
Game Theory and Algorithms∗

Exercises 5 (Optional)

To discuss in class on May 23, 2011

Lecture 15

Exercise. (a) Show that the Borda Count satifies the Condorcet loser criterion: if a can-
didate A strictly loses in pairwise comparison with every other candidate, then A is not
the Borda winner. (b) Using part (a), show that Borda never strictly opposes all pairwise
comparisons : there is always at least one pair of candidates A,B such that at least half of
voters prefer A to B, and such that A gets at least as many points as B under Borda.

Exercise. Following up on the previous exercise: if c determines a point-based voting system,
and c satisfies the Condorcet loser criterion, then prove c is essentially equivalent to the Borda
count, in the sense that c1, c2, . . . is an arithmetic sequence. (Hint: get a contradiction by
focusing on a candidate who will violate the Condorcet loser criterion, and “average out”
the other candidates.)

Exercise. Prove the stronger version of Arrow’s theorem where we have 3 or more candi-
dates, and where the output of the mechanism is allowed to be a weak order.

Lecture 16

Exercise (Done in class). Draw a directed graph whose vertex set is the candidates; when-
ever A is preferred to B by a majority of voters, draw a directed edge from A to B. What
conditions in this graph are necessary and sufficient for candidate C to be electable by
iterated pairwise elimination votes?

Exercise. In the Schulze method, show that if p[A,B] > p[B,A] and p[B,C] > p[C,B],
then p[A,C] > p[C,A].

∗ For a course given by David Pritchard at EPFL, Lausanne.
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Exercise. Assume that the labels d[·, ·] are distinct; no label appears more than once. (One
imagines this is likely to occur when the number of voters is sufficiently large compared to the
number of candidates.) Show that the Schulze method produces no ties: p[A,B] 6= p[B,A]
for all A,B.

Exercise. (a) Give an example with three candidates where the output of the Schulze
method gives A > B = C = A (so the Schulze method gives a quasi-transitive order, but
not a weak linear order). (b) Give an example with four candidates where the output of the
Schulze method gives A > B = C > D = A.

Exercise. Consider the case that the candidates are nodes on an undirected tree (rather
than a line). A voter i is said to have weakly single-peaked preferences if for some node ri,
and all nodes y, and all nodes x between ri and y on the tree, voter i’s preferences amongst
these pairs satisfy ri ≥i x ≥i y. See Figure 1 for an example. Prove that there is a node C

ri

x

y

x′

y′

Figure 1: If a voter has weakly single-peaked preferences with peak ri, and the tree of
candidates is as shown, then voter i’s preferences must include ri ≥ x ≥ y and ri ≥ x′ ≥ y′.

such that for all x, at least half of voters prefer C ≥i x (a sort of weak Condorcet winner).
Hints: the location of C can be determined as a function of r1, r2, . . . , rn; it may be helpful
to first solve the special case that the tree is a line.

Exercise (A false generalization). If we allow weakly single-peaked preferences on a line,
show Condorcet cycles can occur. Specifically, for three candidates on a line A,B,C, give
weakly single-peaked preferences for some voters which give rise to a Condorcet cycle. (In
this setting, directed edge X → Y means more voters prefer X > Y pairwise than Y > X.)

Exercise (An algorithmic aside: Bartholdi & Trick). If we are given the linear ordering of
candidates, it is easy to check whether a given set of voter preferences are all single-peaked.
However, what if we are not given the ordering of candidates? We could approach this by
just testing all k! possible orderings of candidates to see if any give rise to single-peaked
preferences, but is there a polynomial-time algorithm? Show that the answer is “yes” by
using a known polynomial-time subroutine for the following problem:
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The Consecutive-Ones Problem

Input: A matrix of 0s and 1s

Output: Does there exist a permutation of the columns, so that in every row, all of the
1s are consecutive?

Lecture 17

Exercise. Modify Pigou’s example by replacing the bottom function with a power function,
delayb(z) = zc. What lower bound does Pigou’s bound give on the price of anarchy? How
does this change as c→∞?

Exercise (Short but important). Using the fact that the price of anarchy is at most 4/3,
show that the factor 4/3 is the worst that can arise in Braess’ paradox, for nondecreasing
affine delay functions.

