Regret Minimization: A New Solution Concept Work based on an article from Joseph Y. Halpern and Rafael Pass, Cornell University, 2009

Jean-Benoît Rossel

Game Theory and Algorithms

May 19th, 2011

・ロト ・御ト ・ヨト ・ヨト 三田

Nash Equilibrium, a few examples Traveler's Dilemma Comments

Abstract

- Nash Equilibrium (NE): most commonly-used solution concept in game theory.
- Sometimes, NE gives unreasonable answers (Bertrand Duopoly, Centipede Game, Traveler's Dilemma).
- Why is it problematic?
- Presentation of a new solution concept, called Regret Minimization.
- Application of this concept to examples.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nash Equilibrium, a few examples Traveler's Dilemma Comments

Bertrand Duopoly

- Two firms produce a same good.
- There is a demand of 100 units, and each firm can pick any price p₁, p₂ ∈ {\$0,...,\$200}.
- Utility function for firm $i \ (i \in \{1,2\})$ is

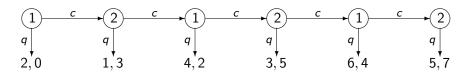
$$u_i(p_1, p_2) = \begin{cases} 100p_i & \text{if } p_i < p_{3-i}, \\ 50p_i & \text{if } p_i = p_{3-i}, \\ 0 & \text{if } p_i > p_{3-i}. \end{cases}$$

- Only NE: (0,0) and (1,1).
- Generally, higher prices are chosen!

イロト イ部ト イヨト イヨト 三日

Nash Equilibrium, a few examples Traveler's Dilemma Comments

Centipede Game



Three classes of strategies for player 1: [1], [3] and [5] (and also continue without stopping). Same for player 2 with [2], [4], [6].

[t] denotes the set of strategies where a player decides to stop at round t.

([1], [2]) is the only SPE of the game. But experimentally, people never quit the game at the first round.

イロト 人間ト イヨト イヨト

Traveler's Dilemma [Kaushik Basu, 1994]

- Two travelers have identical luggage that is lost by an airline.
- The airline offers to recompense them.
- Each traveler may ask for any dollar amount between 2 and 100 (without cooperation).
- If they ask for the same amount, that is what they get.
- Otherwise, they both get the lower amount *m*, with a reward of *p* for whoever chooses *m*, and a penalty of *p* for whoever chooses the too high amount (*p* ≥ 2).

 \hookrightarrow Utility of player 1 is $u_1(x, y) = \min(x, y) + p \cdot \operatorname{sgn}(y - x)$.

• Example with p = 2, $u_1(84, 92) = 86$, and $u_2(84, 92) = 82$.

(日) (圖) (E) (E) (E)

Nash Equilibrium, a few examples Traveler's Dilemma Comments

Payoff matrix for p = 2

	2	3	4	•••	98	99	100
2	(2,2)	(4,0)	(4,0)		(4,0)	(4,0)	(4,0)
3	(0,4)	(3,3)	(5, 1)	• • •	(5, 1)	(5, 1)	(5,1)
4	(0,4)	(1, 5)	(4, 4)		(6,2)	(6,2)	(6,2)
:		:		·		:	
98	(0,4)	(1, 5)	(2,6)		(98,98)	(100,96)	(100,96)
99	(0,4)	(1, 5)	(2, 6)	• • •	(96, 100)	(99, 99)	(101, 97)
100	(0,4)	(1, 5)	(2, 6)		(96, 100)	(97, 101)	(100, 100)

Utility of player 1 is $u_1(x, y) = \min(x, y) + p \cdot \operatorname{sgn}(y - x)$.

What would you ask for?

(日) (圖) (E) (E) (E)

Nash Equilibrium for Traveler's Dilemma

- People usually are interested in high amounts... So player 1 could ask for 100, and think player 2 will do the same.
- But if he supposes that player 2 will ask for 100, player 1 would have better to ask for 99.
- By knowing this, player 2 should ask for 98.
- By knowing this, player 1 should ask for 97.
- ...
- After iterated deletion of weakly dominant strategies, (2, 2) is the only NE of this game!
- But would a reasonable person choose 2? Even a game theorist?

