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Abstract

Nash Equilibrium (NE): most commonly-used solution concept
in game theory.

Sometimes, NE gives unreasonable answers (Bertrand
Duopoly, Centipede Game, Traveler’s Dilemma).

Why is it problematic?

Presentation of a new solution concept, called Regret
Minimization.

Application of this concept to examples.
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Bertrand Duopoly

Two firms produce a same good.

There is a demand of 100 units, and each firm can pick any
price p1, p2 ∈ {$0, . . . , $200}.
Utility function for firm i (i ∈ {1, 2}) is

ui (p1, p2) =


100pi if pi < p3−i ,
50pi if pi = p3−i ,
0 if pi > p3−i .

Only NE: (0, 0) and (1, 1).

Generally, higher prices are chosen!

Regret Minimization: A New Solution Concept Jean-Benôıt Rossel 2
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Centipede Game

1n -

?
2, 0

2n -

?
1, 3

1n -

?
4, 2

2n -

?
3, 5

1n -

?
6, 4

2n
?

5, 7

c c c c c

q q q q q q

Three classes of strategies for player 1: [1], [3] and [5] (and also
continue without stopping). Same for player 2 with [2], [4], [6].

[t] denotes the set of strategies where a player decides to stop at
round t.

([1], [2]) is the only SPE of the game. But experimentally, people
never quit the game at the first round.
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Traveler’s Dilemma [Kaushik Basu, 1994]

Two travelers have identical luggage that is lost by an airline.

The airline offers to recompense them.

Each traveler may ask for any dollar amount between 2 and
100 (without cooperation).

If they ask for the same amount, that is what they get.

Otherwise, they both get the lower amount m, with a reward
of p for whoever chooses m, and a penalty of p for whoever
chooses the too high amount (p ≥ 2).

↪→ Utility of player 1 is u1(x , y) = min(x , y) + p · sgn(y − x).

Example with p = 2, u1(84, 92) = 86, and u2(84, 92) = 82.
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Payoff matrix for p = 2

2 3 4 · · · 98 99 100
2 (2, 2) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0)
3 (0, 4) (3, 3) (5, 1) · · · (5, 1) (5, 1) (5, 1)
4 (0, 4) (1, 5) (4, 4) (6, 2) (6, 2) (6, 2)
...

...
. . .

...
98 (0, 4) (1, 5) (2, 6) (98, 98) (100, 96) (100, 96)
99 (0, 4) (1, 5) (2, 6) · · · (96, 100) (99, 99) (101, 97)

100 (0, 4) (1, 5) (2, 6) (96, 100) (97, 101) (100, 100)

Utility of player 1 is u1(x , y) = min(x , y) + p · sgn(y − x).

What would you ask for?

Regret Minimization: A New Solution Concept Jean-Benôıt Rossel 5
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Nash Equilibrium for Traveler’s Dilemma

People usually are interested in high amounts... So player 1
could ask for 100, and think player 2 will do the same.

But if he supposes that player 2 will ask for 100, player 1
would have better to ask for 99.

By knowing this, player 2 should ask for 98.

By knowing this, player 1 should ask for 97.

...

After iterated deletion of weakly dominant strategies, (2, 2) is
the only NE of this game!

But would a reasonable person choose 2? Even a game
theorist?
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Some problems with Nash Equilibrium

NE requires mutual knowledge of rationality.

NE implicitly assumes that the players know what strategy the
other players are using.

Why should a player assume that the other players will choose
their part of NE?

↪→ Unreasonable, especially in one-shot game!

What should we do if there is more than one NE?

↪→ introduction of a new solution concept, Regret
Minimization.

Goal: capture the intuition that a player wants to do well no
matter what the other players do.
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Regret Minimization

A few notations:

Si = set of strategies for player i ,

S−i =
∏

j∈{1,...,n}\{i} Sj = set of strategies for all players
except i ,

ui : Si × S−i → R = payoff function for player i .

We can define now, for ai ∈ Si ,

regret(ai |a−i ) = maxa∈Si
ui (a, a−i )− ui (ai , a−i ), ∀ a−i ∈ S−i ,

regret(ai ) = maxa−i∈S−i
regret(ai |a−i ).

Minimax regret rule: choose the action a that has the
smallest regret.

↪→ minimize the “I wish I had chosen a′ instead of a” feeling.
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Application to Traveler’s Dilemma

Step 1: We suppose that p ∈ {2, . . . , 49} and that players only use
pure strategies a1, a2 ∈ {2, . . . , 100}.

If a1 > a2, player 1 gets a2 − p, he could have won a2 − 1 + p
(or a2 if a2 = 2).

↪→ regret(a1|a2) =

{
2p − 1 if a2 6= 2,
p if a2 = 2.

If a1 = a2, player 1 gets a2, he could have won a2 − 1 + p (or
a2 if a2 = 2).

↪→ regret(a1|a2) =

{
p − 1 if a2 6= 2,
0 if a2 = 2.

If a1 < a2, player 1 gets a1 + p, he could have won a2 − 1 + p.

↪→ regret(a1|a2) = a2 − a1 − 1.
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Application to Traveler’s Dilemma

Hence regret(a1) = max{2p − 1, 99− a1}, and all strategies
between 100− 2p and 100 minimize regret.

Step 2: Iteration of this process: we suppose that p ∈ {2, . . . , 49}
and that players only use pure strategies a1 and a2 between
100− 2p and 100. We can see that

regret(100− 2p) = 2p − 1,

regret(100− 2p + 1) = 2p − 2,

regret(a1) = 2p − 1 for all a1 > 100− 2p + 1.

Conclusion: 100− 2p + 1 is the strategy that survives iterated
regret minimization.

