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Abstract

In this thesis, we present various models of distributed computation and algorithms for these models.
The underlying theme is to come up with fast algorithms that can tolerate faults in the underlying
network. We begin with the classical message-passing model of computation, surveying many known
results. We give a new, universally optimal, edge-biconnectivity algorithm for the classical model.
We also give a near-optimal sub-linear algorithm for identifying bridges, when all nodes are activated
simultaneously.

After discussing some ways in which the classical model is unrealistic, we survey known tech-
niques for adapting the classical model to the real world. We describe a new balancing model of
computation. The intent is that algorithms in this model should be automatically fault-tolerant.
Existing algorithms that can be expressed in this model are discussed, including ones for clustering,
maximum flow, and synchronization. We discuss the use of agents in our model, and give new
agent-based algorithms for census and biconnectivity.

Inspired by the balancing model, we look at two problems in more depth. First, we give matching
upper and lower bounds on the time complexity of the census algorithm, and we show how the
census algorithm can be used to name nodes uniquely in a faulty network. Second, we consider
using discrete harmonic functions as a computational tool. These functions are a natural exemplar
of the balancing model. We prove new results concerning the stability and convergence of discrete
harmonic functions, and describe a method which we call Eulerization for speeding up convergence.
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Chapter 1

Introduction

Computability, complexity, and algorithms are relatively new mathematical fields. The usefulness

of computers in real life has helped stimulate a great deal of research in theoretical computer sci-

ence in the past half-decade. Distributed algorithms, an even newer development, arise when we

consider multiple computers that can communicate with one another. Distributed algorithms have

applications in networking, supercomputing, and sensor networks. In this thesis, we aim to discuss

distributed algorithms from both practical and theoretical standpoints. On the practical side, we

include an introduction suitable for someone with no prior knowledge of distributed algorithms, we

show simple examples using pseudocode, and we address the problems that distributed algorithms

face when they are implemented in real networks. On the theoretical side, we survey current research

for the best solutions to graph algorithms, we present several new results, and we describe a new

model of distributed computation.

1.1 Summary

In Chapter 2, we give a general introduction to distributed algorithms, including some historical

background. We introduce a clean model of distributed computation called the message-passing

model. This is the most common model used by researchers to describe distributed computation.

First, we discuss the fundamental problems of leader election and spanning tree construction in

depth, including pseudocode solutions. We discuss why pre-existing unique node IDs are usually

needed in deterministic algorithms. Then, we go on to survey the best known distributed solutions

to many combinatorial graph problems. We pay special attention to algorithms whose running time

is sublinear in n, the number of nodes.
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In Chapter 3, we give a new distributed algorithm for computing the edge-biconnected compo-

nents of a graph, which runs faster than any known algorithm for that problem. The algorithm

constructs a short spanning tree of the network, and then proceeds to send messages up and down

the tree. The algorithm depends on some nice properties of the tree’s pre-order labeling. We show

that the whole algorithm has complexity of O(Diam) time and O(m) messages on a synchronized

network with a leader. Furthermore, we show that this performance is universally optimal: no cor-

rect algorithm can beat the performance of ours on any graph, except by a constant factor. We give

a sublinear algorithm for the same problem, and also show that our technique can be used to find

strongly-connected components in O(n) time.

In Chapter 4, we discuss some unrealistic assumptions made by the clean model of Chapter 2,

and discuss existing techniques by which some of these problems can be avoided. These techniques

include message authentication, synchronizers, and clustering. We discuss the self-stabilizing model

of computation, an alternative to the message-passing model. We then give a new model of compu-

tation, based on balancing, for use in faulty networks. Balancing algorithms for 2-coloring, routing,

clustering, maximum flow, aggregation and synchronization are discussed. We also give agent-based

algorithms for census and edge-biconnectivity that meet our model.

In Chapter 5 we discuss the agent-based census algorithm in more depth. We prove in Theorem

5.3.4 that the time complexity of this algorithm is O(n log n). Conversely, we show in Theorem 5.4.4

that this bound is tight on a family of graphs called layered rings. While the upper bound can be

derived from earlier work [93] on approximate TSP solutions, the lower bound, to our knowledge,

is new. As an application, we show how the census algorithm can be used to give unique names to

the nodes of a faulty network with arbitrary topology, thus solving a problem for which no efficient

algorithm seems known.

In Chapter 6 we discuss discrete harmonic functions. In our model, discrete harmonic functions

arise when “balancing” is taken to mean “numerical averaging.” We prove that, when the hitting

time of a random walk on the network is small, the distributed computation of a discrete harmonic

function converges quickly. The stability factor of a harmonic function describes how much the

function’s values may change when an edge is added to the underlying graph’s topology; we express

the stability factor in terms of a parameter called the commute time. We find that Eulerian graphs

enjoy better performance than arbitrary weighted graphs, and give a distributed algorithm for

making any directed graph Eulerian. We give applications of harmonic functions to planarity testing

and fault-tolerant broadcast. In particular, we show that random perturbations of the edge weights

allow us to use the fault-tolerant broadcast algorithm on any 2-vertex connected graph.

All of these chapters may be read independently, although a reader without any prior knowledge

of distributed algorithms should begin with Chapter 2.
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1.2 Conventions and Definitions

In the following chapters, we use a graph G to model a computation network. We denote the set of

vertices by V (G) and edges by E(G). When the graph is clear from context, we simply write V and

E. We use n to denote |V |, and m to denote |E|. We often write the vertices of G as v1, v2, . . . , vn.

Sometimes we work with directed graphs; in such a case, the edge (u, v) goes from u to v. In an

undirected graph, (u, v) ∈ E if and only if (v, u) ∈ E.

Instead of directly working with edges, we often work with neighborhoods. The out-neighborhood

of a vertex v, denoted Γ(v), is defined by

Γ(v) := {u | (v, u) ∈ E}.

(Here, and in the rest of the thesis, the notation A := B denotes an equation that defines the symbol

A.) The in-neighborhood Γ−1(v) denotes the inverse relation. We use δ(v) to denote the out-degree

of v, so δ(v) = |Γ(v)|. The symbol ∆ denotes the maximum degree of any node in the graph.

The distance between two vertices u and v in G, denoted dG(u, v), is the length of the shortest

path from u to v. In the event that no such path exists, the distance is infinite. The diameter of a

graph, denoted Diam(G), is the maximum distance between any two nodes in the graph,

Diam(G) := max
u,v∈V (G)

dG(u, v).

Let S be a subset of V (G). Define the G-diameter of S, denoted DiamG(S), to be the largest

distance in G between any two elements of S,

DiamG(S) := max
u,v∈S

dG(u, v).

The subgraph of G induced by S is the graph with vertex set S and edge set {(u, v) ∈ E(G) | u, v ∈ S}.

This thesis contains several distributed algorithms, presented in pseudocode. The notation x ← y

indicates assignment of the value y to the variable x. Our pseudocode uses informal, but unambigu-

ous, terms like “I, me, my” in order for a node to refer to itself.
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Chapter 2

The Message-Passing Model

In this chapter, we give a short introduction to distributed algorithms, including some history and a

model of distributed computation. This model is too simple in some ways; we discuss ways to make

it more realistic and complicated in Chapter 4. In the latter half of the chapter, we survey the best

known distributed solutions for many graph problems and constructions.

2.1 Motivation and History

A distributed computing environment consists of multiple computing agents that compute concur-

rently and that share information amongst each other. The basic principle is that the whole is greater

than the sum of its parts: by sharing information, the group can accomplish a computation that no

single agent could perform. We will describe four applications presently: interactivity, information

sharing, parallel scientific computing, and sensor networks.

One advance in computer science which took place in the 1960s was the shift from batch processing

systems to interactive systems. Whereas a batch processing system, like a punchcard machine, runs

automatically until completion or an error occurs, an interactive system allows the user to provide

new input (say, for debugging) during run-time. In an interactive system, the computing agents

are different processes which handle user input, show output on a screen, et cetera. These agents

communicate via shared sections of the computer’s memory; coordination is needed to make sure

that they do not overwrite each other’s memory [32]. In a multi-user or time-sharing system, multiple

users concurrently access the system, each with their own input and output device, and they share

external resources such as printers.

In the 1960s, American universities and government produced a country-wide computer network
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called ARPAnet in order to share electronic information among remote sites. This network is

largely renowned as the predecessor of the Internet [31]. Local area networks, such as those used by

businesses and households, also developed out of the need to share information. In these networks,

algorithms are needed for fundamental tasks such as routing and error detection, in order that

information can be shared efficiently and accurately.

Another motivating factor for distributed computing is that certain complex computational tasks

involve inherent parallelizability, so that multiple computers working at the same time can perform

the task faster than could a single computer. If possible, instead of having one computer work

for 100 days, why not have 100 computers solve a problem in one day? Supercomputers combine

processing hardware from multiple machines within a single motherboard; in massively parallel pro-

cessing systems, heterogeneous computers are networked together in order to share their computing

power. In 2005, the fastest supercomputer in the world consisted of 232 separate processors [101].

Some projects like SETI@Home use the computing power of volunteers, organized via the Internet,

to perform large computational tasks.

A more recent advance in technology is the advent of sensor networks. Typically, a sensor

network is composed of small computers with wireless communication capability, batteries and/or

solar power, a small central processor, and some physical sensors. These computers are manufactured

in large quantities and are designed to be distributed about a geographical area for the purposes

of monitoring that area. These networks are often used for environmental or military purposes,

although a number of other applications such as disaster prevention and recovery are possible [42].

A natural extension of sensor networks is amorphous computing [1], wherein computing elements are

small and numerous enough that they can be put in materials — like paint and concrete — by the

millions.

2.2 A Formal Model

The basic model of distributed computation which we consider is the CONGEST model of [89].

Consider an undirected connected graph G = (V,E) with |V | = n. Each node represents a computing

element, and each edge represents a reliable two-way communication channel between two nodes.

At step i, the node v is allowed to look at the messages sent to it by its neighbours on step i − 1,

perform a local computation that may change its state, and then send messages to some subset of

its neighbours.

We model the messages sent along edges and the memory/state of the nodes as finite binary

strings. Each node can be thought of as a Turing machine, with one tape for its memory, read-only
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tapes to read incoming messages from each neighbor, and write-only tapes to send messages to each

neighbor. When a node activates, the Turing machine is started, and when the Turing machine

stops the messages for that round are sent to the node’s neighbors.

We typically try to bound two different kinds of complexity in this model. First, the time com-

plexity of an algorithm is the number of rounds that are necessary before the algorithm terminates.

Second, the message complexity or communication complexity is the total number of messages that

are sent during the course of the algorithm.

The communication model described above is synchronous. We may alternatively have an asyn-

chronous setting, where nodes do not all activate at the same time. We may think of each edge

(u, v) as a buffer that stores messages from u to v, to be received the next time v activates. We

associate a delay with each message between the time it is sent and the earliest time at which it may

be received, analogous to lag in networks. To measure time complexity in the asynchronous model,

we assume the existence of a global clock, such that each node activates at least once per clock tick,

and the message delay is at most one tick. Then, the asynchronous time complexity of an algorithm

is the number of clock ticks elapsed before termination. Note that nodes cannot read the clock, it

is only for the purpose of measuring complexity.

In our model, all messages must be O(log n) bits in size. This is roughly the amount of memory

required to identify each node uniquely. This makes our algorithms practical for real applications.

Furthermore, if unbounded-size messages are allowed, then any single-shot problem can be solved

in O(Diam) time, by collecting the entire network topology at a single node and then solving se-

quentially. We do not impose a bound on the storage space used by nodes, nor do we restrict the

computational power which nodes may use for local computations.

Networks may be named or anonymous. In a named network, nodes are initialized containing

unique integer identifiers (IDs). In an anonymous network, no IDs are given and so all nodes begin

in the same state. Distributed algorithms may be either deterministic or probabilistic/randomized.

We will see in Section 2.3 that randomization is usually necessary in anonymous systems. Even

when node IDs are available, randomization sometimes gives the best known solution to a problem.

There are multiple ways in which a distributed algorithm can begin and end. Commonly, all

nodes begin in a sleep state; a sleeping node does nothing until it receives its first message. The

algorithm begins when one or more initiators enter a non-sleep state and begin computation. For

termination, we usually have either explicit termination, where each node has to enter a specific

“terminated” state in which no more messages can be sent, or implicit termination, where the states

of the nodes stabilize in some permanent way even though further messages may be sent.

In the remaining sections of this chapter we discuss some classical problems of distributed com-
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puting. We give explicit solutions for some and survey known results. All results pertain to the

synchronized, deterministic, O(log n)-bit message model unless otherwise noted.

2.3 Leader Election

Here is a formal statement of the leader election problem: each node has a variable leader initialized

to the value unknown. All nodes are activated simultaneously, and when the algorithm terminates,

exactly one node must have leader = true and all others must have leader = false. The leader can

then be used as the root of a spanning tree, or otherwise used to centralize some computation.

If the nodes are initially given unique integer identifiers, then we may elect the node with the

lowest ID. In order to accomplish this, each node initially forwards its ID to each of its neighbours,

and then continues forwarding the smallest ID that it knows about. After Diam rounds the smallest

ID will have propagated over the entire network, and the unique node having that ID is elected. In

Algorithm 2.1 we show pseudocode that describes how each individual node operates.

Algorithm 2.1 Leader election in a named network, when given a bound D on the diameter.

1: procedure Basic-Election

2: Let minlabel ← ID
3: for round ← 1 to D do

4: if round > 1 then

5: Let S be the set of values received from all neighbors
6: minlabel ← min(S ∪ {minlabel})
7: end if

8: if round < D then

9: Send minlabel to each neighbor
10: end if

11: end for

12: If ID = minlabel, then this node is the leader, otherwise it is not the leader
13: end procedure

Algorithm 2.1 has three features which we might seek to eliminate. First, each node is required

to have a unique ID. Second, the communication complexity mD is far from optimal. Third, the a

priori bound D on the diameter seems unnecessary, and indeed it is. We now address these 3 issues

in turn.

The need for IDs at each node is unavoidable, unless we use a randomized algorithm. As shown

in [99, Theorem 9.5], there exists no deterministic algorithm for election in an anonymous network,

even if each node knows the size n of the network. The proof that no such algorithm exists is based

on symmetry; if we consider running a deterministic algorithm on a ring network, then the initial

symmetry of the network is maintained at each step, and so it is never possible to single out one

node as the leader. For this reason, in the remainder of the chapter, we always assume that nodes
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have unique identifiers.

If we allow random choices in our algorithm, then the symmetry can be broken. Intuitively, a

deterministic election algorithm for networks with IDs can be transformed to a randomized algorithm

for anonymous networks as follows, provided we have an upper bound on n: each node selects a

random label in [1, n3]; run the deterministic election algorithm; if there are two nodes with the

same label, pick new labels and restart. In expectation we need O(1) restarts, since the probability

of any two nodes generating the same ID is O(1− 1/n). The tricky part is discovering when a label

conflict exists. A complete analysis of this strategy can be found in [34, p. 110].

There is a deterministic election algorithm of Awerbuch from [9] taking O(n) time and O(m +

n log n) messages, much better than the algorithm described here. This algorithm works in asyn-

chronous networks, regardless of which nodes are initiators, and even if they start at different times.

Under certain assumptions (asynchrony, comparison-based algorithms, or bounded-time algorithms)

this algorithm is optimal, in that there exist three families of networks respectively requiring Ω(m)

messages, Ω(n log n) messages, and Ω(n) time [47].