Exercise. Show that all potential functions Φ for a given potential game differ only by a
constant.

Lecture 18

Exercise. Show that if all edge delay functions are nondecreasing nonnegative affine func-
tions, then the Price of Stability is at most 2. What bound can you get if each edge delay
function is a quadratic of the form z 7→ aez

2 + bez + ce for ae, be, ce ≥ 0?

Exercise. Let f be a socially optimal flow. The unfairness of the flow is the ratio

max{
∑
e∈P

delaye(fe) | fP > 0}/min{
∑
e∈P

delaye(fe) | fP > 0}.

What is the unfairness for a Nash flow? Show that for affine nonnegative nondecreasing
delay functions, the unfairness is at most 2.

Exercise. In this exercise, you will prove the stronger bound of 4/3 on the price of anarchy
for nonnegative nondecreasing affine delay functions.

1. Let f ∗ be a flow. Pin the edge delays at constants delaye(f
∗
e ). Show that f ∗ was an

equilibrium flow for the original delays iff it is an optimal flow for the new constant
delays. In other words, show f ∗ is Nash iff for all other flows f ,∑

e

f ∗e delaye(f
∗
e ) ≤

∑
e

fedelaye(f
∗
e ).
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2. Show that for any nonnegative nondecreasing affine delay function d(z),

rd(r) ≤ 4

3
(xd(x) + (r − x)d(r))

for 0 ≤ r, x ≤ 1.

3. Show that for these delay functions, the price of anarchy is at most 4/3.

Exercise. Consider any class of nonnegative nondecreasing delay functions which include
all of the nonnegative constant cost functions. Let α be minimal such that for all functions
d from this class and all 0 ≤ r, x ≤ 1,

rd(r) ≤ α(xd(x) + (r − x)d(r)).

By the previous exercise, the price of anarchy for instances with this class of delay functions
is at most α. Show that in fact the price of anarchy is exactly α.

Lecture 19

Exercise. Split and run is an impartial combinatorial game. Initially, there are two piles of
counters of sizes m and n. On your turn, you must take away one of the piles and split the
other pile into two nonempty piles. So every position can be written in the form (i, j) where
i and j are the sizes of the two current piles; for example,

A(3, 5) = {(1, 2), (2, 1), (1, 4), (2, 3), (3, 2), (4, 1)}.

You can easily see that the game always ends at position (1, 1). Classify (with proof), for all
pairs (m,n) of positive integers, whether the position (m,n) is a P-position or anN -position.

Exercise. Let k and s1, s2, . . . , sk be positive integers, and n a nonnegative integer. The
subtraction game Sn(s1, s2, . . . , sk) is an impartial combinatorial game defined as follows: we
start with n coins, each player must remove s1 or s2 or . . . or sk coins from the pile on their
turn, and the last player to move wins. (For example, the 10-coin game is S10(1, 2).)

1. For each n ≥ 0, determine whether Sn(2, 4, 7) is a P-position or an N -position.

2. Suppose k and s1, . . . , sk are fixed. Show that the set

{n | Sn(s1, . . . , sk) is a P-position}

is eventually periodic. (Definition: a set S is eventually periodic if there exist integers
p (the period) and s so that for all i ≥ s, we have i ∈ S ⇔ i+ p ∈ S.)

Exercise (Moore). Find a Nim-like rule to determine winning and losing (P ,N ) positions
in the following game: like Nim, there are several piles of counters, two players alternate
turns and the last player to move wins; on your turn you can either remove any number of
counters from one pile and (unlike Nim) you can, optionally, remove any number of counters
from a second pile.
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Exercise (Slither). Slither is a game played on an undirected graph. The first player begins
by placing a marker on any node v1. Then, the second player slides the marker to any
node v2 adjacent to v1. The players continue alternating, each time sliding to a vertex vi+1

adjacent to vi, and we also require that the vi are distinct, i.e. no node can be visited more
than once. The first player unable to move loses.

1. Show that if the graph has a perfect matching, then player 2 has a winning strategy.

2. (Harder) Show that if player 2 has a winning strategy, the graph has a perfect matching.
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