イロン イ理と イヨン ・

Some problems with Nash Equilibrium

- NE requires mutual knowledge of rationality.
- NE implicitly assumes that the players know what strategy the other players are using.
- Why should a player assume that the other players will choose their part of NE?
 - \hookrightarrow Unreasonable, especially in one-shot game!
- What should we do if there is more than one NE?
- Goal: capture the intuition that a player wants to do well no matter what the other players do.

イロン イ理と イヨン ・

Regret Minimization

A few notations:

- $S_i = \text{set of strategies for player } i$,
- $S_{-i} = \prod_{j \in \{1,...,n\} \setminus \{i\}} S_j$ = set of strategies for all players except i,
- $u_i : S_i \times S_{-i} \to \mathbb{R}$ = payoff function for player *i*.

We can define now, for $a_i \in S_i$,

- $regret(a_i|a_{-i}) = \max_{a \in S_i} u_i(a, a_{-i}) u_i(a_i, a_{-i}), \forall a_{-i} \in S_{-i},$
- $regret(a_i) = \max_{a_{-i} \in S_{-i}} regret(a_i | a_{-i}).$
- *Minimax regret rule*: choose the action *a* that has the smallest regret.
 - \hookrightarrow minimize the "I wish I had chosen a' instead of a" feeling.

Definition A first example Deletion Operators Application to Bertrand Duopoly and Centipede Game

Application to Traveler's Dilemma

Step 1: We suppose that $p \in \{2, ..., 49\}$ and that players only use pure strategies $a_1, a_2 \in \{2, ..., 100\}$.

• If $a_1 > a_2$, player 1 gets $a_2 - p$, he could have won $a_2 - 1 + p$ (or a_2 if $a_2 = 2$).

$$\hookrightarrow regret(a_1|a_2) = \begin{cases} 2p-1 & \text{if } a_2 \neq 2, \\ p & \text{if } a_2 = 2. \end{cases}$$

• If $a_1 = a_2$, player 1 gets a_2 , he could have won $a_2 - 1 + p$ (or a_2 if $a_2 = 2$).

$$\hookrightarrow regret(a_1|a_2) = \begin{cases} p-1 & \text{if } a_2 \neq 2, \\ 0 & \text{if } a_2 = 2. \end{cases}$$

• If $a_1 < a_2$, player 1 gets $a_1 + p$, he could have won $a_2 - 1 + p$.

$$\Rightarrow$$
 regret $(a_1|a_2) = a_2 - a_1 - 1.$

Application to Traveler's Dilemma

Hence $regret(a_1) = \max\{2p - 1, 99 - a_1\}$, and all strategies between 100 - 2p and 100 minimize regret.

<u>Step 2</u>: Iteration of this process: we suppose that $p \in \{2, ..., 49\}$ and that players only use pure strategies a_1 and a_2 between 100 - 2p and 100. We can see that

- regret(100 2p) = 2p 1,
- regret(100 2p + 1) = 2p 2,
- $regret(a_1) = 2p 1$ for all $a_1 > 100 2p + 1$.

<u>Conclusion</u>: 100 - 2p + 1 is the strategy that *survives iterated* regret minimization.

(日) (圖) (E) (E) (E)

Formal definition: Deletion Operator

- Let $S = S_1 \times \cdots \times S_n$ be a set of pure or mixed strategies.
- Let $\mathcal{D}: \mathcal{S} \to \mathcal{S}$ such that $\mathcal{D}(\mathcal{S}) \subseteq \mathcal{S}$.
 - \hookrightarrow strategy profiles in $\mathcal{S} \setminus \mathcal{D}(\mathcal{S})$ are deleted.

The set of strategy profiles that survive iterated deletion with respect to $\mathcal D$ and $\mathcal S$ is

$$\mathcal{D}^{\infty}(\mathcal{S}) = \bigcap_{k \ge 0} \mathcal{D}^k(\mathcal{S}),$$

where $\mathcal{D}^0(\mathcal{S}) = \mathcal{S}$, and $\mathcal{D}^{k+1}(\mathcal{S}) = \mathcal{D}\left(\mathcal{D}^k(\mathcal{S})\right)$.