Without being given the bound D on Diam, we can still elect a leader deterministically, as we

describe shortly in Algorithm 2.4.

2.4 Spanning Trees and Applications

In this section, we consider several ways to construct rooted spanning trees of a network. A root is

selected either with a leader election algorithm, or by initiating the algorithm at a single node. For

the remainder of the section, we assume that the nodes of the network have unique IDs.

Having picked the root, a simple greedy algorithm can be used to construct a spanning tree of

the network. First, we add the root to the tree; whenever a node joins the tree, it informs all of its

neighbors of this fact. When a node that is not in the tree starts receiving messages, it picks one of

the senders as its parent and joins the tree. By sending acknowledgement messages back up the tree,

the root can determine when the algorithm has terminated. In Algorithm 2.2 we show pseudocode

to this effect. The algorithm has optimal complexity, O(Diam) time and O(m) messages, even in an

asynchronous network.

One application of a spanning tree is that it reduces the cost of a broadcast in the network;

whereas m messages are necessary if we have no topological knowledge, only n − 1 messages are

needed to broadcast along a spanning tree. Such a broadcast takes time proportional to the height

of the tree.
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Algorithm 2.2 Construction of a spanning tree, once the root has been chosen.

1: procedure Spanning-Tree

2: Let children ← ∅
3: Let parent ← nil
4: Let pending-replies ← 0
5: if this node is the root then

6: Send “join” to each neighbour
7: pending-replies ← |Γ(me)|
8: else

9: Wait until one or more “join” messages are received
10: Let S be the set of neighbours which sent me a join message
11: parent ← an arbitrarily chosen element of S
12: Send “accept” to parent
13: Send “reject” to each node in S − {parent}
14: Send “join” to each node in Γ(me) − S
15: pending-replies ← |Γ(me) − S|
16: end if

17: while pending-replies > 0 do

18: Wait until message action is received; let u be the sender
19: If action ∈ {“accept,” “reject”}, then pending-replies = pending-replies − 1
20: If action = “accept,” then children ← children ∪ {u}
21: If action = “join,” then reply to u with “reject”
22: end while

23: end procedure

Another common application of rooted spanning trees is to compute aggregates in the network.

Let f be a real-valued function defined at each node vi. A rooted spanning tree can be used to

compute
∑n

i=1 f(vi), as follows. Define the function f↓ by

f↓(vi) :=
∑

vj∈desc(vi)

f(vj),

where desc(vi) denotes the set of all descendants of vi, including itself, in the spanning tree. In the

protocol, each node vi computes f↓
i and sends this value to its parent, as shown in Algorithm 2.3.

Generally, the technique of reporting information up a tree to the root is called a convergecast [89,

Ch. 3]. The algorithm essentially boils down to the observation that

f↓(vi) = f(vi) +
∑

vj∈children(vi)

f↓(vj).

A convergecast takes time proportional to the height of the tree and uses n − 1 messages.

One neat application is that, when f is identically equal to 1, the root gets a count of the number

of nodes in the network. A convergecast can similarly be used to compute any associative, symmetric

function of the nodes, such as min,Π,∧, gcd,∪, etc.

Spanning trees are used in the best known leader election algorithms [9]. In Algorithm 2.4 we
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Algorithm 2.3 Simple aggregation using a convergecast on a spanning tree.

1: procedure Aggregate-Values

2: tmp ← f(me)
3: pending-replies ← |children|
4: while pending-replies > 0 do

5: Wait until message x is received ⊲ x = f↓(u), where u is the sender
6: tmp ← tmp + x
7: end while

8: f↓(me) ← tmp
9: if this node is not the root, then

10: Send f↓(me) to parent
11: else f↓(me) is the desired result
12: end if

13: end procedure

present a simple protocol for election using spanning trees. The idea is that every node tries to

build a spanning tree, but nodes prefer to join a tree with minimal-ID root. Eventually the entire

network is subsumed by a tree rooted at the node with minimal ID. Unlike Algorithm 2.2, in the new

algorithm the (elected) root node explicitly knows when the algorithm is over. This is accomplished

via “done” messages indicating that the construction of a particular subtree is complete.

2.5 Efficient Spanning Tree Constructions

The first optimal algorithm for computing a spanning tree was given in [9], and its complexities are

O(n) time and O(m+n log n) messages. In fact, the algorithm can be used to compute a minimum-

weight spanning tree (MST). Under one of several assumptions — asynchrony, time-bounded algo-

rithms or event-driven algorithms — this bound is existentially optimal, that is, there are graphs for

which Ω(n) time and Ω(m+n log n) messages are provably necessary [99, Thm. 6.6] [78, §2.4.2]. As

noted in [9] these upper and lower bounds also hold for computing any spanning tree, computing an

MST, and electing a leader.

Despite the “optimality” of Awerbuch’s result, we can actually compute an MST in o(n) time on

graphs with small diameter. A novel approach in [49] gives an MST algorithm with time complexity

O(Diam+n0.614), which has sub-linear time on graphs with sub-linear diameter. Currently the best

general protocol is from [70], with time complexity O(Diam +
√

n log∗ n). If all nodes initiate the

algorithm simultaneously, an algorithm from [40] with running time Õ(µ(G,ω) +
√

n) can be used,

where µ denotes a graph parameter than can be much smaller than Diam.

The best unconditional lower time bound on the MST problem is Ω
(
Diam +

√
n

log n

)
. This lower

bound comes from a bound [41] on the quality of approximation algorithms.

Breadth-first search (BFS) trees can be used to optimize tree-based algorithms, as the following
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Algorithm 2.4 Election in a named network, using spanning trees.

1: Let root-ID and pending-replies be integer variables
2: Let parent be a variable referencing a neighbour of me
3: Let children be a variable referencing a subset of my neighbours
4: procedure Join(new-parent, new-root-ID)
5: parent ← new-parent
6: root-ID ← new-root-ID
7: Let S ← Γ(me)
8: If new-parent 6= nil, then S ← S − {new-parent}
9: Send (“join,” root-ID) to each member of S

10: pending-replies ← |S|
11: children ← ∅
12: end procedure

13: procedure Elect-With-Trees

14: Call Join(nil, ID)
15: loop

16: Wait until a message (action, sender-root-ID) is received; let u be the sender
17: if sender-root-ID > root-ID then

18: Ignore this message
19: else if action =“join” and sender-root-ID < root-ID then

20: Call Join(u, sender-root-ID)
21: else if action =“join” and sender-root-ID = root-ID then

22: Send a (reject, sender-root-ID) message to u
23: else ⊲ in this case sender-root-ID = root-ID and action ∈ {“done,” “reject”}
24: pending-replies ← pending-replies − 1
25: If action = “done,” then children ← children ∪ {u}
26: if pending-replies = 0 then

27: if parent 6= nil then

28: Send (“done,” root-ID) to parent
29: else

30: Algorithm is complete, exit main loop
31: end if

32: end if

33: end if

34: end loop

35: end procedure

26



observation shows. The height of any spanning tree of G has height at least Diam(G)/2, while a

BFS tree has height at most Diam(G). Thus, a BFS tree optimizes the time to communicate up and

down the tree, up to a constant factor. On a synchronous network, Algorithms 2.2 and 2.4 compute

a BFS tree in optimal time. For an asynchronous network, the best known algorithm [16] takes

O(Diam log3 n) time and O(m+n log3 n) messages, and is based on applying an efficient synchronizer

(see Section 4.2.1) to Algorithm 2.2. For graphs with small diameter, applying techniques of [86] to

a result of [12] gives a slightly faster algorithm with time complexity Diam
1+O(log−1/4 n).

A depth-first search (DFS) tree can also be efficiently constructed in the network. The best

known algorithm, from [8], works as follows. A token performs a DFS of the network. Whenever v

is visited for the first time, v announces to all of its neighbors that it has been visited, so that the

token does not try to explore v more than once; it will pass through v exactly one more time, as it

backtracks the DFS to the parent of v. This takes O(n) time and O(m) messages. In Section 3.9,

we show how DFS trees can be used to distributively compute the strongly-connected components

of a directed graph.

2.6 Optimization Problems

In this section we survey distributed solutions to some well-known optimization problems of theoret-

ical and practical importance. We focus on algorithms with the best time complexity, as is typical in

the literature; even so, generally speaking, the fastest algorithms are fairly communication-efficient

as well.

2.6.1 Matching

Recall that a matching of G is a subset S of the edges of G such that each node is incident on at

most one edge in S. A maximum matching is a matching of largest cardinality, and a deterministic

algorithm in [94] computes a maximum matching, by using augmenting paths, in O(n log n) time.

A matching is maximal if no other edges can be added to S without destroying the fact that it is a

matching. The fastest known algorithm for computing a maximal matching [56] takes O(log4 n) time.

Recently, a lower bound of Ω
(√

log n
log log n

)
time was proved [69] for maximal matching. Matchings

are useful in load balancing [51].

Note that the former problem is inherently global (a matching is maximum if no augmenting

paths exist) while the latter one is inherently local (a matching is maximal if every vertex is either

matched, or has no unmatched neighbours). Global problems generally require Ω(Diam) time, while

local ones may admit o(Diam) solutions. Thus, in what follows, O(Diam)+o(n) time complexity is be
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called sub-linear, while o(n) is be called local. Note that a local algorithm is necessarily initiated at

more than one nodes, and usually it is assumed that all nodes initiate the algorithm, simultaneously.

2.6.2 Maximum s-t Flow

In the capacitated s-t maximum flow problem for a graph, we are given a directed graph, and a

capacity cuv for each edge (u, v). The task is to assign non-negative flow values to each edge so that

1. Each edge flow value is no more than its capacity.

2. For v 6∈ {s, t}, the in-flow sum of v is equal to the out-flow sum of v.

3. The out-flow sum at s, which equals the in-flow sum at t, is to be maximized.

One application of flows is as a modeling tool, such as for data transfers in computer networks,

shipments of commodities across a country, and fluid networks.

The classic sequential solution for this problem was developed by Ford and Fulkerson [46], and

augments the flow by finding paths from s to t in a “residual graph.” The running time is improved

by using augmenting paths of minimum length [39].

In [54], Goldberg and Tarjan give an algorithm based on the method of preflows which does not

directly involve augmenting paths, but works on similar principles. Their algorithm is easily adapted

into an asynchronous distributed algorithm, and the resulting time complexity is O(n2). In Section

4.6.4 we describe the algorithm in more detail.

There is also an elegant simulation algorithm [13][14] for computing (1 + ǫ)-optimal solutions to

multicommodity max-flow problems in O(mnǫ−2 log(mǫ−1)) rounds.

2.6.3 Maximal Independent Set, Vertex Coloring

An independent set is a subset S of V such that no two nodes in S are adjacent. The set S is a

maximal independent set (MIS) if no proper superset of S is independent. A vertex k-coloring of

G is a map from V to the colors {1, . . . , k} so that adjacent nodes are colored differently. Let ∆

denote the maximum degree of any node of G. It is easy to show, by a greedy argument, that G has

a (∆ + 1)-coloring. There is a connection between (∆ + 1)-colorings and independent sets, as the

following observations from [89, Cor. 8.2.2] and [71] show.

Theorem 2.6.1. Suppose that a distributed algorithm exists which computes a k(G)-coloring of G
in T (G) time. Then there exists a distributed algorithm that, given a graph G, computes a MIS of G
in k(G) + T (G) time.
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Proof. First, we run the k(G)-coloring algorithm. The rest of the algorithm constructs a MIS S in

k(G) rounds. Initially, no nodes are in S; in round i, each node of color i joins S if possible, that is,

if none of its neighbors have joined S. Since no two adjacent nodes can join in the same round, and

every node tries to join at least once, S is a MIS.

Theorem 2.6.2. Suppose that a distributed algorithm exists which computes a MIS of G in T (G)

time. Then there exists a distributed algorithm for computing a (∆ + 1)-coloring of G in T (G) time,

using messages at most (∆ + 1) times larger than those of the MIS algorithm.

Proof. Denote by K∆+1 the complete graph on ∆ + 1 vertices. It is easy to see that there is a

bijection between MIS’s of K∆+1 ×G and (∆+1)-colorings of G. We have each node of G simulate a

(∆ + 1)-clique, and run the MIS algorithm on this virtual graph. The potential increase in message

size is due to the fact that ∆ + 1 edges join adjacent cliques in the virtual graph.

Note that in practice, the message size increase can usually be avoided.

The best general deterministic result for (∆+1) coloring and MIS was pioneered in [12], and was

improved in [86] to run in exp(O(
√

log n)) time. For low-degree graphs, there are faster algorithms

of times O(∆ log n) and O(log∗ n + ∆2) as described in [89, Lemma 7.4.1] and [71], respectively.

Trees can be 3-colored in O(log∗ n) time, provided that each node initially knows its parent [89,

§7.3].

If we allow randomization, we can compute both a MIS and a (∆ + 1)-coloring in O(log n) time;

the original algorithms are from [76] and [5], and good expositions are in [82, §12.3] and [89, §8.4]).

In [86] it is shown that, with randomization, a (∆ + 1)-coloring can be converted into a ∆-coloring

in O(log3 n/ log ∆) expected time, provided that a ∆-coloring exists.

The authors of [69] give a lower bound for MIS: namely, for each n, there exist graphs taking

Ω
(√

log n
log log n

)
time, and for each ∆, there exist graphs taking Ω

(
log ∆

log log ∆

)
time. However, both

bounds do not necessarily apply simultaneously to all graphs, since the O(log∗ n + ∆2) algorithm

of [71] beats the former bound on bounded-degree graphs. Linial proves in [71] that any o(Diam)

distributed algorithm for coloring a d−regular tree uses at least
√

d/2 colors. These lower bounds

also apply to randomized algorithms.

2.6.4 Edge Coloring

Instead of coloring the nodes of a graph, we may color the edges, with the constraint that each

node must have all of its incident edges labeled differently. It is easy to show that any graph can be

(2∆ − 1)-edge-colored, and Vizing showed that any graph can be (∆ + 1)-edge-colored.
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All of the known fast algorithms for edge coloring are randomized. The first local protocol, from

[87], used (1.6+ ǫ)∆+0.4 log2+δ n colors, and ran in O(log n) rounds. Subsequent work [37] reduced

this bound to ∆(1 + ǫ) colors and kept the O(log n) time bound, except on certain special cases. In

[55], a a new algorithm for ∆(1 + ǫ) coloring is given that runs in O(log log n) time, provided that

certain constraints between ∆ and n are met. These coloring algorithms have been used [38][3] to

improve the efficiency of communication in networks, as each color class corresponds to a set of data

transfers that can occur in parallel.

2.6.5 Small Dominating Sets and Ruling Sets

For k ∈ Z, a k-dominating set of G is a subset of vertices such that all nodes in G are within k steps of

one of these vertices. A dominating set is small if it contains at most max
(

n
k+1 , 1

)
vertices; it is easy

to show that k-dominating sets exist in every graph. In [49] it is shown that small 1-dominating sets

on rooted trees can be computed in O(1) time plus one O(log∗ n) time call to MIS; this observation

led to the first sub-linear MST algorithm. In [70] it is shown that a small k-dominating set can

be distributively constructed in O(k log∗ n) time, and this observation leads to an even faster MST

algorithm.

