
Selfish Load Balancing

Tuesday, May 24, 2011

Tuesday, May 24, 2011

m machinesn tasks

s1

s2

w1

w2

w3

A :

A : [n]→ [m]

Tuesday, May 24, 2011

m machinesn tasks

w1

w2 load = lj =
�

i∈A−1(j)

wi

sj

m machinesn tasksA :

sj

cost(1) = cost2 = lj

Tuesday, May 24, 2011

m machinesn tasks

w1

w2 load = lj =
�

i∈A−1(j)

wi

sj

m machinesn tasksA :

social cost= maximum load
cost(i) = lA(i)

sj

Tuesday, May 24, 2011

An example

2

2

1

1
1

1

Tuesday, May 24, 2011

An example

2 2

1 1

Tuesday, May 24, 2011

An example

2 2

1

1

best place

Tuesday, May 24, 2011

Outline

• Pure Nash Equilibrium.

• Identical machines

• Price of Anarchy.

• Transforming to NE.

• Uniformly related machines

• Price of Anarchy.

• Finding NE.

Tuesday, May 24, 2011

Proposition

• Every instance of load balancing has at least
one pure NE.

Tuesday, May 24, 2011

Proof

• An assignment A induces a sorted load
vector

• If its not a NE then an agent could change
getting a smaller sorted vector.

(λ1, λ2, ...,λm)

Tuesday, May 24, 2011

Identical machines
Price of Anarchy.

Tuesday, May 24, 2011

3 tasks

w1

w2

w3

cost(A) = max(w3, w1 + w2)

Tuesday, May 24, 2011

Optimum cost

w1

w2 w3

Tuesday, May 24, 2011

Optimum cost

w1

w2

w3

Tuesday, May 24, 2011

4 tasks

2 2

1 1

opt(G) = 3

Tuesday, May 24, 2011

4 tasks

2

2

1
1

cost(A) = 4

Tuesday, May 24, 2011

4 tasks

2

2

1
1

cost(A)
opt(G)

=
4
3

= 2− 2
3

= 2− 2
m + 1

Tuesday, May 24, 2011

Price of Anarchy

PoA(m) = max
G∈G(m)

max
P∈Nash(G)

cost(P)
opt(G)

Tuesday, May 24, 2011

Theorem

• Consider an instance G of the load
balancing game and an assignment A that is
a NE. Then

cost(A) ≤
�

2− 2
m + 1

�
opt(G)

PoA(m) ≤ 2− 2
m + 1

Hence

Tuesday, May 24, 2011

Tightness of bound

m

m

m m m

1

1

m tasks of size m
m tasks of size 1

cost(A) = 2m

Tuesday, May 24, 2011

Tightness of bound

m

1

m tasks of size m
m tasks of size 1

m

1

m

1

m

1

opt(G) = m + 1

Tuesday, May 24, 2011

Tightness of bound

m

1

m tasks of size m
m tasks of size 1

m

1

m

1

m

1

cost(A)
opt(G)

=
2m

m + 1
=

�
2− 2

m + 1

�

Tuesday, May 24, 2011

Proof
• Suppose the highest load is given to

machine 1.

• This machine has at least 2 assignments.

• Consider the smallest assignment of
machine one (assume its assignment 1).

lj ≥ l1 − w1 ≥ cost(A)− 1
2
cost(A) =

1
2
cost(A)

Tuesday, May 24, 2011

Proof

opt(G) ≥
�

i∈[n] wi

m

=

�
j∈[m] lj

m

≥
cost(A) +

1
2
cost(A)(m− 1)

m

=
(m + 1)cost(A)

2m

cost(A) ≤ 2m

m + 1
opt(G) =

�
2− 2

m + 1

�
opt(G)

Tuesday, May 24, 2011

Identical machines
Moving to a NE.

Tuesday, May 24, 2011

Changing to a NE.
• Max-weight best response policy: activate

an unsatisfied agent with the highest
weight.

• An activated agent then chooses a best
response.

Tuesday, May 24, 2011

Theorem

• Every agent gets activated at most once.
Hence we get to a NE in linear time.

Tuesday, May 24, 2011

• What does being satisfied mean?

• A best response doesn’t decrease the
minimum load.

Proof

Tuesday, May 24, 2011

• Consider an agent that was already
activated and now is unsatisfied.

lj∗ ≤ lj + wk ≤ lj + wi

Proof

j∗

i

Tuesday, May 24, 2011

• Consider an agent that was already
activated and now is unsatisfied.