(日) (圖) (E) (E) (E)

Regret Minimization as a Deletion Operator

We define now

- $\mathcal{RM}_i(\mathcal{S}) =$ set of strategies in \mathcal{S}_i that minimize regret with respect to \mathcal{S}_{-i} .
- $\mathcal{RM}(\mathcal{S}) = \mathcal{RM}_1(\mathcal{S}) \times \cdots \times \mathcal{RM}_n(\mathcal{S}).$

In a strategy profile that survives iterated regret minimization, a player is not making a best response to the strategies used by the other players since, intuitively, he does not know what these strategies are. He chooses a strategy that ensures that he does reasonably well compared to the best he could have done, no matter what the other players do.

	Definition
Introduction	A first example
Regret Minimization	
6	Deletion Operators
Regret Minimization with mixed strategies	
	Application to Bertrand Duopoly and Centipede Game

Bertrand Duopoly

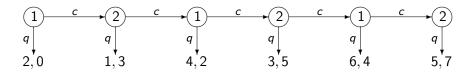
Recall: Utility function for firm
$$i (i \in \{1, 2\})$$
 is $u_i(p_1, p_2) = \begin{cases} 100p_i & \text{if } p_i < p_{3-i}, \\ 50p_i & \text{if } p_i = p_{3-i}, \\ 0 & \text{if } p_i > p_{3-i}, \end{cases}$ and $p_i \in \{0, \dots, 200\}$. Only NE are $(0, 0)$ and $(1, 1)$.

Suppose firm 1 chooses p_1 and firm 2 chooses p_2 . We have $regret(0) = 199 \cdot 100$. Suppose now that $p_1 \ge 1$.

- If $p_2 > p_1$, $regret(p_1|p_2) = (p_2 1 p_1)100$ (worst: $p_2 = 200$).
- If $p_1 = p_2$, $regret(p_1|p_2) = (p_2/2 1)100$ if $p_2 > 1$, and 0 if $p_2 = 1$.
- If $p_2 < p_1$, $regret(p_1|p_2) = (p_2 1)100$ (worst: $p_2 = p_1 1$). $\hookrightarrow regret(p_1) = \max((199 - p_1)100, (p_1 - 2)100)$.
 - \hookrightarrow Firm 1 minimizes regret by choosing 100 or 101 (same for firm 2).
- Second round: 100 is the unique strategy that survives iterated regret minimization.

Introduction Regret Minimization Regret Minimization with mixed strategies Application to Bertrand Duopoly and Centipede Game

Centipede Game



Recall: [t] denotes the set of strategies where a player decides to stop at round t.

For player 1, we have regret([1]|[2]) = 0, regret([1]|[4]) = 2, and regret([1]|[6]) = 4. Hence regret([1]) = 4.

Similarly, $regret([3]) = \max\{1, 0, 2\}$, $regret([5]) = \max\{1, 1, 0\}$. Hence, trying to continue until step 5 minimizes regret for him. **Continue without stopping gives also a regret of 1.**

(日) (圖) (E) (E) (E)

Computation of regret with respect to mixed strategy

Proposition. Let S_i and S_{-i} be sets of pure strategies, and $\Delta(S)$ be the set of probability distributions on S. Suppose that player i wants to use mixed strategy σ_i . Then

$$regret(\sigma_i) = \max_{a_{-i} \in S_{-i}} regret(\sigma_i | a_{-i}).$$

Proof. By definition, we have

$$regret(\sigma_i) = \max_{\sigma_{-i} \in \Delta(S_{-i})} regret(\sigma_i | \sigma_{-i}).$$

Moreover,

$$regret(\sigma_i|\sigma_{-i}) = \max_{\sigma'_i \in \Delta(S_i)} U(\sigma'_i, \sigma_{-i}) - U(\sigma_i, \sigma_{-i})$$