A (j, k)-ruling set is a k-dominating set with the additional property that no two nodes are within

a distance j of each other. An algorithm of [12] shows that a (k, k log n)-ruling set can be constructed

in O(k log n) time. In [86], an algorithm is given to construct (3, 4)-ruling sets in expO(
√

log n)

time.

2.7 Locality-Preserving Representations

In this section, we describe several ways to reduce a network into simpler components. These

components have multiple nice properties — few edges, small clusters, low overlap, low chromatic

number — so that we can simplify the network (say, by removing edges) without losing too much

useful structure. We refer the reader to [89] for a comprehensive description.

2.7.1 Neighborhood Covers

A sparse (κ, ρ)-neighborhood cover of G is a collection of connected vertex sets (“clusters”) such that

1. For each vertex v, the closed ρ-neighborhood of v is entirely contained in some cluster.

2. The subgraph of G induced by each cluster has diameter O(κρ).
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3. Each node belongs to O(κn1/κ) clusters. (Or, O(log n · n1/κ) clusters in [40]).

Here κ and ρ are integer parameters. An excellent reference for these covers is [89, Ch. 21], where a

deterministic protocol for constructing these covers is given with time complexity O(n1+1/κκ2) and

communication complexity O(m + n1+1/κκ2). In [11] this algorithm was adapted to asynchronous

networks, with a factor of about κ log n increase in both complexities. The full version of [40]

gives a randomized local algorithm for computing sparse neighborhood covers which, with high

probability, runs in O(ρκ2n1/κ log n) time and O(mκn1/κ log n) messages on a synchronous network.

Neighborhood covers are used in the adaptation of near-optimal synchronizers to dynamic networks

in [15]. The randomized protocol of [40] leads to a new sub-linear MST algorithm, and it also proves

useful in Section 3.8.

2.7.2 Decompositions

A (b, c)-cluster decomposition of G is a partition of V (G) such dG(u, v) ≤ b whenever u and v

are in the same component, and the components can be c-colored such that adjacent nodes of

different components never have the same color. The best cluster decomposition algorithms are

built using ruling sets, and in turn, decompositions give efficient MIS and coloring algorithms. An

(O(log n), O(log n))-decomposition can be constructed in exp(O(
√

log n)) time deterministically [86],

or in O(log2 n) time probabilistically [73]. For other parameters (say b = O(1) or c = O(1)) efficient

distributed algorithms do not seem to be known, although a sequential algorithm of [89, §14.2] can

construct a O(κ), O(κn1/κ)−decomposition for any κ ∈ Z
+.

2.7.3 Partitions

In [16] Awerbuch introduces a distributed algorithm for computing a partition of V, with parameter

κ ∈ Z
+, such that each component has diameter at most 2(κ − 1), and at most n1+1/κ edges have

endpoints in different components. With improvements from [89, §20.6], this can be made to run with

O(n) time and O(m) communication complexity. In [7] partitions are used to construct an efficient

“γ” synchronizer. In [17] sparse partitions are applied to regional matchings; these matchings, in

turn, gave the first near-optimal synchronizer [16].

2.7.4 Spanners

A κ-spanner of G is a spanning subgraph G′ of G, such that dG′(v1, v2) ≤ κdG(v1, v2) for all v1, v2 ∈ G.

Spanners are most useful when they have few edges, since G is trivially a κ-spanner of itself. From a
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κ-partition we can construct a κ-spanner with O(n1+1/κ) edges: take the union of all intercomponent

edges with a spanning tree for each component. Elkin notes in [40] that his randomized local protocol

for a (log n, 1)-neighbourhood cover can be used to construct a κ-spanner more efficiently: choose

a spanning tree from each cluster, and take their union. Thus we can construct a O(log n)-spanner

using O(n log3 n) edges in O(log2 n) time and using O(m log n) messages.

2.8 Remarks

Some ideas from the distributed model also have applications in sequential and parallel computing.

The preflow algorithm [54] led to a then-fastest sequential solution to the maximum flow problem.

Locality-preserving representations have been used to improve sequential approximation algorithms

[89, Ch. 28], including NP-hard problems such as minimum-cut. The field of parallel algorithms

often shares ideas and algorithms with the distributed world [76][5][98].

Many problems — in particular neighborhood covers, MIS/coloring, cluster decompositions, and

spanners — the best randomized solutions are faster than the best deterministic ones. In anonymous

networks randomness is provably necessary for elections and many other algorithms, but it seems

that nobody has shown that randomness is essential to the fastest algorithms on named networks.

It would be interesting to have a result to this effect, analogous to the sequential result of [82, §2.1]

for the game tree evaluation problem.

In the CONGEST model which we consider, individual nodes are allowed unlimited storage

and unlimited computational power. This is in some cases unrealistic1. One would imagine that

low-memory protocols would be useful, especially in lieu of large, low-power sensor networks and

amorphous computing environments. For many applications, and Algorithms 2.1–2.4, δ logO(1) n

bits of memory per node suffice; but it is not clear what can be computed with this much memory.

For example, no known sub-linear MST algorithm uses δ logO(1) n memory per node.

Local and sub-linear algorithms — such as those for maximal matching, coloring, and MST

— will become more useful as the trend towards large sensor networks and amorphous computing

continues. Ideally, huge networks should still be able to compute useful information locally, without

need for global coordination. Two suspects that seem to be open to investigation are a sub-linear

algorithm for DFS trees, and a local algorithm for partitions.

Some problems with well-known sequential solutions do not seem to have fast distributed solu-

tions. This includes: single-source connectivity, vertex-connectivity, computing k-connected compo-

1Further, with unlimited memory, any single-shot problem can be solved centrally in O(m) time using O(mDiam)
messages, by sending the entire network topology to a single node; however, it may be that some problems cannot be
solved at all with low-memory protocols, which would be interesting from a complexity-theoretic standpoint.
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nents for k > 2, planarity testing, and computing the diameter exactly.

One final remark: the “complexity classes” of sequential computation such as P,NP,PSPACE
do not seem to have well-studied distributed counterparts. It would be nice to formalize observations

of hardness equivalence (MIS with (∆+1)-coloring, leader with MST, etc) into a complexity-theoretic

framework. The main obstacle in doing so seems to be the large number of choices (synchrony, forms

of activation, etc) in the distributed model, although there doesn’t seem to be an inherent reason

why these obstacles should not be overcome.
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Chapter 3

An O(Diam) Time

Edge-Biconnectivity Algorithm

Let G be a connected graph. An edge (node) of G is said to be a bridge (articulation point) if

its removal causes G to become disconnected. The biconnected components of G are the connected

components of G after we delete all bridges. Equivalently, the biconnected components are the

maximal induced subgraphs of G which remain connected even after an edge is deleted. The edge-

biconnectivity problem is to identify all bridges and biconnected components of G. One application

is that, in designing a network, the bridges and articulation points highlight where more connections

should be added in order to make the network more robust.

In this section, we present an optimal distributed algorithm for determining edge-biconnectivity.

Given a leader, its complexities are O(Diam) time and O(m) messages, with a polylog(n) increase

in the asynchronous setting. It meets the CONGEST model, and additionally has small memory

requirements at each node. We also show how to modify this into a near-optimal local algorithm.

3.1 Overview

We use a tree T in our algorithm. Let h(T ) denote the height of T , and desc(v) denote the

descendants of v in T , including v itself. Let C denote the union of all simple cycles,

C = {e ∈ E | e lies within some simple cycle of G}.

The algorithm operates in 6 phases, as follows:
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1. Construct a breadth-first search (BFS) tree T with root node v0.

2. At each node v, compute #desc(v), the number of descendants of v in T .

3. Compute a preorder labeling of V (G) with respect to T .

4. Identify all cross-edges (that is, all edges not belonging to T ).

5. By sending messages from cross-edges up to the root v0, mark each edge in C.

6. By broadcasting along the tree, label the nodes according to their biconnected components.

3.2 Preorder Labeling

To begin, we need to elect a leader in the network. As noted in Section 2.3 it is sufficient either that

nodes have unique IDs, that nodes have access to a random number generator, or that the algorithm

is initiated at a single node. Next, we compute a spanning tree T , with the elected leader as the

root. Recall the efficient constructions mentioned in Section 2.5. The algorithm runs fastest when

T is a BFS tree, but for the purposes of correctness any tree will do.

The computation of #desc(v) at each node in Phase 2 can be accomplished in 2h(T ) steps.

First, the root node sends “Compute #desc of yourself” to each of its children, and this message is

downcasted in T . Then, we run the simple aggregation protocol (Algorithm 2.3) with f(v) = 1 at

each node; it is easy to see that f↓(v) = #desc(v).

After this phase, a preorder labeling of T is computed by using another downcast, as follows:

• The root node sets its own PreLabel field to 1.

• Whenever a node v sets its PreLabel field to ℓ, it orders its children in T arbitrarily as

c1, c2, . . .. Then v sends the message “Set your PreLabel field to ℓi” to each ci, where ℓi is

computed by v as

ℓi = ℓ + 1 +
∑

j<i

#desc(cj)

After h(T ) time steps, we will have computed a preordering of T .

3.3 Least Common Ancestors

In order to simplify the presentation, we hereafter refer to nodes simply by their preorder labels.

The preordering allows us to reduce congestion in Phase 5 of the algorithm, using the following

properties.
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Lemma 3.3.1. The descendants of a node v in the tree T are precisely

desc(v) = {u | v ≤ u < v + #desc(v)}.

Let LCA(u1, u2, . . .) denote the lowest (by position, not value) common ancestor of nodes u1, u2, . . .

in the tree T .

Theorem 3.3.2. If v1 ≤ v2 ≤ v3, then LCA(v1, v3) is an ancestor of v2.

Proof. Let a = LCA(v1, v3). By Lemma 3.3.1, a ≤ v1 ≤ v3 < a + #desc(a). Thus a ≤ v2 <

a + #desc(a), and by Lemma 3.3.1, v2 must also be a descendant of a.

Corollary 3.3.3. LCA(u1, u2, . . . uk) = LCA(mini(ui),maxi(ui)).

Corollary 3.3.4. If ui ≤ vi for all i, then

LCA(LCA(u1, v1),LCA(u2, v2), . . . LCA(uk, vk)) = LCA(min
i

(ui),max
i

(vi)).

3.4 Marking Cycle Edges

The goal of Phases 4 and 5 is to mark the set C, which consists of the union of all simple cycles.

When v′ is an ancestor of v in T , let Chain(v′, v) denote the set of edges on the path from v′ to

v in T . The edges appearing in G−T , commonly known as the cross-edges, permit a simple formula

for C:

Lemma 3.4.1.

C =
⋃

(u,v)∈G−T

{(u, v)} ∪ Chain(LCA(u, v), u) ∪ Chain(LCA(u, v), v). (3.1)

Proof. Note that each set {(u, v)} ∪Chain(LCA(u, v), u) ∪Chain(LCA(u, v), v) is a simple cycle. It

remains to show that this union formula contains all edges appearing in simple cycles. Suppose

otherwise, that the above formula missed some edge (u, v) belonging to a simple cycle K of G. Since

Equation (3.1) includes all edges of G −T , we can assume that (u, v) ∈ T , without loss of generality

u the parent of v.

Let the cycle K contain, in order, the nodes (k0 = v, k1, k2, . . . , km−1 = u, km = v). If ki is the

first element of this list not in desc(v), then (ki−1, ki) is a cross edge and

(u, v) ∈ Chain(LCA(ki−1, ki), ki−1).
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Thus, to mark the edges of C, it suffices to just mark chains going up from each cross edge to its

endpoints’ LCA.

We could distributively mark the edges in Chain(LCA(u, v), v) as follows:

• For each cross edge (u, v),

Send a message from v to u which states “If you are an ancestor of both u and v, then

ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining

you to your parent as being in C.”

Send the same message from u to v.

We will abbreviate the message “If you are an ancestor of both u and v, . . . ” as “Join to LCA(u, v)”.

Without loss of generality, we will send our messages such that u ≤ v.

Upcasting these messages naively leads to congestion. Namely, a parent will be faced with

broadcasting many of these messages up simultaneously, which would either break the O(log(n))

restriction on message sizes or our desired h(T ) time bound. The following Forwarding Rule fixes

this congestion:

• If a node w simultaneously receives messages “Join to LCA(ui, vi)” for i = 1 . . . k, it should

compute umin = mini ui and vmax = maxi vi. If w is an ancestor of both umin and vmax, then

no message is sent up. Otherwise, w should send “Join to LCA(umin, vmax)” to its parent, and

mark the edge connecting w to its parent as being in C.

Theorem 3.4.2. The Forwarding Rule correctly marks Chain(LCA(u, v), v) for each cross edge

(u, v).

Proof. Suppose that w, as described, is asked to propagate messages so that all edges in

⋃

i

Chain(LCA(ui, vi), w)

become marked. They must all lie on the unique path between w and the root of T , so we only need

to mark the longest chain. The highest LCA is equal to LCA(LCA(u1, v1),LCA(u2, v2), . . .) and by

Corollary 2 this is LCA(umin, vmax), so the propagated message (if any) is correct.

3.5 Biconnected Decomposition

The following observations allow us to determine the articulation points and bridges.
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Claim 3.5.1. The bridges are precisely those tree edges which are not in C.

Proof. If an edge is in a cycle, then its deletion does not affect the connectedness of its two endpoints,

and so it is not a bridge. Similarly, a bridge cannot be in a cycle.

Note that only tree edges can be bridges; thus, if each non-root node stores a boolean variable

indicating whether the edge to its parent is a bridge, then this suffices to identify all bridges.

To group the nodes according to their biconnected component, we need to broadcast an identifier

along each component. The following claim means that a simple downcast along the edges of T will

suffice.

Claim 3.5.2. If we delete all bridges from T , then the forest of resulting trees is a set of spanning

trees for the biconnected components of G.

In Algorithm 3.1 we show a precise formulation of how this works.

3.6 Optimization and Analysis

The algorithm described above is nearly optimal. Assuming that we are given a spanning tree T ,

the time complexity of each phase is h(T ), and, except for Phase 5, the message complexity is O(m).

However, the number of “Join to” messages (JMs) that Phase 5 sends may be as large as Ω(mh(T )).

In order to reduce this, we modify the algorithm so that only a constant number of JMs are sent

along any edge. First, without modification, exactly 2 JMs are sent along each cross edge. Second,

we now insist that every node must wait until it hears from all of its non-parent neighbors before

forwarding a JM to its parent, so that it reports to its parent at most once. We also add a “null”

message which will be sent along bridges, so that every node reports to its parent exactly once. The

full protocol is shown in Algorithm 3.1.

Note that this algorithm uses only Θ(log n) bits of memory at each node. It is probably impossible

to determine the bridges with only o(log n) bits of memory per node, but this does not seem easy

to prove.

The best running time for our algorithm is obtained when T is a BFS tree, since this minimizes

the height up to a constant factor. The exact time complexity depends on the model used. If we

are in the synchronous setting, and a leader has already been chosen, then the entire algorithm

runs in O(Diam) time with O(m) messages. If a leader has not been chosen, we need an additional

O(n log n) messages to elect one. If we are in a fully asynchronous setting, then the construction of

a BFS will take a further O(n log3 n) messages and O(Diam log3 n) time [89, §5.3], as well as extra

39



Algorithm 3.1 Fast algorithm for edge-biconnected decomposition, given a spanning tree.