Proof

j∗

i

k

lj∗ ≤ lj + wk ≤ lj + wi

Tuesday, May 24, 2011

Uniformly related
machines.

Tuesday, May 24, 2011

• For a NE the following inequality is
satisfied:

cost(A) = O
�

log m

log log m

�
opt(G)

this bound is also tight.

Price of Anarchy.

Tuesday, May 24, 2011

Proof

• We will show that

• This will prove it because

c =
�

cost(A)
opt(G)

�
≤ Γ−1(m)

Γ−1(m) ∼ log m

log log m

Tuesday, May 24, 2011

Proof
s1 ≥ s2 ≥ s3... ≥ sm

• Assume that the machines are labeled such
that

• Lk = max{k : li ≥ k ∗ opt(G)∀i ≤ k}

Tuesday, May 24, 2011

Proof

•

•

•

• and

Lk = max{k : li ≥ i ∗ opt(G)∀i ≤ k} = {1, 2, ...Lk}

Lc−1 ≥ 1

m = L = L0 ≥ (c− 1)! = Γ(c) Γ−1(m) ≥ c

Lk ≥ (k + 1)Lk+1(0 ≤ k ≤ c− 2)

Tuesday, May 24, 2011

Proof
• First we will see that by means of

a contradiction.

•

Lc−1 ≥ 1

l1 < (c− 1) ∗ opt(G)

Tuesday, May 24, 2011

Proof
• First we will see that by means of

a contradiction.

•

Lc−1 ≥ 1

l1 < (c− 1) ∗ opt(G)

li ≥ c ∗ opt(G)

l1 <

Tuesday, May 24, 2011

Lemma

•

• Let be an optimum assignment. If
then

Lk ≥ (k + 1)Lk+1 (0 ≤ k ≤ c2)

A∗ A(i) ∈ Lk+1

A∗(i) ∈ Lk

Tuesday, May 24, 2011

Proof of Lemma
• Let

•
q = min indexL− Lk

Tuesday, May 24, 2011

wi > sq ∗ opt(G)

Proof of Lemma
• Let

•

• Claim:

q = min indexL− Lk

A(i) ∈ Lk+1 → lA(i) ≥ (k + 1)opt(G)

Tuesday, May 24, 2011

wi > sq ∗ opt(G)

Proof of Lemma
• Let

•

• Claim:

q = min indexL− Lk

A(i) ∈ Lk+1 → lA(i) ≥ (k + 1)opt(G)

• By contradiction assume otherwise.

• Move task i to machine q

Tuesday, May 24, 2011

Proof of Lemma

• By contradiction assume

• Then load of machine (in assignment) is
at least

j A∗

Tuesday, May 24, 2011

Lemma

•

• Let be an optimum assignment. If
then

Lk ≥ (k + 1)Lk+1 (0 ≤ k ≤ c2)

A∗ A(i) ∈ Lk+1

A∗(i) ∈ Lk

Tuesday, May 24, 2011

A(i) ∈ Lk+1 → lA(i) ≥ (k + 1)opt(G)

Proof

• Recall that

• An optimum assignment must assign
�

j∈Lk+1

(k + 1) ∗ opt(G) ∗ sj to the machines Lk

Tuesday, May 24, 2011

Proof

• Hence

• Dividing by and substracting opt(G)

Tuesday, May 24, 2011

Proof

• Let be the slowest machine of , then

for all and for all

Hence,

s∗ Lk+1

Tuesday, May 24, 2011

Proof
k ∗ Lk+1 ≤ |Lk|− |Lk+1|

(k + 1) ∗ Lk+1 ≤ |Lk|Hence,

Tuesday, May 24, 2011

Proof
k ∗ Lk+1 ≤ |Lk|− |Lk+1|

(k + 1) ∗ Lk+1 ≤ |Lk|Hence,

Q.E.D

Tuesday, May 24, 2011

• Largest processing time algorithm: inserts
task in a nonincreasing order and assigns
them in a best response manner.

Computing NE.

Tuesday, May 24, 2011

• Largest processing time algorithm finds a
NE.

Theorem

Tuesday, May 24, 2011

Proof

• Induction on the number of tasks.

• Suppose for t-1 it is good. Add task t.

• What can go wrong?

�
i∈A−1(j∗) wi

sj∗
≤

�
i∈A−1(j) wi + wt

sj
≤

�
i∈A−1(j) wi + wk

sj

Tuesday, May 24, 2011

Conclusion

Tuesday, May 24, 2011

Conclusion

• Reaching a NE in the uniformly related
instances.

• More realistic representations.

Tuesday, May 24, 2011