Regret Minimization: A New Solution Concept Jean-Benôıt Rossel 10
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Formal definition: Deletion Operator

Let S = S1 × · · · × Sn be a set of pure or mixed strategies.

Let D : S → S such that D(S) ⊆ S.

↪→ strategy profiles in S \ D(S) are deleted.

The set of strategy profiles that survive iterated deletion with
respect to D and S is

D∞(S) =
⋂
k≥0

Dk(S),

where D0(S) = S, and Dk+1(S) = D
(
Dk(S)

)
.
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Regret Minimization as a Deletion Operator

We define now

RMi (S) = set of strategies in Si that minimize regret with
respect to S−i .

RM(S) = RM1(S)× · · · × RMn(S).

In a strategy profile that survives iterated regret minimization, a
player is not making a best response to the strategies used by the
other players since, intuitively, he does not know what these
strategies are. He chooses a strategy that ensures that he does
reasonably well compared to the best he could have done, no
matter what the other players do.
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Bertrand Duopoly

Recall: Utility function for firm i (i ∈ {1, 2}) is ui (p1, p2) =

8<: 100pi if pi < p3−i ,
50pi if pi = p3−i ,
0 if pi > p3−i ,

and

pi ∈ {0, . . . , 200}. Only NE are (0, 0) and (1, 1).

Suppose firm 1 chooses p1 and firm 2 chooses p2. We have
regret(0) = 199 · 100. Suppose now that p1 ≥ 1.

If p2 > p1, regret(p1|p2) = (p2 − 1− p1)100 (worst:
p2 = 200).

If p1 = p2, regret(p1|p2) = (p2/2− 1)100 if p2 > 1, and 0 if
p2 = 1.

If p2 < p1, regret(p1|p2) = (p2 − 1)100 (worst: p2 = p1 − 1).

↪→ regret(p1) = max
(
(199− p1)100, (p1 − 2)100

)
.

↪→ Firm 1 minimizes regret by choosing 100 or 101 (same for
firm 2).

Second round: 100 is the unique strategy that survives
iterated regret minimization.
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Centipede Game

1n -

?
2, 0

2n -

?
1, 3

1n -

?
4, 2

2n -

?
3, 5

1n -

?
6, 4

2n
?

5, 7

c c c c c

q q q q q q

Recall: [t] denotes the set of strategies where a player decides to stop at round t.

For player 1, we have regret([1]|[2]) = 0, regret([1]|[4]) = 2, and
regret([1]|[6]) = 4. Hence regret([1]) = 4.

Similarly, regret([3]) = max{1, 0, 2}, regret([5]) = max{1, 1, 0}.
Hence, trying to continue until step 5 minimizes regret for him.
Continue without stopping gives also a regret of 1.
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Computation of regret with respect to mixed strategy

Proposition. Let Si and S−i be sets of pure strategies, and ∆(S)
be the set of probability distributions on S. Suppose that player i
wants to use mixed strategy σi . Then

regret(σi ) = max
a−i∈S−i

regret(σi |a−i ).

Proof. By definition, we have

regret(σi ) = max
σ−i∈∆(S−i )

regret(σi |σ−i ).

Moreover,

regret(σi |σ−i ) = maxσ′i∈∆(Si ) U(σ′i , σ−i )− U(σi , σ−i )

= U(σ∗i , σ−i )− U(σi , σ−i )
=

∑
a−i∈S−i

((
U(σ∗i , a−i )− U(σi , a−i )

)
σ−i (a−i )

)
.
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End of the proof

Hence

regret(σi |σ−i ) ≤
∑

a−i∈S−i
regret(σi |a−i )σ−i (a−i )

≤
(
maxa−i∈S−i

regret(σi |a−i )
)∑

a−i∈S−i
σ−i (a−i )

= maxa−i∈S−i
regret(σi |a−i ).

To summarize, we get

regret(σi ) = maxσ−i∈∆(S−i ) regret(σi |σ−i )

≤ maxa−i∈S−i
regret(σi |a−i ),

so the inequality is actually an equality. This completes the proof.
�
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An example with mixed strategies

Consider Traveler’s Dilemma with p = 2. We saw that strategy 97
survives iterated regret minimization with pure strategies, and that
regret(97) = 3.

Consider now the mixed strategy σ that puts probability 1/2 on
100, 1/4 on 99, 1/8 on 98, . . ., and finally 1/298 on both 3 and 2.
We want to compute regret(σ), but by last proposition, it is
sufficient to compute regret(σ|a) for each pure strategy of the
other player.

Best response to a is a− 1.

Payoff with a− 1 is a + 1.

We need to compute U(σ, a).
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Computation of regret(σ)

U(σ, a) = (a− 2) · P{σ > a}+ a · P{σ = a}+
+
∑a−1

k=2(k + 2) · P{σ = k}

= (a− 2)
∑100

k=a+1(1/2)101−k + a(1/2)101−a+

+
∑a−1

k=3(k + 2)(1/2)101−k + 4(1/2)98

= (a− 2)(1− 2a−100) + a(1/2)101−a + 4(1/2)98+
a · 2a−101 − 3 · 2−98

= a− 2− a · 2a−100 + 2a−99 + a · 2a−100 + 2−98

= a− 2 + 2a−99 + 2−98.

We will have then

regret(σ|a) = (a + 1)− (a− 2 + 2a−99 + 2−98)
= 3− 2a−99 − 2−98 < 3 = regret(97).
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Comments

σ has non-zero probability on all actions,

regret(σ) < regret(97) = 3.

↪→ we can do better by putting some weight even on actions
that do not minimize regret!

Optimal mixed strategy is really hard to compute (Halpern
and Pass suppose that there is a unique mixed strategy which
minimizes regret).

Regret Minimization is a nice concept, seems to give plausible
results, but it can be hard to deal with.
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Thank you for your attention!
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