1: procedure Edge-Biconnectivity

2: Let k be my preorder label, and desc, children, parent describe the spanning tree
3: umin ← k
4: vmax ← k + |desc| − 1
5: pending-replies ← |Γ(me)|
6: If I am not the root, then pending-replies ← pending-replies − 1
7: for each non-tree edge e incident on me do

8: Send “Cross edge from k” along e
9: end for

10: for i ← 1 to pending-replies do

11: Wait until a message is received
12: if the message is “Join to LCA(u, v)” then

13: umin ← min(umin, u)
14: vmax ← max(vmax, v)
15: else if the message is “Cross edge from ℓ” then

16: umin ← min(umin, ℓ)
17: vmax ← max(vmax, ℓ)
18: end if

19: end for

20: if umin ∈ desc and vmax ∈ desc then

21: Send a null message to parent
22: under-bridge ← true ⊲ The edge joining me to my parent is a bridge
23: else

24: Send “Join to (umin, vmax)” to parent
25: under-bridge ← false ⊲ The edge joining me to my parent is not a bridge
26: end if

27: if I am the root or under-bridge = true then

28: Biconnected-component ← k
29: Send “My biconnected component is k” to each node in children
30: Ignore any remaining message that is received from parent
31: else

32: Wait until parent sends me the message “My biconnected component is c”
33: Biconnected-component ← c
34: Send “My biconnected component is c” to each node in children
35: end if

36: end procedure
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Figure 3-1: Modification of G into G′, upon which a biconnectivity algorithm fails.

memory at each node. If we are in an moderately asynchronous setting where nodes satisfy the

s-archimedean assumption [99, §12.5] — roughly speaking, that the fastest node runs s times as fast

as the slowest node — then the näıve tree-building algorithm (Algorithm 2.2) makes h(T ) at most

O(s · Diam), which may be better than using a synchronized BFS construction.

3.7 Optimality

We claim that the performance of this algorithm cannot be improved beyond constant factors, when

the algorithm is initiated at a single node, and we work in the synchronous setting. To be precise,

any singly-initiated protocol for bridge-finding must send at least m messages and take at least Diam

time, or else the protocol will not work on all graphs. These lower bounds are similar in nature, and

both depend on the fact that the whole network must be explored.

First we describe the lower bound for messages. Suppose that, when the protocol is executed on

some graph G, there is an edge (u, v) along which no messages are sent. Let G′ be a graph obtained

from G by adding a new node w and dividing (u, v) into two edges (u,w) and (w, v). We also attach

some cycles and bridges to w, as shown in Figure 3-1. When we run the protocol on G′, it must

be that no messages ever reach w, nor do they reach the new nodes and edges. Consequently, the

algorithm cannot correctly determine whether the new edges are bridges or not.

The lower bound on the time complexity of Diam rounds is similar. If an algorithm uses less

than Diam steps on some graph G, then there are parts of the graph which no messages reach.

Consequently, we can modify G so that the algorithm operates incorrectly.

Note that these lower bounds apply to all graphs. In comparison, a O(n)-time algorithm of

[26] was called “optimal” because some graphs require O(n) time to find their bridges. The O(n)

algorithm is existentially optimal, since there exist some instances on which the protocol is optimal,

and our O(Diam) algorithm is universally optimal, since it has optimal running time on all instances.

The different types of optimality were first observed by [88] and [10] in the context of leader election,

and further discussion appears in [49] [40]. Universal optimality allows us to precisely state that the
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inherent complexity of the biconnectivity problem is Θ(Diam) time and Θ(m) messages.

3.8 A Near-Optimal Local Algorithm

For now, let us forget the problem of labeling nodes according to their biconnected component, and

only worry about identifying all of the bridges in a graph. We consider initiating all nodes at the

same time, and want to know how long it will be before all edges are correctly identified as bridges

or non-bridges. By removing the assumption of a single initiator, we can beat the lower time bound

of Diam.

Suppose we remove the restriction on the message size. Then, each node can broadcast everything

it knows about its local topology after each step, and so after t steps each node will know its own

t-neighbourhood. Here is a local algorithm for bridge-finding. Initially, each edge is assumed to be

a bridge; whenever a node learns of a cycle in its neighbourhood, it informs all of the edges in that

cycle that they are not bridges. In this way we distributively determine C, the union of all cycles in

G.

Now, let us determine the time before this algorithm has correctly identified the non-bridges. A

non-bridge e will be identified as soon as a cycle containing e is known by a node; we call such a

cycle a witness for e. We need each edge to be identified by a witness in order for the algorithm to

be correct. Define the cycle-witness radius of G, denoted Υ(G), by

Υ(G) = max
e∈C

min
C a cycle

C∋e

min
v∈V (G)

max
u∈C

dG(u, v).

Then the cycle-witness radius is the minimum time needed to identify all of the non-bridges (and, it

will take another Υ(G) rounds to notify those edges). Further, Υ(G) is a lower bound on the number

of rounds before all edges can be correctly identified, similar to the bounds of Section 3.7.

To get an algorithm that still runs under the O(log n) message size bound, we use a (log n,Υ)-

neighbourhood cover, as defined in Section 2.7.1. Each edge will have a witness that is entirely

contained within one cluster. Thus, we can run our Diam-time algorithm on each cluster in parallel,

and all non-bridges will be witnessed in some cluster. Since each node may be in O(log n) clusters,

there will be congestion; however, this will only increase the time of the biconnectivity algorithm by

a factor of O(log n), since each node can rotate between participating in its containing clusters. The

resulting local algorithm takes O(Υ log3 n) time and O(m log2 n) messages to construct the clusters,

then a further O(Υ log n) time and O(m log n) messages to determine the non-bridges.

Finally, it is unlikely that Υ can be computed efficiently and/or locally. However, an algorithm
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can successively “guess” Υ = 1, 2, 4, 8, . . . , and run the local algorithm for each value in turn. Once

the guess is larger than the actual value of Υ, all edges will be correctly classified; this algorithm

becomes correct within O(Υ log3 n) rounds and uses O(m log2 n log Υ) messages. We note that this

is essentially a will-maintaining algorithm as defined by Elkin in [40].

3.9 Other Extensions

With a small modification, the algorithm of this chapter can also be used to compute the strongly-

connected components of a graph. We require that all directed edges function as 2-way communi-

cation channels. We compute a DFS tree T of the network that agrees with the direction of the

edges. It is easy to show that an analog of Equation (3.1) holds in this case. The resulting algorithm

takes O(h(T )) time and O(m) messages, identifies the edges that belong to cycles, and labels all

nodes according to their strongly-connected component. Using Awerbuch’s DFS algorithm from [8]

gives a total of O(n) time and O(m) communication complexity, and this algorithm can be adapted

without a synchronizer to an asynchronous network.

If a short DFS tree could be identified in sub-linear time, then we might be able to get a sub-linear

algorithm for identifying strongly connected components.

Question 3.9.1. Does there exist a O(Diam)-time distributed DFS tree construction algorithm,

using messages of size O(log n)?

Computing a DFS tree is known to be hard in another sense — namely, that the problem of

computing a lexicographic DFS tree is P-complete [92] — so this sublinear algorithm may not exist.

On the other hand, there is a divide-and-conquer algorithm [44] for strongly connected components,

which may lend itself to distributed and parallel implementation.

As we mention in Section 6.7.2, 2-vertex connectivity is important for some applications, so it

would be nice to determine whether a graph has any articulation points. It does not seem that

our algorithm can be easily modified to determine articulation points. Articulation points can, in

contrast, be computed by the Θ(n) time DFS-based biconnectivity algorithms of [4] and [58].

We might also try to determine the triconnected [59] components of a graph. There are efficient

parallel algorithms for this problem [48]. We state now a lemma which may give a characterization

of the triconnected components of a graph that can be computed distributively. See Section 4.7.3

for a simple way to prove this fact.

Claim 3.9.2. Let G be a graph with no bridges. Define the relation ∼D on the edges of G by x ∼D y

if the graph G − x − y is not connected. Then ∼D is an equivalence relation.
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3.10 Previous Work

There are a number of previous distributed bridge-finding algorithms. Several [4] [58] [26] use DFS

trees à la Tarjan [96]. Another algorithm [66] uses an “ear decomposition” of the network. The best

of these algorithms [4] has O(n) time and O(m) message complexity.

Some previous algorithms [26][25][23] use messages of size Ω(n) bits, including an incremental

algorithm [95] and a self-stabilizing algorithm [64]. The protocol of [60] is similar to ours, but it

uses O(mn) messages. We also note a self-stabilizing algorithm of [27] using O(n2) time.

The first sub-linear algorithm was presented by Thurimella in [100]. That algorithm has O(Diam+

n0.614) time complexity, although it is fairly complicated and uses Ω̃(n) bits of memory at some nodes.

In comparison to the DFS-based algorithms, the innovation of our algorithm is that any spanning

tree can be used to efficiently compute the biconnected components. This seems to have been

originally noticed in 1974 by Tarjan [97], using a post-order traversal. In [102] it was observed that

a pre-order traversal would also work. The idea of using arbitrary trees has been exploited before

in parallel [98][105] and distributed [60] settings.

The strongly-connected component algorithm of Section 3.9, with complexity of O(m) messages

and O(n) time, seems to do as well as any other known distributed algorithm for that problem.

However, the author has yet to research that problem in depth. It seems that there are few papers

on this topic, perhaps because a sense of direction is conceptually incompatible with edges that allow

2-way communication.
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Chapter 4

Faults and The Balancing Model

In Chapter 2, we introduced a model of distributed computation. In this chapter, we discuss how

that model is not realistic. We survey some known techniques for adapting the simple model to

real-world computation. We also present a new model of computation which we believe will help

in the creation of new robust distributed algorithms. In brief, the only operation allowed is a

symmetric balancing operation by which each node of the network adjusts its state based on the

state of its (out-)neighborhood. The generic algorithm is the following: all points iterate this

operation asynchronously, until the network reaches a stable state. In the remainder of the chapter,

we present a number of algorithms for the balancing model.

In a dynamic graph, nodes/edges may leave or join the graph over time; these changes represent

hardware failures, rebooting, and topology changes. We use G = (V ,E) to represent the union of all

vertices and edges that ever belong to the graph. In this chapter, we work with undirected dynamic

graphs unless we specify otherwise.

4.1 Realistic Assumptions

It is usually convenient to assume that a distributed algorithm will execute on a network with fixed

topology, and that the network is reliable, and this is reflected by the model of Chapter 2. However,

in practice, that model is too simple. Here are some of the most common differences between the

model and real life.

1. Synchrony: In practice, networks are rarely completely synchronous. Rather, the order in

which nodes activate (check incoming buffers, perform a computation, send out messages) is

impossible to determine a priori. An algorithm is called fully asynchronous if it does not
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rely on the order in which the nodes activate (with the caveat that each node must activate

infinitely many times). One intermediate possibility between synchrony and full asynchrony

is partial synchrony. In partial synchrony, we allow the s-archimedean assumption: for some

fixed constant s, any node can activate at most s times in between successive activations of

any other node.

2. Node Failures: In the course of executing a distributed algorithm, the individual processors

may operate incorrectly. Here is a hierarchy of common fault models from [99, p. 430], in

increasing order of disruptiveness: initially dead processes; crash failures; omission errors; and

Byzantine failures (arbitrary erroneous behaviour). Other types of failures such as timing

errors and restart errors are also possible.

3. Communication: An error may occur in the course of transmitting a message between two

nodes. The error may be one of the following types: the message may be lost; the message

may be corrupted; the message may be delivered multiple times; messages may be received in

a different order than the order in which they were sent; or messages may be delayed in the

network.

4. Unique Identifiers: As mentioned in Section 2.2, networks can be named or anonymous.

We can further break down anonymous networks into two classes. First, we may have indirect

addressing [99, p. 69] (also called local orientation [45]), where each node has a consistent

labeling of its neighbors. Alternatively, the network may be ambiguous [45]; that is to say,

each node is aware of its neighbors only as an unordered multiset.

5. Changing Topology: The topology of the network may change while the algorithm is run-

ning.

Generally speaking, acknowledging these factors becomes more important as the network becomes

physically larger: a multi-threaded computer is more reliable and synchronous than a local-area

network, which is in turn more reliable than the Internet. In sensor networks, algorithms that work

under these realistic assumptions are a necessity; it is also important that sensor network algorithms

have low communication complexity, since the network lifetime decreases with each message sent.

4.2 Addressing Reality

Let us briefly discuss some of the issues mentioned in Section 4.1 before addressing the others in

depth.

46



If there are node failures, we essentially need either randomization or partial/full synchrony. For

example, deterministic leader election is impossible in a fully asynchronous setting, even if only one

node fails [81]. In a complete network, asynchronous randomized algorithms can tolerate ⌈n/2⌉ − 1

crash failures, or ⌈n/3⌉−1 Byzantine failures. In partial or full synchrony, one can tolerate ⌈n/3⌉−1

Byzantine failures deterministically, n−1 crash failures deterministically, and n−1 Byzantine failures

probabilistically by using message authentication. We refer the reader to [99, §13.2.3] for more details

about all of these problems.

Faulty communication channels can be improved with handshaking protocols [79, Ch. 22]. These

protocols add “conversation IDs” to messages and use extra “acknowledgement” messages to improve

reliability. The most important is the “5-packet handshake,” which sends 4 extra messages for each

message to be delivered, but ensures that messages are not lost or received out of order. Probabilistic

message authentication is useful to detect messages that get corrupted or mistransmitted.

When randomness is available, most anonymous networks can be treated as named networks. If

the graph is not dynamic, then we can elect a leader, construct a spanning tree, and then preorder

the vertices to get unique node names. In a dynamic graph other approaches are possible, and we

suggest one in Section 5.6.

4.2.1 Synchronizers

It is convenient, for the purposes of designing and analyzing algorithms, to model networks as being

completely synchronous, even though this is usually unrealistic. A synchronizer allows one to convert

an algorithm for a synchronous network into an equivalent algorithm for an asynchronous network.

Here is a simple synchronizer, called the α synchronizer in [7]. It enforces a local consistency

constraint in the network, ensuring that no node runs too much faster than its neighbor. When

a node v activates, depending on the state of v’s neighbors, v may either perform a step of the

synchronous algorithm, or it may do nothing.

For each node v, let av denote the number of steps of the synchronous algorithm that v has

performed. Initially, av = 0 at each node. Whenever a node increases its counter av, it sends

the new value av to each of its neighbors. Thus, each node v knows the values {aw|w ∈ Γ(v)}.
The consistency constraint mentioned above is that aw ≥ av for all w ∈ Γ(v). To reiterate, if this

consistency constraint is met when v activates then v will 1) perform a step of the synchronous

algorithm, 2) increase av, and 3) inform its neighbors of the new value av; otherwise v does nothing.

Another way of looking at the consistency constraint is that |av − aw| ≤ 1 must be maintained

whenever v and w are adjacent.
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The main drawback of the α synchronizer is that it requires extra messages in order to commu-

nicate the values av; in total, 2m messages are sent in each round. Another simple synchronizer

β discussed in [7] requires only O(n) extra messages per phase, but slows down the speed of the

algorithm by a factor of Diam(G). The γ synchronizer of [7] allows other time-communication trade-

offs between the α and β synchronizers. A near-optimal synchronizer for event-driven algorithms

is introduced in [16] and adapted to a special class of dynamic networks in [15]. It requires only a

polylog(n) increase in time complexity, message complexity, and storage at each node.