= $U(\sigma^*_i, \sigma_{-i}) - U(\sigma_i, \sigma_{-i})$
= $\sum_{a_{-i} \in S_{-i}} \left(\left(U(\sigma^*_i, a_{-i}) - U(\sigma_i, a_{-i}) \right) \sigma_{-i}(a_{-i}) \right).$

Basic property Traveler's Dilemma

End of the proof

Hence

$$\begin{aligned} \operatorname{regret}(\sigma_i | \sigma_{-i}) &\leq \sum_{a_{-i} \in \mathcal{S}_{-i}} \operatorname{regret}(\sigma_i | a_{-i}) \sigma_{-i}(a_{-i}) \\ &\leq \left(\max_{a_{-i} \in \mathcal{S}_{-i}} \operatorname{regret}(\sigma_i | a_{-i}) \right) \sum_{a_{-i} \in \mathcal{S}_{-i}} \sigma_{-i}(a_{-i}) \\ &= \max_{a_{-i} \in \mathcal{S}_{-i}} \operatorname{regret}(\sigma_i | a_{-i}). \end{aligned}$$

To summarize, we get

$$\begin{array}{lll} \textit{regret}(\sigma_i) &=& \max_{\sigma_{-i} \in \Delta(\mathcal{S}_{-i})}\textit{regret}(\sigma_i | \sigma_{-i}) \\ &\leq& \max_{a_{-i} \in \mathcal{S}_{-i}}\textit{regret}(\sigma_i | a_{-i}), \end{array}$$

so the inequality is actually an equality. This completes the proof.

イロト イヨト イヨト イヨト

An example with mixed strategies

Consider Traveler's Dilemma with p = 2. We saw that strategy 97 survives iterated regret minimization with pure strategies, and that regret(97) = 3.

Consider now the mixed strategy σ that puts probability 1/2 on 100, 1/4 on 99, 1/8 on 98, ..., and finally 1/2⁹⁸ on both 3 and 2. We want to compute $regret(\sigma)$, but by last proposition, it is sufficient to compute $regret(\sigma|a)$ for each pure strategy of the other player.

- Best response to a is a 1.
- Payoff with a 1 is a + 1.
- We need to compute $U(\sigma, a)$.

(日) (圖) (E) (E) (E)

Basic property Traveler's Dilemma

Computation of $regret(\sigma)$

$$U(\sigma, a) = (a-2) \cdot \mathbb{P}\{\sigma > a\} + a \cdot \mathbb{P}\{\sigma = a\} + \\ + \sum_{k=2}^{a-1} (k+2) \cdot \mathbb{P}\{\sigma = k\} \\ = (a-2) \sum_{k=a+1}^{100} (1/2)^{101-k} + a(1/2)^{101-a} + \\ + \sum_{k=3}^{a-1} (k+2)(1/2)^{101-k} + 4(1/2)^{98} \\ = (a-2)(1-2^{a-100}) + a(1/2)^{101-a} + 4(1/2)^{98} + \\ a \cdot 2^{a-101} - 3 \cdot 2^{-98} \\ = a-2 - a \cdot 2^{a-100} + 2^{a-99} + a \cdot 2^{a-100} + 2^{-98} \\ = a-2 + 2^{a-99} + 2^{-98}. \end{cases}$$

We will have then

$$regret(\sigma|a) = (a+1) - (a-2+2^{a-99}+2^{-98}) = 3-2^{a-99}-2^{-98} < 3 = regret(97).$$

Comments

- σ has non-zero probability on all actions,
- $regret(\sigma) < regret(97) = 3$.

 \hookrightarrow we can do better by putting some weight even on actions that do not minimize regret!

- Optimal mixed strategy is really hard to compute (Halpern and Pass suppose that there is a unique mixed strategy which minimizes regret).
- Regret Minimization is a nice concept, seems to give plausible results, but it can be hard to deal with.

イロト イ部ト イヨト イヨト 三日

Thank you for your attention!

イロト イヨト イヨト イヨト