
Game Theory and Algorithms∗

Exercises 1

To discuss in class on March 3, 2011

Note: there are a lot of problems here, you are not required to finish them all, but please
challenge yourself! You should solve at least 3 of them well enough to be prepared to discuss
them in class.

1 Lecture 1

Exercise. In IteratedElimination, it may happen at a given point in time that there
are several possible choices of dominated strategies to eliminate. Prove that the final result
of the algorithm is independent of the choice made in each iteration.

Exercise. (Challenge exercise) A linear inequality system {x ∈ Rn : 0 ≤ xi ≤ 1 for i =
1, . . . , n and Ax ≥ b} consists of a matrix A ∈ Rm×n, a vector x of n real variables, and
a vector b ∈ Rn. (Each row Ai, bi gives a linear constraint

∑
i Aijxj ≥ bj.) The simplex

algorithm can be used to determine whether a given linear inequality system has any solution.
Now, consider the quantified linear inequality system

∃x1 ∈ [0, 1]∀x2 ∈ [0, 1]∃x3 ∈ [0, 1]∀x4 ∈ [0, 1] · · · : (Ax ≥ b).

Give an algorithm to determine whether a quantified linear inequality expression of this form
is true or false. (Hint 1: it won’t be a polynomial-time algorithm. Hint 2: convert it to a
game where the “∃ player” tries to make the statement true and the “∀ player” tries to
make the statement false. Hint 3: show that the ∃ player can assume the ∀ player only ever
chooses the values {0, 1}.)

2 Lecture 2

Exercise. Show that when we perform iterated elimination of strictly dominated strategies,
all Nash equilibria survive (i.e., for every Nash equilibrium a and each player i, the algorithm
never deletes action ai).

∗ For a course given by David Pritchard at EPFL, Lausanne.

1



Exercise. In an election, there are 2k players: k of them support the candidate A, and k of
them support the other candidate B. Each player can Vote or Abstain. The candidate with
the largest number of voting supporters wins the election (they tie if they have the same
number). Each voter gets a payoff of +2 if their candidate wins, 0 in a tie, and −2 if their
candidate loses. Since the voters are lazy, their utility incurs a charge of −1 if they vote. (So
each player’s utility function can take on 6 values, the best is +2 (winning without voting),
and the worst is −3 (voting and losing).) Find the Nash equilibria of this game.

Exercise. Consider the same game with 3 players, where A has 2 supporters and B has
1 supporter. What are the Nash equilibria? (Hint: it is qualitatively different from the
previous exercise.)

Exercise. In Bertrand duopoly,

1. Show that (c, c) is a Nash equilibrium.

2. Show that (p1, p2) is not a Nash equilibrium if p1 < c or p2 < c.

3. Show that (p1, p2) is not a Nash equilibrium if p1 = c and p2 > c (or vice-versa).

4. Show that (p1, p2) is not a Nash equilibrium if p1 > c and p2 > c.

3 Lecture 3

Exercise. In Hotelling’s game for two players, show there are no Nash equilibria other than
(0.5, 0.5). (We already showed in class that (0.5, 0.5) is a Nash equilibrium.)

Exercise. In Hotelling’s game for three players, show that there is no Nash equilibrium of
the form (x, x, x); find a Nash equilibrium of the form (x, y, y).

Exercise. Show that the following randomized mechanism is truthful in expectation (i.e., if
each player wants to maximize the expected value of their utility, then ai = ti is a weakly
dominant strategy): pick i uniformly at random from {1, . . . , n}, and then set p = ai. How
does the expected social welfare −

∑
i |ti − p(t)| of this mechanism compare to the median

mechanism?

Exercise. Consider a two-person auction with v1 > v2. Show that a first-price auction is
not truthful, by showing that (v1, v2) is not a Nash equilibrium. Show that depending on
how we break ties, there may be zero, one, or many NE.
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