Tel sums up many general results about synchronizers in [99, p. 470]. Namely, we cannot have a

1-crash-robust deterministic synchronizer that works on fully asynchronous networks. However, with

the archimedean assumption, randomization, or bounded-delay networks with clocks, synchronization

is possible.

4.2.2 Clustering

One basic strategy to get around the impermanence of nodes in a dynamic graph is to group them

together, identifying all nodes in a group as being part of the same object. In this way, even if

an individual node fails, the state of the network as a whole is not disturbed. Such a strategy is

explicitly formulated in [83], and the given clustering algorithm takes O(log n) rounds. The fact

that this algorithm constructs a kind of partition on the nodes of G seem to indicate that fast

partition/clustering algorithms like those discussed in Section 2.7 might be useful.

It is also possible to give clusters well-defined read and write primitives, so as to build a stable

virtual graph out of the clusters. An implementation of such a structure is discussed in [19][20]. This

algorithm assumes that the network is embedded in the plane. Each “persistent node” consists of

a dartboard-like structure with three rings of vertices. The innermost ring is where data is read or

written, with the same information replicated at each vertex. The second ring holds read-only data

and routing information. The outermost ring knows only the identity of the node. This structure

permits atomic reads and writes, and is robust against failures of individual vertices. We also note

a similar approach in [36][35].

4.3 The Self-Stabilizing Model

Assume that we have a fixed network with reliable edges. A distributed algorithm is called self-

stabilizing if, starting from any possible initial (corrupted) state of the network, the algorithm

eventually brings the network to a “correct” state. The correct state usually corresponds to solving

a particular problem.
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The oldest (and perhaps most beautiful) example of a self-stabilizing algorithm comes from

Dijkstra in [33]. He considers a ring of finite-state processors; the purpose of his algorithm is achieve

mutual exclusion by passing a virtual token around the ring. There should be exactly one token, and

each node should hold the token infinitely often. Since a self-stabilizing algorithm may be started in

an arbitrary network state, there may initially be multiple tokens; however, after O(n2) steps, there

will be exactly one token circling around the ring.

The precise algorithm is as follows. Let K > n. Each processor vi has a state σi, and each state

is an integer between 0 and K − 1. Each processor vi can read its own state and the state of its

predecessor vi−1; the predecessor of v1 is vn. Each node runs a simple process which is shown in

Algorithm 4.1. A node’s state and its predecessor’s state determine whether that node holds a token,

as commented on lines 2 and 7. We refer the reader to Dijsktra’s paper [33] or Tel’s exposition [99,

§17.1.3] for details and proof of the time bound.

Algorithm 4.1 Dijkstra’s self-stabilizing mutual exclusion algorithm for a ring.

1: procedure Mutual-Exclusion-For-v1

2: if σ1 = σn then ⊲ Right now, v1 holds a token
3: σ1 ← (σn + 1) mod K
4: end if

5: end procedure

6: procedure Mutual-Exclusion-For-Other-Nodes ⊲ Node vi runs this algorithm
7: if σi 6= σi−1 then ⊲ Right now, vi holds a token
8: σi ← σi−1

9: end if

10: end procedure

Whereas the previous sections discuss rather complicated ways to accommodate dynamic net-

works, self-stabilizing algorithms take as simple an approach as possible to fault-tolerance. The

self-synchronized viewpoint is that, while arbitrary failures may occur in the network, useful com-

putation can take place ones these failures stop.

Other self-stabilizing algorithms from [34] include the following. There exists a randomized

self-stabilizing algorithm that, in expected O(Diam) cycles, elects a leader in a symmetric network

and gives all nodes unique names; there are self-stabilizing synchronizers; by using stabilizers, any

distributed algorithm can be turned into a self-stabilizing one; a Turing machine can be simulated by

a path graph of identical processors with finite state, such that the algorithm run by those processors

is self-stabilizing.

In [34, p. 110], Dolev discusses a concept he calls superstabilization. An algorithm is called

superstabilizing if it can react quickly to point failures. For example, he shows a self-stabilizing

algorithm for colouring a path graph that takes O(n) time to stabilize, but can correct the state of

the graph after a single node failure within O(1) time. An algorithm with small superstabilization
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time is appealing for a large network, since multiple point failures would be fixed independently and

isolated from one another.

4.4 Behaviorally Symmetric Algorithms

When an algorithm is run on an anonymous network, it is assumed that each node initially runs

the same set of instructions. As we have discussed, leader election and many other problems cannot

be computed deterministically in the anonymous model, but with randomization an anonymous

network is as powerful as a named network. Anonymous networks demonstrate initial symmetry.

We want to discuss algorithms with a stronger form of symmetry, which we call behavioral

symmetry, although it does not seem to be a formalizable quality. In a behaviorally symmetric

algorithm, all nodes should really perform the same computation at all times.

For example, consider using Algorithm 2.3 (tree-based aggregation) to count the number of nodes

in a network. The computation is centralized at the root, and the tree defines a structure on the

edges that breaks the symmetry of the network. This highly un-symmetric algorithm is prone to

failure on a dynamic graph: if a node v fails, then all of its descendants are unaccounted for, and

there is no way to recover.

In order to get around this problem, we propose looking at algorithms which do not exhibit this

reliance on delicate structures, and where no nodes are more “important” than any others. In effect,

we will look at algorithms in which each node is really doing the same thing at each step. Thus

behavioral symmetry is stronger than the initial symmetry of anonymous networks. Behavioral

symmetry is related to the term decentralized as used in [57] and [68]. The resulting algorithms

are reminiscent of physical processes, such as objects connected by springs which “compute” their

positions based on balancing the local forces upon them.

4.5 A Balancing Model of Computation

In this section, we discuss a model for behaviorally symmetric distributed computation on dynamic

graphs. The model is based on the following three principles:

1. Global symmetry. We can think of any distributed algorithm as an operation that “acti-

vates” at each node repeatedly. Its input is the current state of that node, and the states of

its neighbors; the output is the new state of that node. The first principle of the model is that

at all times, each node performs the same operation.
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2. Local symmetry. As exemplified in Section 4.4, we wish to avoid algorithms which rely

on unstable structures built within the graph. The algorithm should be largely insensitive to

the state of the network at any point in time, and always work with whatever neighbors are

available. For this reason, the second part of the model is that the operation acts symmetrically

on the neighbors of the activated node.

3. Steady state convergence. The third principle relates to termination of the algorithm.

Namely, the network continually approaches a steady state, where all of the vertices are invari-

ant under the operation. The fixed point thus marks the termination of the algorithm.

We can succinctly combine all three of these ideas by describing our algorithms as performing

some kind of balancing. Each node just ensures that a local balancing rule is satisfied when it

activates; we are done when the whole graph is in equilibrium. In the dynamic setting, local failures

cause a temporary loss of balance, and the operation restores balance in affected areas of the network.

Let us comment a bit on the first principle. In the terminology of Tel, we use the [99, p. 524] read-

all, state model of communication, and the algorithm must be [99, p. 526] uniform. An argument for

the insufficiency of the message-passing model in self-stabilizing algorithms appears in [99, §17.1.2],

and the same basic idea applies to our model. Note that the traditional message-passing model

can be simulated in the state-reading model by having each node store a message buffer for each

neighbor. See Appendix A for more details.

The second principle requires some clarification. We want to say that each node’s operation is a

symmetric function of its neighbors. Equivalently, the network is ambiguous, in the terminology of

[45]. We actually propose something a bit stronger, and it is motivated by the fact that two nodes

of different degrees cannot be identical according to the “symmetric function” viewpoint, since they

have different arity. When v activates, let its state σ determine an embedding function Eσ that maps

its’ neighbors states to some domain D, a combining operator ⋆σ : D × D → D, and a selection

function Sσ that maps an element of D back to a node state. Here is how we run a single step

of the algorithm: Eσ is applied to each node in Γ(v), the resulting values are combined arbitrarily

using ⋆σ, and Sσ is applied to the final result to determine the new state of v. If we insist that ⋆σ

is commutative and associative, then we claim that the network is ambiguous. Further, using this

formality, we get nodes of different degrees to perform the “same” computation. All algorithms we

present here satisfy the additional restriction that D is a set of O(log n)-bit strings, and the function

⋆σ is computable in O(log n) time and space. In Appendix A, we discuss what can be done when D

is finite.

How does the third principle compare to the classical notion of explicit termination? So long as

each node can determine its own invariance, termination can be globally determined in our model,
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as follows. When a node’s state changes, it broadcasts a “not done” message over the network, with

maximum message lifetime set to Diam. Any node can determine that the algorithm has terminated

when it hears no such messages for Diam steps. Note that the algorithm “broadcast to all nodes”

fits our model, with corresponding symmetric operation “if you have received a message from any

neighbor since last activating, then forward it to all neighbors.”

Suppose that each node vi stores a value fi. Here are some example operations in our symmetric

toolkit that can be applied when node vi is activated:

• Select a random neighbor of vi.

• Compute the indegree or outdegree of vi.

• Compute the maximum/minimum of f on the neighbors of vi.

• Compute the average of f over the neighbors of vi.

Note that the results of these functions are independent of the order in which the neighbors are

processed.

The usefulness of a balancing algorithm will depend on its rate of convergence and its resilience

to faults. First, in a static graph, running the operation on all nodes should get us to a fixed point

quickly (for our purposes, in poly(n) time). Second, if we start with a graph that is in equilibrium

and then perturb it slightly by adding/removing an edge/node, the resulting graph should be “near”

equilibrium, in that it will rebalance itself quickly.

4.6 Balancing Algorithms for Basic Problems

In this section, we give algorithms for several basic problems that fit the model. Each algorithm

will be based on one (or a few) balancing operations performed asynchronously at all nodes of the

network.

4.6.1 Bipartiteness

This algorithm determines whether a connected, undirected graph is bipartite, by attempting to

compute a 2-coloring. Each node stores a color B, W or X, with all nodes initialized to X. We

assume that there is a single initiator, which colors itself W . Here is the symmetric operation: at

each step, any node with a W neighbor colors itself B, and vice-versa; a node with both a W and

a B neighbor should broadcast “not bipartite” throughout the graph. Alternatively, in terms of a
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balancing operation that takes place on edges, each edge balances itself so that it has one black

endpoint and one white endpoint.

If the graph is bipartite then this generates a 2-coloring; otherwise, the nonbipartiteness message

will be broadcast throughout the graph. This runs in O(Diam) time. In dynamic graphs, the above

algorithm has one-sided error: it correctly returns “bipartite” if G is bipartite, but it may misclassify

a nonbipartite graph if there are enough failures.

4.6.2 Shortest Paths

There is a symmetric local operation which allows us to find the shortest paths from all nodes to

a fixed vertex t in a directed graph. Each node labels itself according to its distance from t. The

corresponding operation works as follows: the node t has a fixed distance label ℓ(t) equal to 0. When

any other node v activates, it sets its label to 1 more than the minimum of its outneighbors’ labels:

ℓ(v) ← 1 + min
u∈Γ(v)

ℓ(u).

Consider a static graph. The label of v will stabilize at the minimum distance from v to t, provided

that a path exists from v to t. The label of a vertex with no path to t will increase to without

bound, but by capping labels at n we still get a fixed point, since Diam ≤ n− 1. Convergence of this

algorithm to the steady state takes O(Diam) rounds. To route information to t using these labels,

whenever a vertex activates, it sends any packets it holds to a neighbor with smaller label.

4.6.3 Clustering With Leaders

Next, in our directed network, consider replacing the single vertex t with multiple vertices T ; again,

each t ∈ T has a fixed label 0, and all other vertices go to 1 more than their minimum neighboring

label when they activate. This allows us to route information to a set of sinks in a network: for

example, if the only permanent storage in a sensor network is held by a set of special nodes, then we

could use this scheme to route important information to the nearest storage center. We note that

this algorithm relates to the idea of Directed Diffusion from [61], in that a local gradient is used to

direct information to the right place.

If we label each node with the member of T to which it is closest, we get a clustering algorithm.

We assume that each element of T has a distinct cluster-label. Every node stores both a distance

and a cluster-label. The corresponding operation is: identify the neighbor with minimal distance d,

copy its cluster-label, and set your own distance to d+1. Without labels, individual nodes are not

aware of their cluster leader, but the routing algorithm still maintains an implicit clustering which
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routes packets to cluster leaders.

4.6.4 Maximum s-t Flow

Recall the definition of the maximum s-t flow problem from Section 2.6.2. One algorithm for

determining the maximum flow is to repeatedly augment residual paths of shortest length.

We can adapt this to our balancing model as follows. We keep track of each node’s shortest

distance to t in the residual graph, using the algorithm of Section 4.6.2. The augmenting operation

is: if some outneighbor of vi in the residual graph has a smaller distance label to t than does vi,

and the incoming flow exceeds the outgoing flow, then augment the edge going to that neighbor as

much as possible, and update the residual graph. Initially, we have an infinite excess of flow at s.

In fact, this presents an alternative (and more intuitive, we believe) description of the Goldberg-

Tarjan [54] maximum flow algorithm, which has O(n2) time complexity. It can be made to work in

a dynamic graph [53], by adding a third symmetric balancing operation which ensures that broken

paths are removed.

4.6.5 Aggregation in Sensor Networks

As mentioned in Section 4.4, tree-based aggregation algorithms are unsuitable for dynamic networks.

However, there are other possibilities. First, in the special case where our aggregate is an infimum

[99, §6.1.5] or semi-lattice [84] function — a pairwise symmetric, associative, idempotent operation

applied to all nodes — then repeated broadcast by every node can be used, which fits our model.

This is similar to the leader election of Algorithm 2.1, for which the target infimum function is the

minimum of all node labels.

Recently, an algorithm called gossiping has applied local balancing to the problem of computing

an average. In terms of an edge-balancing operation, the idea [67][24] is that each edge (u, v)

repeatedly replaces the values f(u) and f(v) by f(u)+f(v)
2 . Repeating this operation at all nodes,

we see that the value of every node converges to the mean. This idea is applied to larger groups of

nodes in [28].

The authors of [84] give a neat idea for approximately computing n in a dynamic network of

unknown size, adapting an older idea of [43]. Each node stores a k-bit boolean vector, where 2k is

an upper bound on the network size. Each node initially sets a single bit to 1, setting the ith bit

with probability 2−i, and setting no bits with probability 2−k. By flooding (repeated broadcast),

each node can robustly determine all bits chosen. Let mex denote the lowest index of all unset bits,

then 1.3 · 2mex gives a good population estimate. This idea is extended in [84] to computing sums,
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statistical moments, medians, and modes.

4.6.6 Synchronizer

The α synchronizer of Section 4.2.1 can be implemented in our model. Suppose we have an algorithm

which we wish to run in a synchronized manner, with state space S, initial state S0 ∈ S, and

balancing operation B. In Algorithm 4.2 we show how to run that algorithm on an asynchronous

network, in a way which is consistent with our model. Essentially, the balancing operation for a

node v is, “If aw ≥ av for all aw ∈ Γ(av), then increase av and execute a step of the synchronous

algorithm.” Note that each node keeps two copies of its state, a “current” one and an “old” one.

Algorithm 4.2 Synchronization in the balancing model.

