Selfish Load Balancing
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A : n tasks

— 1, machines

cost(z) = la()
soclal cost= maximum load
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An example




An example




An example
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Qutline

® Pure Nash Equilibrium.
® |dentical machines

® Price of Anarchy.

® Transforming to NE.
® Uniformly related machines

® Price of Anarchy.

® Finding NE.



Proposition

® Every instance of load balancing has at least
one pure NE.



Proof

® An assighment A induces a sorted |oad
vector (A1, Az, ..., Apm)

® |fits not a NE then an agent could change
getting a smaller sorted vector.

Tuesday, May 24, 2011



ldentical machines
Price of Anarchy.



3 tasks

cost(A) = max(ws, wy + wo)
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Optimum cost




Optimum cost




4 tasks

opt(G) =3




4 tasks

cost(A) =4




4 tasks

cost(A) 4 2 2
opt(G) 3 3 m + 1
2
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Price of Anarchy

PoA(m) = max  max cost(P)
GeG(m) PeNash(G) opt(G)




Theorem

® Consider an instance G of the load

balancing game and an assighment A that is
a NE. Then

cost(4) < (2 ) ont(@

m + 1
Hence

2
m + 1

PoA(m) < 2



Tightness of bound

m tasks of size m
m tasks of size 1

cost(A) = 2m

m 00




Tightness of bound

m tasks of size m
m tasks of size 1

opt(G) =m + 1




Tightness of bound

m tasks of size m
m tasks of size 1

cost(A) 2m ) 2
opt(G) m—+1
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Proof

® Suppose the highest load is given to
machine |.

® This machine has at least 2 assignments.

® Consider the smallest assignment of
machine one (assume its assignment |).

1 1
l[; > 13 —wy > cost(A) — §cost(A) = §COS13(A)
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opt(G) >

Tuesday, May 24, 2011

2
cost(A) < T
m + 1

Proof

Zié[n] Wi

m
ZjE[m] l]

m

1
cost(A) + §cost(A)(m — 1)
m

(m + 1)cost(A)

2m

opt(G) = (2 - )opt(G)

m + 1



ldentical machines
Moving to a NE.



Changing to a NE.

® Max-weight best response policy: activate
an unsatisfied agent with the highest

weight.

® An activated agent then chooses a best
response.



Theorem

® Every agent gets activated at most once.
Hence we get to a NE in linear time.
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Proof

® VWhat does being satisfied mean?

® A best response doesn’t decrease the
minimum load.
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Proof

® Consider an agent that was already
activated and now is unsatisfied.
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Proof

® Consider an agent that was already
activated and now is unsatisfied.

k
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Uniformly related
machines.



Price of Anarchy.

® For a NE the following inequality is
satisfied:

logm

cost(A) = O ( ) opt(G)

loglogm

this bound is also tight.



Proof

cost(A) 1
opt(@) | = )

® This will prove it because

® \We will show that ¢ =

1
=1 (m) OE T

- log log m
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Proof

® Assume that the machines are labeled such
that s; > so > s5... > s,,

® [, =max{k:l; > kxopt(G)Vi <k}

— -

C

c—1
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Proof

® [r=max{k:l; >ixopt(G)Vi <k} ={1,2,...Ly}
® LkZ(k—l—l)Lk+1(O§]{7§C—2)
® Lc—l > 1

® m=L=Ly>(c—1)!=TI(c) and T (m) > ¢
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Proof

® First we will see that L._; > 1 by means of
a contradiction.

l1 < (c—1) x opt(QG)
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Proof

® First we will see that L._; > 1 by means of
a contradiction.

® [, < (c—1)-opt(G)+ ':— < (c — 1) opt(G) + opt(G) < ¢ - opt(G),
1
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L emma

o Lip > (k+ 1)Ly (0<E<c)

® |et A* be an optimum assignment. If A(i) € Ly
then A*(i) € Ly
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Proof of Lemma

® |et g = minindexl — L

Tuesday, May 24, 2011



Proof of Lemma

® |et g = minindexl — L

® A(i) € L1 — lau) = (k+ 1)opt(G)

® Claim: w; > s, * opt(G)



Proof of Lemma

® |et g = minindexl — L

® A(i) € L1 — lau) = (k+ 1)opt(G)

® Claim: w; > s, * opt(G)
® By contradiction assume otherwise.

® Move task i to machine g

Wj
£q . k -opt(G) + opt(G) < L4,
q
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Proof of Lemma

® By contradiction assume A*(i)=jand j € L\ L

® Then load of machinej (in assighment A*) is
at least

i - opt(G
i > . o s > opt(G)
S j )




L emma

® |et A* be an optimum assignment. If A(i) € Ly
then A* (Z) c Ly
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Proof

® Recall that A(Z) - Lk_|_1 — lA(i) > (:ZC —+ 1)Opt(G)

® An optimum assignment must assign

Z (k+1)*opt(G) *s; to the machines Lk
JE€ELky1
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Proof

Y (k+1)-0pt(G)-s; < Y opt(G)-s;.

JELk+1 JELy

® Hence

® Dividing by opt(G) and substracting )

Zk-SjS Z Sj.

JELkt1 JELx\Lg+1

JELyii ¥
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Proof

® | et s*be the slowest machine of Li+1,then

forall jeL;i,s;>s* andforall jeri\Lii,s <s*

Hence,

2. ksis ), s L2 kests ) s

JELy41 jELk\Lk.H jELk+l jELk\Lk+1
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Proof

¥ Eatm B0 > ks Lpsq < |Li| — | Lysa]

JE€Lk4 JEL\Ly4q

Hence, (k+1)x* Ly <|Lg
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Proof

¥ Eatm B0 > ks Lpsq < |Li| — | Lysa]

JE€Lk4 JEL\Ly4q

Hence, (k+1)x* Ly <|Lg

Q.E.D
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Computing NE.

® |argest processing time algorithm: inserts
task in a nonincreasing order and assigns
them in a best response manner.
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Theorem

® |argest processing time algorithm finds a
NE.



Proof

® |nduction on the number of tasks.
® Suppose for t-| it is good.Add task t.

® What can go wrong!

2iica-1(j*) Wi o 2ica1(j) Wi + Wi o 2uica—1(j) Wi + W

Sj* Sj Sj
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Conclusion

Table 20.1. The price of anarchy for pure and
mixed equilibria in load balancing games on
identical and uniformly related machines

Identical Uniformly related
2 log m
Pure 2 m+-1 ® (logﬂgm)

log log m log log log m




Conclusion

® Reaching a NE in the uniformly related
instances.

® More realistic representations.
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