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Outline

• Pure Nash Equilibrium.

• Identical machines 

• Price of Anarchy.

• Transforming to NE. 

• Uniformly related machines

• Price of Anarchy.

• Finding NE. 
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Proposition

• Every instance of load balancing has at least 
one pure NE. 
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Proof

• An assignment A induces a sorted load 
vector 

• If its not a NE then an agent could change 
getting a smaller sorted vector.

(λ1, λ2, ...,λm)
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Identical machines
Price of Anarchy.
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3 tasks 

w1

w2

w3

cost(A) = max(w3, w1 + w2)
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Optimum cost
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Optimum cost
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4 tasks
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opt(G) = 3
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4 tasks
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4 tasks
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cost(A)
opt(G)

=
4
3

= 2− 2
3

= 2− 2
m + 1
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Price of Anarchy

PoA(m) = max
G∈G(m)

max
P∈Nash(G)

cost(P)
opt(G)
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Theorem

• Consider an instance G of the load 
balancing game and an assignment A that is 
a NE.  Then

cost(A) ≤
�

2− 2
m + 1

�
opt(G)

PoA(m) ≤ 2− 2
m + 1

Hence
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Tightness of bound
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Tightness of bound
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Proof
• Suppose the highest load is given to 

machine 1. 

• This machine has at least 2 assignments. 

• Consider the smallest assignment of 
machine one (assume its assignment 1). 

lj ≥ l1 − w1 ≥ cost(A)− 1
2
cost(A) =

1
2
cost(A)
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Proof

opt(G) ≥
�

i∈[n] wi

m

=

�
j∈[m] lj

m

≥
cost(A) +

1
2
cost(A)(m− 1)

m

=
(m + 1)cost(A)

2m

cost(A) ≤ 2m

m + 1
opt(G) =

�
2− 2

m + 1

�
opt(G)
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Identical machines
Moving to a NE.
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Changing to a NE.
• Max-weight best response policy: activate 

an unsatisfied agent with the highest 
weight.

• An activated agent then chooses a best 
response.
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Theorem

• Every agent gets activated at most once. 
Hence we get to a NE in linear time.
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• What does being satisfied mean?

• A best response doesn’t decrease the 
minimum load.

Proof
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• Consider an agent that was already 
activated and now is unsatisfied. 

lj∗ ≤ lj + wk ≤ lj + wi

Proof

j∗

i
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• Consider an agent that was already 
activated and now is unsatisfied. 

Proof

j∗

i

k

lj∗ ≤ lj + wk ≤ lj + wi
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Uniformly related 
machines.
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• For a NE the following inequality is 
satisfied:

cost(A) = O
�

log m

log log m

�
opt(G)

this bound is also tight.

Price of Anarchy. 
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Proof

• We will show that

• This will prove it because

c =
�

cost(A)
opt(G)

�
≤ Γ−1(m)

Γ−1(m) ∼ log m

log log m
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Proof
s1 ≥ s2 ≥ s3... ≥ sm

• Assume that the machines are labeled such 
that

• Lk = max{k : li ≥ k ∗ opt(G)∀i ≤ k}
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Proof

•  

•  

•  

•                                            and 

Lk = max{k : li ≥ i ∗ opt(G)∀i ≤ k} = {1, 2, ...Lk}

Lc−1 ≥ 1

m = L = L0 ≥ (c− 1)! = Γ(c) Γ−1(m) ≥ c

Lk ≥ (k + 1)Lk+1(0 ≤ k ≤ c− 2)
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Proof
• First we will see that                by means of 

a  contradiction.

•  

Lc−1 ≥ 1

l1 < (c− 1) ∗ opt(G)
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Proof
• First we will see that                by means of 

a  contradiction.

•  

Lc−1 ≥ 1

l1 < (c− 1) ∗ opt(G)

li ≥ c ∗ opt(G)

l1 <
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Lemma

•  

• Let      be an optimum assignment. If        
then

Lk ≥ (k + 1)Lk+1 (0 ≤ k ≤ c2)

A∗ A(i) ∈ Lk+1

A∗(i) ∈ Lk
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Proof of Lemma
• Let

•
q = min indexL− Lk

Tuesday, May 24, 2011



wi > sq ∗ opt(G)

Proof of Lemma
• Let

•  

• Claim: 

q = min indexL− Lk

A(i) ∈ Lk+1 → lA(i) ≥ (k + 1)opt(G)
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wi > sq ∗ opt(G)

Proof of Lemma
• Let

•  

• Claim: 

q = min indexL− Lk

A(i) ∈ Lk+1 → lA(i) ≥ (k + 1)opt(G)

• By contradiction assume otherwise.

•  Move task i to machine q
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Proof of Lemma

• By contradiction assume

• Then load of machine   (in assignment    ) is 
at least

j A∗
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Lemma

•  

• Let      be an optimum assignment. If        
then

Lk ≥ (k + 1)Lk+1 (0 ≤ k ≤ c2)

A∗ A(i) ∈ Lk+1

A∗(i) ∈ Lk
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A(i) ∈ Lk+1 → lA(i) ≥ (k + 1)opt(G)

Proof

•  Recall that 

• An optimum assignment must assign                                      
�

j∈Lk+1

(k + 1) ∗ opt(G) ∗ sj to the machines Lk
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Proof

• Hence

• Dividing by             and substracting     opt(G)
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Proof

• Let     be the slowest machine of          , then 

for all                           and for all

Hence,

s∗ Lk+1

Tuesday, May 24, 2011



Proof
k ∗ Lk+1 ≤ |Lk|− |Lk+1|

(k + 1) ∗ Lk+1 ≤ |Lk|Hence,
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Proof
k ∗ Lk+1 ≤ |Lk|− |Lk+1|

(k + 1) ∗ Lk+1 ≤ |Lk|Hence,

Q.E.D
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• Largest processing time algorithm: inserts 
task in a nonincreasing order and assigns 
them in a best response manner. 

Computing NE.
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• Largest processing time algorithm finds a 
NE. 

Theorem
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Proof

• Induction on the number of tasks. 

• Suppose for t-1 it is good. Add task t.

• What can go wrong?

�
i∈A−1(j∗) wi

sj∗
≤

�
i∈A−1(j) wi + wt

sj
≤

�
i∈A−1(j) wi + wk

sj
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Conclusion
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Conclusion

• Reaching a NE in the uniformly related 
instances. 

• More realistic representations.
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