1: Let State ← S0

2: Let OldState ← S0

3: Let ame ← 0
4: procedure Balancing-Synchronizer

5: if aw ≥ ame for all aw ∈ Γ(me), then

6: OldState ← State
7: for each neighbor wi ∈ Γ(me), with i ← 1 to δ(me), do

8: if awi
= ame then

9: Inputi ← State(wi)
10: else

11: Inputi ← OldState(wi)
12: end if

13: end for

14: State ← B(State, Input1, . . . , Inputδ(me))
15: ame ← ame + 1
16: end if

17: end procedure

There is a practical problem in using this synchronizer on a network where nodes may crash or

reboot: when a node v rejoins, the counter av will be 0, and thus the neighbors of v will not be able

to do anything until av catches up to their counters. Alternatively, the issue is that the constraint

∀(u, v) ∈ E : |au − aw| < 1 cannot be consistently enforced if the edge set of G changes. Tel’s

comment at the end of Section 4.2.1 actually implies this problem: no synchronizer can exist in a

faulty network. However, if the algorithm to be synchronized is such that the details of “catching

up” can be worked out, then this synchronizer is okay.

4.7 Agent Algorithms

An agent is a stateful entity that inhabits the nodes of a network. An agent traverses the network

by following the graph’s edges, as if it were passed around by messages. Agents are useful in the
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balancing model as a simple conceptual tool. By having the agent traverse the entire network, one

can simulate certain kinds of sequential computation.

One problem with any agent algorithm is that, if the node containing the agent dies, then the

algorithm stops. Ghosh also notes this problem in the context of self-stabilizing algorithms [52]. A

basic solution is to make the entire network aware of the agent, as follows. The agent can broadcast

an “alive” message to the network at every step, with message lifetime n. If no such messages are

heard for n steps, a new agent can be created and the algorithm re-started.

Creating an agent generally requires a leader, or else multiple agents would be created by multiple

nodes. It is impossible [81] to deterministically elect a leader in a faulty network. We thus assume

that the leader is chosen externally; even though this implies some stability in the network, we only

require local stability at one node (the leader), whereas the classical model requires global stability.

Note that the “random naming” trick gives a Monte Carlo algorithm for leader election; it would be

interesting to come up with a Las Vegas election algorithm for the balancing model.

4.7.1 Census

We can use the shortest-paths algorithm of Section 4.6.2 to get a census algorithm. By this, we

mean that the agent will eventually visit every node of the network. Each node keeps a boolean

flag indicating whether it has been visited or not; thus, the agent can count the number of distinct

nodes that it has visited, or compute an aggregate function of the nodes (as defined in Section 2.4).

This algorithm applies to all strongly connected directed graphs.

The algorithm works as follows. Let T denote the set of unvisited nodes. Each node contains a

flag indicating whether or not it belongs to T ; initially, we set T = V . Concurrently with the agent’s

traversal, we run the T -shortest path and T -clustering algorithms of Sections 4.6.2 and 4.6.3. Here

is the algorithm: the agent removes the leader of its current cluster from T, waits until a different

cluster subsumes its position, travels along a shortest path to the leader of that cluster, and repeats.

Given n, it is easy to determine when this algorithm is done, since we can attach a counter c to

the agent which counts how many nodes have been removed from T. Even if n is unknown, then we

can use the agent to determine n, as the following observation shows.

Claim 4.7.1. In a strongly connected static graph, the maximum T -distance label of any node is at

most |V − T |.

Proof. The T -distance label ℓ(v) of a node v represents the length of the shortest path from ℓ(v) to

T . Now, all of the nodes on this shortest path must not be in T or else the path to such a node
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would provide a shorter T -path than the label indicates. Thus there are at least ℓ(v) nodes not in

T.

Thus, when the distance label of the agent’s current position exceeds c, we know that T is empty,

and we terminate with the census count n = c. On a dynamic graph, it is possible for the distance

labels to be incorrect; a good heuristic would be to pick some constant κ > 1 and terminate when

the agent’s position has distance label more than κc.

If we have already computed n, we also have a census algorithm for counting the number of nodes

with a specific property. Namely, instead of initializing T = V at the beginning of the algorithm,

set T to be the set of nodes with this property. We run the same greedy walk, and terminate when

the agent’s position has T -distance κn.

The time complexity of the census algorithm can be broken down into two parts: the time that

the agent spends traveling, plus the time that the agent waits for re-clustering to finish. The re-

clustering time is at most n more than the travel time, since any wait period of k rounds (except

the last) is followed by k rounds of agent movement. It is easy to see that the agent travels O(n2)

distance, since it explores n nodes, each taking at most n steps to get to. We will show in Chapter 5

that the agent travels O(n log n) distance on an undirected graph. Consequently, the whole algorithm

takes O(n2) or O(n log n) time, according to whether the graph is undirected or directed.

The need for node IDs is somewhat unsatisfactory, since our model was meant to be anonymous

and even ambiguous. Node IDs can be removed without affecting the correctness of the algorithm.

In the synchronous setting, the time complexity remains unchanged provided that, after removing a

node from T, the agent waits until that node’s distance label stabilizes for 3 rounds before moving

to the next clusterhead. In an asynchronous setting we can apply a synchronizer to the network as

described in Section 4.6.6 to get the same result.

4.7.2 Edge-Biconnectivity from a Random Walk

A random walk on a directed graph can be implemented in our model with the following operation:

if a node contains the walker upon activation, it is considered unbalanced and it sends the walker

to a random neighbor.

Using a random walk, we can determine the biconnected components of a connected undirected

graph G. Recall that an edge e ∈ E is said to be a bridge of G if the removal of e causes G to be

disconnected. This algorithm determines all bridges of G.

Fix an orientation on each edge. Let each edge (vj , vk) have a counter cjk which is initially set to

0. The idea is that we run a random walk on the graph; each time the walker traverses an edge, we
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increase or decrease that edge’s counter, according to whether it agrees with that edge’s orientation.

Claim 4.7.2. If (vj , vk) is a bridge of G, then cjk never exceeds 1 in absolute value.

Proof. From the definition of a bridge, V can be partitioned into sets V1 and V2 such that vj ∈
V1, vk ∈ V2 and (vj , vk) is the only edge between V1 and V2. Successive traversals of (vj , vk) go in

opposite directions, since that edge takes us alternately between V1 and V2. Consequently the values

of cjk as we traverse the edge are either 0,−1, 0,−1, . . . or 0, 1, 0, 1, . . . .

Claim 4.7.3. Assume that G is non-dynamic. If (vj , vk) is not a bridge of G, then the expected time

before cjk exceeds 1 in absolute value is O(mn) steps.

Proof. Let us construct a new graph. It has 3n+1 vertices: three labeled v−1
i , v0

i , v1
i for each vi ∈ V ,

plus the special vertex Exceeded. The idea is that vr
i corresponds to the event that cjk = r and

the walker is at node vi. The node Exceeded corresponds to increasing the counter to ±2. Thus,

this new graph has 3m + 1 undirected edges in total:

(vr
i , vr

i′) for each r ∈ {−1, 0, 1} and each (vi, vi′) ∈ E − {(vj , vk)}

as well as

(v−1
j , v0

k), (v0
j , v1

k), (v1
j ,Exceeded), (Exceeded, v−1

k ).

It is straightforward to show that a random walk on the new graph corresponds to the original

process on the old graph.

Since (vj , vk) is not a bridge, we can reach any vr
i from v0

j : if r 6= 0 traverse a cycle containing

(vj , vk) to set cjk correctly; then, walk to vi without using (vj , vk). Thus, the new graph is con-

nected. By applying the hitting time bound for an undirected graph [82, p. 137], we expect to reach

Exceeded in at most 2(3m + 1)(3n) = O(mn) steps.

For the algorithm, we put counters on all of the edges, and update one each time the walker

moves. If we wait for O(cmn log n) steps, then with probability 1 − n−c, all bridges of the graph

will have been identified. If the graph contains no bridges, then it is biconnected; otherwise, we can

straightforwardly determine the biconnected components by broadcasting component labels along

the nonbridge edges.

Like the 2-coloring algorithm, on a dynamic graph, this algorithm has one-sided error: if e is

determined to not be a bridge, then some cycle in E contains e.
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4.7.3 Edge k-Connectivity

The algorithm of the previous section probabilistically identifies cuts of value 1 in the graph G,

making use of the fact that |ce| < 1 for any bridge e of G. Similarly, for any cut (S, V − S) of G the

values of the edges, properly oriented, have a sum which stays in {−1, 0, 1}. Precisely, let e1, . . . , ek,

be those edges with one endpoint in S and one endpoint in V − S. Define di to be -1 (resp. 1) if the

orientation of ei points from S to V − S (resp. V − S to S.) Then

k∑

i=1

cei
di ∈ {−1, 0, 1}

by the same argument as in Claim 4.7.2.

For cuts of size 2, this algorithm seems feasible: we run a random walker on the network for a

while, and in O(mn) rounds we expect that edges whose counters remain equal up to ±1 form a cut

of value 2. It is then straightforward to determine the 3-edge-connected components of G. However,

it is not clear how to distributively check to see which pairs of edges are correlated.

4.8 Discussion

There are several other algorithms in the literature that exhibit the properties of our model. These

include algorithms for end-to-end communication [2], approximate multicommodity flows [13][14],

eigenvalue computation [68] and approximate linear programming [18].

The original motivation for the balancing model was sensor networks. However, the balancing

model incurs a high communication complexity of O(m) messages per time step. This makes it

impractical for sensor networks, where every message sent shortens the network lifetime.

How does our new model of computation relate to the self-stabilizing model? Both models involve

a model of state-based, read-all communication, and both models move toward a steady state. The

symmetry of our model is not found in the self-stabilizing model, although uniform algorithms satisfy

the weaker symmetry property that all nodes “run the same program.”

The self-stabilizing model works with any kinds of failures, so long as, at some point in time, no

more faults occur in the network. The reason that this unrealistic assumption is useful is that, if

faults occur sufficiently infrequently, the system will usually be in a correct state. However, if the

mean time between faults in the network is less than the stabilization time of the algorithm, then

a self-stabilizing algorithm will never be correct. In comparison, some of the balancing algorithms

(such as the agent-based ones) will operate correctly even when the network is never completely
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stable for more than a single operation, so long as the failures don’t disrupt the network topology

too much.

The cellular automata [104] model of computation is somewhat related to our model. In it, each

node has a finite number of possible states, and computation proceeds synchronously and uniformly.

The topology of cellular automata seems to always be an infinite graph, and so this model is not of

much practical use to a finite computer network.

We also point out the input/output automaton model of computation, defined in [77] and devel-

oped in [65] [50]. This model is a convenient way to express certain distributed algorithms [35] and

proofs [80]. There are no symmetry constraints in this model.

Finally, let us point out that it is difficult to state, exactly, how robust is the balancing model.

We have a general expectation that balancing algorithms will not be wrecked by single point failures.

However, given enough properly placed node or edge failures, the graph becomes disconnected, and

most algorithms cannot work. Even without total disconnection, a topology that changes quickly

enough (e.g. G becomes a new random connected subgraph of Kn in each round) causes even the

simplest algorithms to fail. In Chapter 6 we attempt to address some of these concerns as they apply

to computation of discrete harmonic functions.

60



Chapter 5

The Greedy Tourist Algorithm

In this section, we flesh out the census algorithm described in Section 4.7.1. The main results are

Θ(n log n) upper and lower bounds on the number of steps required.

5.1 The Problem

We have just landed at the airport of a foreign island, and wish to visit every city. The catch is

that we didn’t buy a map, and we do not understand the road signs. We do recognize the alphabet,

so we keep a map of the cities we’ve been to and the destinations of the outgoing roads from each.

How can we visit all of the cities efficiently?

We model the cities and the roads as a graph G with n vertices. We call the entity which traverses

the graph a walker. In each step, the walker moves from its current position v to an adjacent vertex

v′ ∈ Γ(v). The walker must always determine its next step from incomplete, local information: the

walker knows Γ(v) for each node v that it has already visited, but the remainder of the graph is

unknown to it. We require that G be strongly connected, so that we never get “stuck” without being

able to visit more vertices.

5.2 The Algorithm

This chapter is concerned with a particular algorithm that visits all of the cities in few steps.

Algorithm 5.1 depicts the Greedy Tourist (GT) algorithm for this task. It is essentially “while there

are unvisited vertices, take a shortest path to the closest unvisited vertex.”
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Algorithm 5.1 The Greedy Tourist Algorithm, from the walker’s perspective.

1: procedure Walker-GT

2: Let v0 denote your initial position
3: Let pos always denote your current position
4: Let G be a graph initially containing v0, Γ(v0), and the outgoing edges of v0

5: visited ← {v0}
6: while visited 6= V do

7: Select dest ∈ (V − visited) such that dG(pos, dest) is minimized
8: Follow any shortest path from pos to dest (thus pos ← dest)
9: Add Γ(pos) and the outgoing edges of pos to G

10: visited = visited ∪ {pos}
11: end while

12: end procedure

On an undirected graph, GT is not optimal: a simple depth-first search strategy will take at

most 2n steps, whereas GT may incur Θ(n log n) steps, as we show in Theorem 5.4.4. However,

if (as in Chapter 4) we think of the graph as representing a faulty network, a depth-first search

is unsuitable: a given node may become disconnected from its parent in the DFS tree during the

traversal, causing the algorithm to fail. The greedy tourist algorithm is practical for traversing an

entire faulty network, and we thus aim to prove its efficiency.

Note that line 7 of GT is non-deterministic, in that the walker is allowed to break ties arbitrarily.

The following definition captures the allowable forms of nondeterminism.

Definition 5.2.1. Fix a graph G. The permutation T = (t1, t2, . . . , tn) of V is said to be a greedy

traversal of G if dG(ti, ti+1) ≤ dG(ti, tj) whenever 1 ≤ i < j ≤ n.

We say that a node is explored when the walker moves to that node for the first time.

Theorem 5.2.2. Consider a walker that executes the GT algorithm starting from t1. It is possible for

the walker to explore the nodes in the order t1, t2, . . . if and only if (t1, . . . , tn) is a greedy traversal.

Proof. A greedy traversal is easily seen to be the order of exploration of a global greedy search;

namely for each i, we have that

dG(ti, ti+1) = min
j>i

dG(ti, tj).

To complete the theorem, we show that the walker’s local greedy strategy is actually equivalent

to a global greedy strategy. In other words, the closest unexplored node that the walker knows about

is also the closest node that exists.

Claim 5.2.3. If the walker has not yet visited all nodes, the globally closest unexplored node to the

walker has at least one explored in-neighbor.
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vk+1

...

. . .

v2

v1

vk+2

vk+3v2k−1

v2k

Figure 5-1: A graph taking Ω(n2) steps to visit every node.

Proof. Suppose otherwise, that the walker is at pos and that the node dest minimizes dG(pos, dest),

but Γ−1(dest) is completely unexplored. Let v be the node preceding dest on a shortest path from

pos to dest; since v ∈ Γ−1(dest), it must be that v is unexplored. We then have that dG(pos, v) <

dG(pos, dest), contradicting the minimality of dest.

As a result of this claim, the globally closest node is always known to the walker, completing the

proof of the theorem.

Definition 5.2.4. For a greedy traversal T of a graph G, define its cost C(T ) by

C(T ) =

n−1∑

i=1

dG(ti, ti+1). (5.1)

Thus, the cost measures the total number of edges that the walker must traverse before it has

visited every vertex. In the remainder of this chapter, we will be concerned with bounding the cost

in terms of n. Since the number of steps between successive explorations is at most Diam(G) < n,

and there are n − 1 nodes other than t1 to explore, we know that C(T ) < nDiam(G) < n2. This

bound is tight in the directed case, as the following theorem shows.

