Complexity in elections

Dejan Novakovic

Game Theory and algorithms
EPFL, 2011

History ...

- Elections are important

Manipulations

Manipulations (examples)

- "Spendthrift election", 1768 (Northamptonshire)
- California gubernatorial election, 2002
- Riordan/Simon/Davis
- Canadian general election, 2004
- Liberal Party was able to convince many New Democratic voters to vote Liberal in order to avoid a Conservative government)

What should we do?

Outline

- Gibbard-Satterthwaite theorem
- Manipulations and Computational complexity
- Bartholdi's rules
- Computational resistance
- More of the complexity
- Concerns

Gibbard-Satterthwaite theorem 1/3

- Recall Arrow's theorem:
- Claim 1: Unanimity Preserving (if $X>Y$ and candidate X is preferred by all voters then Y is not selected)
- Claim 2: Independent Irrelevant Alternatives (If every voter's preference between X and Y remains unchanged, then the group's preference between X and Y will also remain unchanged (even if voters' preferences between other pairs like X and Z, Y and Z, or Z and W change).)
- Arrow's Theorem: If players are truthful, claims 1 and 2 are only satisfied in a dictatorial system!

Gibbard-Satterthwaite theorem 2/3

- Theorem (GS): For three or more candidates, one of the following three things must hold for every voting rule:
- The rule is dictatorial.
- There is some candidate who can never win, under the rule.
- The rule is susceptible to tactical voting.

Gibbard-Satterthwaite theorem 3/3

- Properties:
- Candidate cannot win ${ }^{*}$
- Dictatorial rule 区
- All voting systems which yield a single winner either are manipulable or do not meet the preconditions of the theorem.
- Conclusion:
- Manipulation is always possible. There is no perfect voting system.

How hard is it, computationally, to find a manipulating ballot?

If it is computationally intractable to actually find out how to vote in order to manipulate successfully, then this may be deemed an acceptable risk!

Computational complexity

- An algorithm is considered formally efficient if it requires a number of computational steps that is at most polynomial in the size of the problem.
- If we find a polynomial time algorithm for any NPcomplete problem, then we find for all (TSP, 3d matching ...).

Complexity of Manipulation in Voting

- Bartholdi, Tovey and Trick (1989)
- "... manipulation is in fact easy for a range of commonly used voting rules ..."
- Given: A set of candidates C, a set V of nonmanipulative voters, a set R of manipulative voters with $\mathrm{V} \cap \mathrm{R}=\varnothing$, and a distinguished member c in C.
- Question: Is there a way to set the preference lists of the voters in R such that, under election system S, C is a winner of election $(C, V \cup R)$?
- If this can be answered within polynomial time, then the voting scheme is "easily manipulable".

Manipulating the Plurality Rule

- Recall:
- Each voter submits a ballot with exactly one name. The candidate receiving the most votes wins.
- It's easy to manipulate (trivial):
- Vote for w (w is the candidate to be made winner by means of manipulation). If manipulation is possible at all, this will work.
- It can be done in polynomial time.

Manipulating the Borda Rule

- Recall:
- complete ranking of all k candidates
- calculate points based on ordering
- add up the points and rank the candidates
- It's easy to manipulate as well (greedy algorithm):
- put w at the top of your declared preference ordering.
- check if any of the remaining candidates can be put next into the preference ordering without preventing w from winning.
- If yes, do so. If no, terminate and say that manipulation is impossible.
- It can be done in polynomial time.

Greedy-Manipulation $1 / 2$

- Theorem (Bartholdi, 1989):
- Greedy-Manipulation will find a preference order P that will make c a winner (or conclude that it is impossible) for any voting scheme that can represented as function $S(P)=C \rightarrow R$ that is both:
- responsive: a candidate with the largest $S(P, i)$ is a winner
- monotone: for any two preference orders P and P^{\prime} and for any candidate $i,\left\{j: i P^{\prime} j\right\} \subseteq\{j: i P j\}$ implies that $S\left(P^{\prime}, i\right) \leq S(P, i)$.
- Corollary:
- Any voting system that satisfies the conditions of Theorem, and for which S is evaluatable in polynomial time, can be manipulated in polynomial time.

