at all, this will work.
- It can be done in polynomial time.

Manipulating the Borda Rule

- Recall:
 - complete ranking of all k candidates
 - calculate points based on ordering
 - add up the points and rank the candidates
- It's easy to manipulate as well (greedy algorithm):
 - put w at the top of your declared preference ordering.
 - check if any of the remaining candidates can be put next into the preference ordering without preventing w from winning.
 - If yes, do so. If no, terminate and say that manipulation is impossible.
- It can be done in polynomial time.

Greedy-Manipulation 1/2

- Theorem (Bartholdi, 1989):
 - Greedy-Manipulation will find a preference order P that will make c a winner (or conclude that it is impossible) for any voting scheme that can represented as function $S(P) = C \rightarrow R$ that is both:
 - responsive: a candidate with the largest S(P, i) is a winner
 - monotone: for any two preference orders P and P' and for any candidate i, $\{j: iP'j\} \subseteq \{j: iPj\}$ implies that $S(P', i) \leq S(P, i)$.

<u>Corollary</u>:

 Any voting system that satisfies the conditions of Theorem, and for which S is evaluatable in polynomial time, can be manipulated in polynomial time.

Greedy-Manipulation 2/2

- <u>Sketch proof (Corollary)</u>:
 - Greedy-Manipulation executes within polynomial time since no more than n iterations are required, and each iteration requires no more than n evaluations of S (by monotonicity of S) with each evaluation of S requiring only polynomial time (by assumption).

- Examples:
 - Plurality: $S(P, i) = b_i + 1$ if i is ranked 1st, else = b_i
 - Borda: $S(P, i) = b_i + |\{j: iPj\}| + 1$

Computational Resistance

- Recall
 - Gibbard–Satterthwaite
- <u>Claim</u>:
 - There exists a voting scheme that is simultaneously:
 - single valued
 - non-dictatorial
 - easy to compute, but computationally difficult to manipulate.

Single Transferable Vote (STV)

- Description:
 - Voters submit ranked preferences for all candidates.
 - If one of the candidates is the 1st choice for over 50% of the voters, he wins.
 - Otherwise, the candidate who is ranked 1st by the fewest voters ("plurality loser") gets eliminated from the race.
 - Votes for eliminated candidates get transferred:
 - delete removed candidates from ballots and "shift" rankings (e.g. if 1st choice got eliminated, then 2nd choice becomes 1st).
- In practice (Ireland, Malta, Australia, Canada, Cambridge ...)

Intractability of Manipulating STV 1/2

- <u>Bartholdi 1991</u>: Manipulation of STV for electing a single winner is **NP**-complete.
- <u>Proof sketch</u>:
 - We need to prove NP-membership and NP-hardness.
 - winner determination can be done in polynomial time (# of rounds is limited)
 - if someone guesses a preference ordering to be used for manipulation, we only need to run the polynomial winner determination algorithm to check whether it worked

Intractability of Manipulating STV 2/2

- NP-hardness (3-Cover):
 - Instance: Sets S_1, \dots, S_m with $|S_i| = 3$; $S = \bigcup_{i=1}^m S_i$ with |S| = n.
 - Question: Is there an $I \subseteq \{1..m\}$ with |I| = n/3 and $\bigcup_{i \in I} S_i = S$?
 - The proof for NP-hardness works by reducing 3-C to the former: Given any instance of 3-C, we can construct an election which a manipulator can manipulate successfully iff he can solve the 3-C problem.
 - First define a long list of voter preferences
 - Make sure the one we don't want to win does not gain transferred votes
 - This induces complex relationships between entries in the manipulator's ranking
 - This turns out to correspond to 3-Cover (see paper for details).

More on the Complexity of Voting

- What else is there:
 - winner determination
 - bribery
 - controlling an election

Winner determination

- For a given voting rule, what is the complexity of computing the winner?
- Why is this important?
- Description (Dodgson rule):
 - A Dodgson winner is a candidate minimising the number of "switches" in the voters' linear preference orderings required to make that candidate a Condorcet winner.
- Checking whether a candidate's is a winner is NPcomplete.

Bribery

- similar to manipulation
- constructive/destructive
- outside agent
- <u>Given</u>: A set C of candidates, a set V of voters, a distinguished candidate c in C, and a nonnegative integer k.
- <u>Question</u>: Is it possible to change the preference lists of at most k voters such that, under election system S, c is a winner of election (C,V)?

Control

- changing the structure
- adding or removing (candidates or voters)
- constructive/destructive
- <u>Given</u>: A set C of original candidates, a pool D of potential additional candidates, a distinguished candidate c ∈ C, and a set V of voters with preferences over C ∪ D.
- <u>Question</u>: Is there a set D' ⊆ D such that, under election system S, c ∈ C is not a winner of the election having candidates C ∪ D' with the voters being V with the preferences of V restricted to C ∪ D'?

Concerns

- Manipulation is not an issue (complete information about P is never available).
- Very few among all are actually manipulable.
- Effective heuristic to manipulate an election even though manipulation is **NP**-complete.

Summary

- Complexity results:
 - winner determination, manipulation, bribery, control
 - winner determination should be computationally easy
 - for the manipulation, bribery, and control problems, intractability results are positive results.

References

- J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty of Manipulating an Election. Social Choice and Welfare, 1989
- J.J. Bartholdi III, and J.B. Orlin.
 Single Transferable Vote Resists Strategic Voting.
 Social Choice and Welfare, 1991
- P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe.

A Richer Understanding of the Complexity of Election Systems. Tech. Report, Dept. of CS, Universety of Rochester, 2006