Claim 5.2.5. Let n = 2k. The directed graph shown in Figure 5.2 takes at least n2/4 steps to visit

every node, no matter where you start, and no matter what strategy is used.

Proof. Note that the nodes v1, v2, . . . , vk+1 are all at a distance k from each other. Any traversal of

this graph must visit each of these k + 1 nodes at least once. Since there must be at least k steps

between successive explorations of {v1, . . . , vk+1}, at least k2 = n2/4 steps take place in total.

Hereafter, we concern ourselves only with undirected graphs. The greedy walk does much better

in this setting.
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5.3 An Upper Bound For Undirected Graphs

In this section, we show that C(T ) < 2n ln n. We introduce some terminology for convenience.

Definition 5.3.1. Let T be a greedy traversal. Define the leg of T from ti to be any shortest path

from ti to ti+1.

The proof of the upper bound is based on the following lemma which, given a low-diameter

partition of the graph’s vertices, bounds the number of long legs in a greedy traversal.

Lemma 5.3.2. Let G = (V,E) be a graph and let V1, V2, . . . , Vk be a partition of V. Suppose the

integer D is so large that D ≥ DiamG(Vj) for each j. Then in a greedy traversal T of G, the number

of legs of length more than D is at most k − 1.

Proof. Let ti be a node from the walker’s tour, and Vj be the component containing ti. Suppose ti

is not the last node from Vj to be explored, say ti′ ∈ Vj has i′ > i. Then by Definition 5.2.1 and the

small diameter of Vj ,

dG(vi, vi+1) ≤ dG(vi, vi′) ≤ D.

Thus, for each of the k components, at most one leg leaving that component has length greater than

D.

Let Vℓ denote the component containing the last vertex to be explored. We see that no leg

leaving Vℓ has length greater than D. This completes the proof.

Next, we show that every graph can be partitioned into a small number of subsets each having

low G-diameter. Note that this is one way to (sequentially) construct small (t − 1)-dominating sets

as defined in Section 2.6.5.

Lemma 5.3.3. Let G = (V,E) be an undirected graph and let t be an integer. There exists a

partition of V into at most ⌈n/t⌉ components such that each component has G-diameter at most

2t − 2.

Proof. First, we claim that it suffices to consider the case where G is a tree. This holds because

the G-diameter is non-increasing when we add an edge; precisely, if H′ is obtained by adding one or

more edges to H, then DiamH′(S) ≤ DiamH(S). Thus, we consider a spanning tree of G, apply the

theorem to the tree to obtain the partitions, and then observe that adding back the non-tree edges

does not increase the diameter of the partitions.

Let T denote our tree, with root r. Suppose, as a special case, that T has height t − 1 or less.

Then for any two nodes u, v ∈ T , we have dT (u, v) ≤ dT (u, r) + dT (r, v) ≤ 2(t − 1). Consequently
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the trivial partition of V into a single component satisfies the requirements of the problem.

If T has height greater than t− 1, then consider any subtree S of T with height exactly t− 1. A

similar argument shows that its vertex set V (S) has G-diameter at most 2(t−1). Since h(S) = t−1,

we have |V (S)| ≥ t. Our construction is to make V (S) into its own component, remove S from T ,

and iteratively find more subtrees of height t − 1 within T until only a single short tree is left.

Since each component except possibly the last one contains at least t vertices, we have no more

than ⌈n/t⌉ components in total.

We finally obtain the upper bound by rewriting Equation (5.1) and then applying the previous

two lemmas.

Theorem 5.3.4. For any greedy traversal T of an undirected graph, C(T ) < 2n ln n.

Proof. For 1 ≤ i < n, let ℓi denote the length of the path leaving vi. Let λi denote the number of

legs in T of length greater than or equal to i, for i = 1 to n − 1.

It is straightforward to see that

C(T ) =

n−1∑

i=1

ℓi =

n−1∑

i=1

λi,

similar to the identity for a partition and its conjugate.

For an integer t, apply Lemma 5.3.3 to obtain a partition of V into ⌈n/t⌉ subsets of G-diameter

at most (2t − 2), and then apply Lemma 5.3.2 with D = (2t − 2) : as a result, we see that λ2t−1 ≤
⌈n/t⌉ − 1 < n/t. Also, note that λ2t ≤ λ2t−1. Thus, we have

C(T ) =

n−1∑

i=1

λi < n + n + n/2 + n/2 + . . . ≤ 2nH⌈n/2⌉.

The stated result now follows from the bound Hk < ln k + 0.578, plus some checking to make

sure that small cases are satisfied.

5.4 Tightness of the Upper Bound

In order to show that the Θ(n log n) bound for the greedy tourist algorithm is tight, we construct a

family of labeled graphs called layered rings. The vertices of a layered ring are labeled with integers

corresponding to the order of a greedy traversal.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 5-2: The layered ring LR(24, 1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23

Figure 5-3: The layered ring LR(24, 2).

We denote by LR(2m, k) the family of layered ring graphs, with parameters m, k ∈ Z
+. Intuitively,

LR(2m, k) can be thought of as a cycle of length 2m + 1, augmented with other nodes so that a

greedy traversal can go around the cycle k times.

The vertices of each layered ring graph are partitioned into k layers, denoted LRi(2
m, k) for

i = 1, . . . , k. These layers are explored in ascending order. As shown in Figure 5-2, LR(2m, 1) is just

a path of length 2m. This path will be the first layer of LR(2m, k) for each k.

By adding just a few nodes, we can traverse around the ring a second time. Figure 5-3 shows

LR(2m, 2) for m = 4. It is the path LR(2m, 1) augmented by a layer of m + 2 additional nodes that

add legs of length 1, 1, 1, 2, 4, 8, . . . , 2m−1 to the greedy traversal. The reader should verify that the

labels in Figure 5-3 correspond to a greedy traversal.

We can iterate this augmentation process to make rings which are traversed k times, for any k.

In LR(2m, k + 1), the first layer will be the 2m-vertex path, the second layer will be new, and the

remaining layers are taken from LR(2m, k) according to LRi+1(2
m, k + 1) = LRi(2

m, k). Figure 5-4

shows LR(2m, 3) as an example: the first layer (1–17) is a path, the third layer (30–35) comes from

LR2(2
m, 2), and the second layer (18–29) is new. The legs of LR3(2

m, k + 1) determine how many

nodes we need to put in to LR2(2
m, k + 1). Precisely, for each leg of length 2j in LR3(2

m, k + 1),

we need j + 1 legs of length 1, 1, 2, 4, 8, . . . , 2j−1 in LR2(2
m, k + 1). For example, the third-layer leg

from 34 to 35 corresponds to the four second-layer legs from 25 to 29.

1 172 3 4 5 6 7 8 9 10 11 12 13 14 15 16

30 31 32 33 34 35

292827262524232221201918

Figure 5-4: The layered ring LR(24, 3).
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5.4.1 Analysis

In the remainder of this chapter, we use the notation F (n) ≈ G(n) to mean that limn→∞
F (n)
G(n) = 1.

We see that, when we add a new layer, a leg of length 2t decays into t + 1 legs of lengths

1, 1, 2, 4, . . . , 2t−1. Layer 2 of LR(2m, k) consists of m + 1 legs of length 1, 1, 2, 4, . . . , 2m−1. This

gives us a recursive formula for counting legs, and therefore nodes, belonging to each layer.

Fix m and k, with k > 1.

Definition 5.4.1. Let L(t, j) denote the number of legs of length 2t in the jth layer of LR(2m, k).

The iterative construction of the graphs gives the following recurrence relation.

1. L(0, k) = 2, and L(1, k) = L(2, k) = · · · = L(m − 1, k) = 1.

2. For t > 0 and 1 < j < k, we have L(t, j) =
∑

u>t L(u, j + 1).

3. For t = 0 and 1 < j < k, we have L(t, j) = L(t − 1, j) + 2
∑

u>t L(u, j + 1).

Lemma 5.4.2. For 1 < j ≤ k, the solution of this recurrence relation is given by

L(t, j) =






(
m−1−t

k−j

)
, if t ≥ 1;

2
∑k−j

i=0

(
m−1

i

)
, if t = 0.

Now, let n denote the number of nodes in LR(2m, k). Clearly, the number of nodes in layer j is

1 +
∑

t L(t, j). We can simplify the part of the sum with t ≥ 1, since

m−1∑

t=1

L(t, j) =

m−1∑

t=1

(
m − 1 − t

k − j

)
=

(
m − 1

k − j + 1

)
.

This observation leads to a simple formula for n.

n = 2m + 1 +

k∑

j=2



1 +
∑

t≥1

L(t, j) + L(0, j)





= 2m + k +
k∑

j=2

((
m − 1

k − j + 1

)
+ 2

k−j∑

i=0

(
m − 1

i

))

= 2m + k + (2k − 2)

(
m − 1

0

)
+

k−1∑

i=1

(2k − 2i − 1)

(
m − 1

i

)
.

Lemma 5.4.3. Fix ǫ > 0. For each m, let k = (m− 1)/(2 + ǫ). For the family of graphs LR(2m, k)

we have

lim
m→∞

n

2m
= 1.
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Proof. Clearly this limit is at least 1, since n > 2m. We have

n

2m
=

2m + 4k − 2 +
∑k−1

i=1 (2k − 2i − 1)
(
m−1

i

)

2m
< 1 + k

∑k−1
i=0

(
m−1

i

)

2m−1
. (5.2)

The fraction on the right-hand side is precisely the probability that m− 1 flips of a fair coin will

result in fewer than k heads. By applying a Chernoff bound [82, Thm. 4.2], this probability is seen

to be at most exp
(
− (m−1)ǫ2

4(2+ǫ)2

)
. Thus the quantity on the right-hand side of Equation (5.2) goes to

1 as m goes to infinity, completing the proof.

The previous lemma allows us to finally prove our lower bound.

Theorem 5.4.4. For any ǫ > 0, and sufficiently large n, there exist greedy traversals of cost

n log2 n

2 + ǫ
− o(n log n).

Proof. We use the family of graphs considered in Lemma 5.4.3, so that n ≈ 2m. The greedy traversal

of LR(2m, k) that we are interested in takes k2m + (k − 1) ≈ kn steps, since it circles the ring k

times. Since k = (m − 1)/(2 + ǫ) ≈ log2 n/(2 + ǫ) the stated bound follows.

5.5 Exact Results for Small Cases

As part of this project, we came up with an efficient algorithm for enumerating all possible traversals

and identifying the most costly one. This algorithm was implemented in Java, and the results for

n ≤ 10 are shown in Table 5.1. For n ≤ 6, the maximum value of C(T ) is 2n− 3 and is obtained by

the star graph K1,n−1; only the representative case n = 6 is shown.

5.6 Application: Fault-Tolerant Node Naming

The original motivation for the greedy tourist algorithm was to compute n in a faulty network, as

mentioned in Sections 5.2 and 4.7.1. This protocol is easily extended to compute aggregates of a

network; each time a new node is explored, the walker adds that node’s value to the aggregate.

In an arbitrary-topology dynamic anonymous network, no efficient algorithm seems known for

giving all nodes guaranteed unique identifiers. This can be accomplished by the greedy tourist

algorithm as follows: label the nodes in the order that they are explored. As mentioned in Section

4.7, we would need to include timeouts in case the walker dies. We note that, on the complete graph,
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n Maximum Cost Representative

6 9

1 62

4 53

7 12

2 31

5 47

6

8 14

8 1 2 5

6 3 4 7

9 17

1 2 3 7

9 6 5 4 8

10 20

1 2 3 4 6

10 8 7 5 9

Table 5.1: Greedy traversals of maximum cost for n ≤ 10.
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this is well-known as the renaming problem [6][85], but protocols for the renaming problem do not

apply to arbitrary graphs.

5.7 Previous Results and Extensions

In [93], Rosenkrantz et al. consider the GT algorithm in the context of approximation algorithms

for the Traveling Salesman Problem. They consider weighted graphs, where the length of a path is

the sum of the edge weights along it. Let MinTSP denote the length of the shortest (not necessarily

simple) cycle containing all nodes. They show, by a different method than used here, that for any

weighted undirected graph on n vertices, the nearest neighbor algorithm produces a greedy traversal

T such that

C(T ) ≤
(

1

2
⌈log2 n⌉ +

1

2

)
MinTSP.

Since a spanning tree traversal can be used to produce a cycle of length 2(n − 1) in any graph, we

can use their result to bound C(T ) by n log2 n.

The authors of [93] also give a lower bound, but only for the weighted case. They construct a

graph on 2m vertices with a Hamiltonian cycle of unit edges, but with a greedy traversal of cost

Θ(m2m). This traversal visits every node exactly once. In contrast, the expensive greedy traversal

of the layered ring passes around the whole graph Θ(log n) times. It does not seem possible to adapt

their lower bound to the case where the edges are unweighted.

The upper bound of [93] improves the bound of Theorem 5.3.4 by a factor of 2 ln 2 ≈ 1.39. Further,

combining that upper bound with the lower bound of Theorem 5.4.4, the maximum number of steps

in a greedy traversal is resolved within a factor of 2.

In [63], a greedy algorithm is given for solving approximate TSP instances on planar graphs,

that produces traversals of cost O(n). It is straightforward to make the graphs LR(2m, k) planar,

which informs us that the greedy tourist algorithm does not enjoy a linear performance guarantee

on planar graphs.

We had originally conjectured that, on unweighted graphs, the greedy tourist algorithm satisfied

C(T ) = O(n), which we later discovered to be false. However, given that our lower bound construc-

tion is quite fragile, it is possible that a randomized nearest neighbor algorithm might have expected

linear cost. For example, we could replace line 7 of Algorithm 5.1 with “select dest uniformly at

random from the nearest unvisited nodes.” An alternative which is more palatable for a distributed

implementation is that, at each step, the walker randomly moves to a neighbor whose distance to

an unexplored vertex is minimized. So far as we know, the performance of this algorithm is an open

question.
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Chapter 6

Discrete Harmonic Functions and

Eulerian Graphs

In mathematical analysis, a function is said to be harmonic (or analytic) if its value at each point

x is the average of the values of that function in a (suitably defined) neighborhood of x. This idea

can be adapted to finite graphs: each vertex has value equal to the mean of its neighbors’ values.

These functions are natural candidates for steady states of the model described in Chapter 4.

In this chapter, we characterize the convergence and stability of harmonic functions, and discuss

potential applications to distributed algorithms.

6.1 Basic Properties

In this chapter, G = (V,E) is a directed, finite graph, and each edge (vi, vj) has a positive weight

wij . Define wi to be the total weight leaving vi and W to be the total weight,

wi :=
∑

vj∈Γ(vi)

wij and W :=
∑

vi∈V

wi.

By convention, for a function f : V → X, we write fi for the value of f at vi. In this chapter X will

always be a R-vector space, thus f may be interpreted as a |V |-dimensional vector over X.

A directed, weighted graph is Eulerian if every node has total in-weight equal to its total out-

weight:

G is Eulerian ⇔
∑

j∈Γ(i)

wij =
∑

i∈Γ(j)

wji, for all vi ∈ V.
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Note that an undirected graph is always Eulerian, since wij = wji. The nicest results in this chapter

hold only for Eulerian graphs, but for now we consider all graphs.

Let B denote a subset of V which we call the boundary. A vertex that is in V − B is called an

interior vertex. We say that f is harmonic (on G) with boundary B if, for all interior vertices vi,

fi =

∑
vj∈Γ(vi)

wijfj

wi
. (6.1)

In other words, the value of f at v is equal to the weighted average of its values at v’s outneighbors.