Greedy-Manipulation 2/2

- Sketch proof (Corollary):
- Greedy-Manipulation executes within polynomial time since no more than n iterations are required, and each iteration requires no more than n evaluations of S (by monotonicity of S) with each evaluation of S requiring only polynomial time (by assumption).
- Examples:
- Plurality: $S(P, i)=b_{i}+1$ if i is ranked $1^{\text {st }}$, else $=b_{i}$
- Borda: $S(P, i)=b_{i}+|\{j: i P j\}|+1$

Computational Resistance

- Recall
- Gibbard-Satterthwaite
- Claim:
- There exists a voting scheme that is simultaneously:
- single valued
- non-dictatorial
- easy to compute, but computationally difficult to manipulate.

Single Transferable Vote (STV)

- Description:
- Voters submit ranked preferences for all candidates.
- If one of the candidates is the $1^{\text {st }}$ choice for over 50% of the voters, he wins.
- Otherwise, the candidate who is ranked $1^{\text {st }}$ by the fewest voters ("plurality loser") gets eliminated from the race.
- Votes for eliminated candidates get transferred:
- delete removed candidates from ballots and "shift" rankings (e.g. if $1^{\text {st }}$ choice got eliminated, then $2^{\text {nd }}$ choice becomes $\left.1^{\text {st }}\right)$.
- In practice (Ireland, Malta, Australia, Canada, Cambridge ...)

Intractability of Manipulating STV 1/2

- Bartholdi 1991: Manipulation of STV for electing a single winner is NP-complete.
- Proof sketch:
- We need to prove NP-membership and NP-hardness.
- winner determination can be done in polynomial time (\# of rounds is limited)
- if someone guesses a preference ordering to be used for manipulation, we only need to run the polynomial winner determination algorithm to check whether it worked

Intractability of Manipulating STV 2/2

- NP-hardness (3-Cover):
- Instance: Sets S_{1}, \ldots, S_{m} with $\left|S_{i}\right|=3 ; S=\cup_{i=1}^{m} S_{i}$ with $|S|=n$.
- Question: Is there an $I \subseteq\{1 . . m\}$ with $|I|=n / 3$ and $\cup_{i \in I} S_{i}=S$?
- The proof for NP-hardness works by reducing 3-C to the former: Given any instance of $3-C$, we can construct an election which a manipulator can manipulate successfully iff he can solve the 3-C problem.
- First define a long list of voter preferences
- Make sure the one we don't want to win does not gain transferred votes
- This induces complex relationships between entries in the manipulator's ranking
- This turns out to correspond to 3-Cover (see paper for details).

More on the Complexity of Voting

- What else is there:
- winner determination
- bribery
- controlling an election

Winner determination

- For a given voting rule, what is the complexity of computing the winner?
- Why is this important?
- Description (Dodgson rule):
- A Dodgson winner is a candidate minimising the number of "switches" in the voters' linear preference orderings required to make that candidate a Condorcet winner.
- Checking whether a candidate's is a winner is NPcomplete.

Bribery

- similar to manipulation
- constructive/destructive
- outside agent
- Given: A set C of candidates, a set V of voters, a distinguished candidate c in C , and a nonnegative integer k.
- Question: Is it possible to change the preference lists of at most k voters such that, under election system S, c is a winner of election (C, V)?

Control

- changing the structure
- adding or removing (candidates or voters)
- constructive/destructive
- Given: A set C of original candidates, a pool D of potential additional candidates, a distinguished candidate $\mathrm{c} \in \mathrm{C}$, and a set V of voters with preferences over $\mathrm{C} \cup \mathrm{D}$.
- Question: Is there a set $\mathrm{D}^{\prime} \subseteq \mathrm{D}$ such that, under election system $S, c \in C$ is not a winner of the election having candidates $C \cup \mathrm{D}^{\prime}$ with the voters being V with the preferences of V restricted to $\mathrm{C} \cup \mathrm{D}^{\prime}$?

Concerns

- Manipulation is not an issue (complete information about P is never available).
- Very few among all are actually manipulable.
- Effective heuristic to manipulate an election even though manipulation is NP-complete.

Summary

- Complexity results:
- winner determination, manipulation, bribery,
- winner determination should be computationally easy
- for the manipulation, bribery, and control problems, intractability results are positive results.

References

- J.J. Bartholdi III, C.A. Tovey, and M.A. Trick.

The Computational Difficulty of Manipulating an Election. Social Choice and Welfare, 1989

- J.J. Bartholdi III, and J.B. Orlin. Single Transferable Vote Resists Strategic Voting. Social Choice and Welfare, 1991
- P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe.

A Richer Understanding of the Complexity of Election Systems. Tech. Report, Dept. of CS, Universety of Rochester, 2006