Here is a simple characterization of all harmonic functions on a fixed graph with a fixed boundary.

Proposition 6.1.1. For a fixed weighted directed graph and fixed boundary, the set of all harmonic

functions is a vector subspace of XV .

Proof. Let f and g be harmonic with the specified boundary, and let α, β ∈ R. It follows easily from

Equation (6.1) that αf + βg is a harmonic function.

Now we look at some elementary properties of harmonic functions.

Proposition 6.1.2. Let f be a real-valued harmonic function on G with boundary B. If v is an

interior vertex, then either

f(u) = f(v) for all u ∈ Γ(v),

or there exist u′, u′′ ∈ Γ(v) such that

f(u′) < f(v) < f(u′′).

Proof. This proposition follows immediately from Equation (6.1).

Proposition 6.1.2 rules out strict local extrema except on the boundary. A boundary B is proper

for a directed graph G if, for all v ∈ V − B, there exists a directed path from v to some boundary

vertex b ∈ B. When the boundary is proper, it is straightforward to show [75, §3] that global

extrema occur only on the boundary.

Proposition 6.1.3 (Maximum Principle). If a real-valued discrete harmonic function f has a proper

boundary, the maximum and minimum values of f occur on the boundary.

Another important consequence of having a proper boundary is that every set of boundary values

extends uniquely to a harmonic function on all of V. Let Aint denote the weighted adjacency matrix

of G, modified by zeroing out rows corresponding to boundary vertices. Let D denote the diagonal

matrix with Dii = wi.
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Proposition 6.1.4. Let g ∈ R
V be a vector containing values for boundary vertices, and zeroes for

interior vertices. If the boundary is proper, then the matrix D−Aint is invertible, and moreover the

unique harmonic extension of g to all of V is the function f given by

f = (D − Aint)
−1Dg. (6.2)

Proof. First, it is straightforward to see that the harmonic formula, Equation (6.1), is equivalent to

f = D−1Aintf + g. (6.3)

Equation (6.3) in turn can be rearranged to give Equation (6.2), provided that (D−Aint) is invertible,

and so this invertibility is all that we need to show.

Let y be in the right nullspace of (D − Aint), so that (D − Aint)y = 0. Rearrange to get

y = D−1Ainty + 0, which in comparison with Equation (6.3), implies that y is a harmonic function

with all boundary values zero. By the Maximum Principle, all of y is zero. Thus (D − Aint) has a

trivial right nullspace, implying that it is invertible.

Note that this result holds even when f is a vector-valued function, by applying the same argu-

ment to each component of f.

Using Propositions 6.1.1 and 6.1.4, we get the following.

Corollary 6.1.5. Regarded as a vector subspace of R
V , the set of all real harmonic functions on a

fixed graph with a fixed proper boundary B has dimension |B|. One basis is formed by the harmonic

functions whose boundary values are 1 at one boundary point and 0 at all others.

6.2 Interpretation

Real-valued harmonic functions represent the equilibria positions of points in spring networks [29]

and the electric potentials of nodes in electrical networks [22]. Showing the equivalence of the

harmonic formula (6.1) with these two systems requires just a little knowledge of physics.

There is another interpretation of harmonic functions which is very useful for our purposes,

discussed previously in [22]. It allows us to succinctly describe the unique extension described by

Proposition 6.1.4. For a weighted directed graph G, we define the (weighted) random walk on G
by specifying that the probability we step to vj from vi is wij/wi. We remark for later that the

stationary distribution for a weighted random walk on an Eulerian graph is wi

W at each node vi, and

this fact [30] is easy to verify.
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Theorem 6.2.1. Assign values {gb | vb ∈ B} to the boundary nodes of a graph G. For a node vi,

define the random variable vρ(i) as follows. Start a random walker at vi, and while the walker is not

on the boundary, have it take a single step of the random walk on G. Define vρ(i) to be the position

of the walker when it stops. Define fi to be the expected value of g where the walker reaches the

boundary,

fi = E[gρ(i)].

The function f is harmonic and agrees with g on all boundary points.

Proof. It is clear that f = g on the boundary, since vρ(i) = vi with probability 1. Since the random

walk is a Markov chain, for any internal node vi, the linearity of expectation allows us to write

E[gρ(i)] =
∑

vj∈Γ(vi)

wij

wi
E[gρ(j)].

Thus, f satisfies the definition of a harmonic function.

6.3 Stability of Harmonic Functions

In this section, we consider the following problem: if we have a graph G with proper boundary

B, and we add a new edge to G, how much can this change the values of the resulting harmonic

function? This is motivated by the possibility of using a harmonic function as a tool in a faulty

network. If we can show that a single edge doesn’t change the function too much, we may gain some

stability in the face of edge failures.

First, we show that, when adding an edge (vi, vj) of unit weight, the node whose value changes

the most is vi.

Proposition 6.3.1. Let G be a graph with proper boundary B, let vs be an interior vertex, and let

G′ be G augmented with the edge (vs, vt). Let f denote a harmonic function on G, and let f ′ denote

a harmonic function on G′ with matching boundary values. Then for all i,

|fi − f ′
i | ≤ |fs − f ′

s|.

Proof. Let the boundary nodes be vb1, . . . , vbk, and the boundary values of f be fb1, . . . , fbk. Let

X denote the vector space in which f takes its values. Let G′′ denote the graph obtained from G
by turning vs into a boundary vertex. Let fY :[pb1,...,pbk,ps] denote the harmonic function on G′′ with

values in the vector space Y, and boundary values pb1, . . . , ps ∈ Y.
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Let p be a parameter in X. The superposition principle of Proposition 6.1.1 shows that

fX:[fb1,...,fbk,p] = fX:[fb1,...,fbk,0] + fX:[0,...,0,p].

Further, it is easy to see that fX:[0,...,0,p] = pfR:[0,...,0,1], so we have

fX:[fb1,...,fbk,p] = fX:[fb1,...,fbk,0] + pfR:[0,...,0,1]. (6.4)

In other words, the position of each vi is a linear function of the position p of vs.

Now, we have f = fX:[fb1,...,fbk,fs] and f ′ = fX:[fb1,...,fbk,f ′

s]. By Equation (6.4),

f − f ′ = (fX:[fb1,...,fbk,0] + fsf
R:[0,...,0,1]) − (fX:[fb1,...,fbk,0] + f ′

sf
R:[0,...,0,1])

= (fs − f ′
s)f

R:[0,...,0,1].

The maximum principle implies that f
R:[0,...,0,1]
i ∈ [0, 1] for each i, from which the proposition follows.

A similar argument shows that, of all potential edges we could add which leave from vs, the

maximum change in fs is incurred when the destination of the edge is on the boundary.

Proposition 6.3.2. Let G be a graph with proper boundary B, with a fixed set of boundary values

{gb | vb ∈ B}. Let G[i] indicate G augmented with the unit edge (vs, vi), and let f [i] denote the

harmonic extension of {gb | vb ∈ B} on G[i]. Then for all i,

f [i]
s ∈ ConvexHull{f [b]

s | vb ∈ B}.

Proof. Let G′ be the graph G augmented with an additional boundary vertex vn+1 and an additional

edge {vs, vn+1}. Let fp denote the harmonic function on G′ with boundary values {gb | vb ∈ B} and

gn+1 = p. As in the proof of Proposition 6.3.1, we find that f is a linear function of p, say fp = a+bp,

with b a real vector and a a vector taking its values in the same space as f.

Next, we claim that f [i] = ff
[i]
i . This holds because, fixing the destination of the new edge

in G′ at f
[i]
i , we obtain a harmonic function equivalent to f [i]. By the maximum principle, f

[i]
i ∈

ConvexHull{gb | vb ∈ B}. Thus

f [i]
s = f

f
[i]
i

s = as + bsf
[i]
i ∈ as + bsConvexHull{gb | vb ∈ B}.

75



Since the ConvexHull operation commutes with a linear transformation, we conclude that

f [i]
s ∈ ConvexHull{as + bsgb | vb ∈ B} = ConvexHull{f [b]

s | vb ∈ B},

where the last equality comes from the fact that, when vb is on the boundary, f [b] = ff
[b]
b = fgb .

Now that we have determined how we can maximally change the graph by adding a single edge,

we shall bound the value of this maximum change.

Proposition 6.3.3. Let G and B be as in Proposition 6.3.2, and G′ be G augmented with a new

edge (vs, vt) of weight wnew where vs 6∈ B and vt ∈ B. Let f denote a harmonic function on G, and

f ′ denote the harmonic function induced by the same boundary conditions on G′. Let ws denote the

total weight of edges leaving vs in G, and ps be the probability that a random walk in G, starting from

vs, returns to vs before hitting the boundary. Then

f ′
s − fs =

wnew

wnew + ws(1 − ps)
(ft − fs).

Proof. Recall from Theorem 6.2.1 the interpretation of a harmonic function as the expected value

of a random walk. Consider a random walk starting from vs in G, and let us stop this walk when it

either hits a boundary node or when the walk returns to vs. Let pi denote the probability that this

walk stops at vi.

By linearity of expectation, and since the walk is a Markov chain, we have that

fs = psfs +
∑

vb∈B

pbfb, and consequently fs =

(
∑

vb∈B

pbfb

)
/(1 − ps). (6.5)

Consider performing the random walk on G′ instead, and again stop when we hit a boundary node

or vs; the only difference from the walk on G is that, with probability wnew/(wnew + ws), the walk

proceeds directly to vt. This gives

f ′
s =

wnew

wnew + ws
ft +

ws

wnew + ws

(
psf

′
s +

∑

vb∈B

pbfb

)
, thus f ′

s =
wnewft + ws

(∑
vb∈B pbfb

)

wnew + ws − wsps
.

By subtracting the above two equations and cross-multiplying, we obtain

f ′
s − fs =

wnew

wnew + ws(1 − ps)

(
ft −

∑
vb∈B pbfb

1 − ps

)
.

Finally, we substitute Equation (6.5) in the above equation to prove the proposition.

Let Diam(f) denote the maximum Euclidean distance between any two values of f on the bound-
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ary of . The term (ft − fs) in Proposition 6.3.3 is roughly proportional to Diam(f) in the worst

case; precisely, |fs − ft| ≤ Diam(f) by the maximum principle, and for each s, there exists some t

for which |fs − ft| ≥ Diam(f)/2.

From Propositions 6.3.1, 6.3.2, and 6.3.3, we have the following.

Theorem 6.3.4. Let f be harmonic on G with proper boundary B. Let G′ be constructed from G by

adding a single edge (vs, vt) of weight wnew, and let f ′ be the harmonic extension of f ’s boundary

values to G′. Let C(vs) denote the maximum of maxvi∈V |fi − f ′
i |, over all choices of vt. With ws

and ps as in Proposition 6.3.2, we have

C(vs) ≤
wnewDiam(f)

wnew + ws(1 − ps)
≤ 2C(vs).

Thus, the stability of a harmonic function does not depend on the boundary values except for

the scale factor Diam(f). While Theorem 6.3.4 gives an exact bound on the maximum change of a

harmonic function, it is a bit unpalatable, and now we will make it a bit sweeter.

Let G⋆ denote a modified version of G in which all of the boundary nodes are identified into a

single node v⋆. Lovász proves in [74, Prop. 2.3] that

1 − ps =
1

κ(vs, v⋆)π(vs)

where the commute time κ(vs, v
⋆) is the expected time for a random walker in G⋆, starting at vs, to

go to v⋆ and back to vs, and π(vs) is the steady-state distribution of vs for the random walk on G⋆.

Note that this analysis is only valid when there is at least one path from the boundary to vs.

To simplify, we assume for the remainder of the section that G is a unit Eulerian multigraph.

Thus W = m, also π(vs) = δ(vs)/m and ws = δ(vs). With C(vs) as in Theorem 6.3.4, we get

C(vs) =
Θ(Diam(f))

1 + m/κ(vs, v⋆)
.

We thus call m/κ(vs, v
⋆) the harmonic stability factor of vs in G, and we call mins 2m/κ(vs, v

⋆) the

harmonic stability factor of G. Generally speaking, a stability factor less than 1 means that adding

an edge can change a harmonic function by Θ(Diam(f)), while a stability factor k > 1 implies that

this change is at most O(Diam(f)/k).

In undirected graphs, we have from [74] that 2m/κ(vs, v
⋆) = 1/Rvs,v⋆ , where Rp,q denotes the

resistance between p and q when all edges are interpreted as unit resistors. By Raleigh’s shortcut

principle [74, Cor. 4.2] we get the following.

Proposition 6.3.5. Adding a new edge to an undirected graph does not decrease its stability factor.
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Question 6.3.6. Is is analogously true that adding a directed cycle of edges to an Eulerian graph

does not decrease its stability?

Again, in an undirected graph, let λ2 denote the second eigenvalue of the transition matrix; then

by [74, Cor. 3.3] we have

1 − λ2

δ(vs)−1 + δ(v⋆)
−1 ≤ 2m

κ(vs, v⋆)
≤ 2

δ(vs)−1 + δ(v⋆)
−1 .

In particular the stability factor is at most 2δ(vs), so we would not expect bounded-degree graphs

to be especially stable. On the other hand, an expander graph should be at roughly as stable as its

minimum degree.

6.4 Convergence of Harmonic Functions

Now we discuss computing a harmonic function distributively. Let the weighted, directed graph

G model a computer network. In our model, each vi stores its value fi, the node vi can read fj

whenever (vi, vj) ∈ E, and vi knows each outgoing weight wij .

Here is how we can compute the harmonic function: when an interior node vi activates, set

fi ←
∑

vj∈Γ(vi)
wijfj

wi
.

This will be called the averaging operation, and it fits the model of computation from Chapter 4. The

fixed points of this operation are precisely harmonic functions. We will show that the convergence

of this process is fast when the random walk associated with the weights hits the boundary in few

expected steps. For the rest of this section, we consider a fixed directed, weighted graph G with

fixed proper boundary B.

Definition 6.4.1. Define the row-stochastic matrix T by

Tij =






1, if vi ∈ B and vi = vj ;

wij/wi, if vi /∈ B and vj ∈ Γ(vi);

0, otherwise.

Note that T is the transition matrix for a random walk on G that stays fixed once we hit the

boundary. Also, note that a function f is harmonic if and only if Tf = f.

The next theorem shows how quickly the averaging process converges, under the ℓ∞ norm.
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Theorem 6.4.2. Consider a network with a proper boundary. Let τ ∈ Z be large enough that,

starting from any internal node, the expected time for a random walk to hit the boundary is at

most τ. Let f0 denote the initial values stored at the nodes, and let f denote the harmonic function

which agrees with f0 on the boundary. Synchronously perform the averaging operation at all interior

vertices, and let f t denote the node values after t averaging steps. We have

max
i

∣∣f2τ
i − fi

∣∣ ≤ 1

2
max

i

∣∣f0
i − fi

∣∣.

Proof. Recall that f = Tf since f is harmonic. Our averaging process implies that, for any t ∈ Z
+,

f t = T tf0, and so (f t − f) = T t(f0 − f). (6.6)

For any i, it follows from the above equation that

∣∣f t
i − fi

∣∣ =
∣∣∣
∑

j

T t
ij(f

0
j − fj)

∣∣∣.

Note that f0
j − fj = 0 when vj is a boundary node, so the above sum may be taken only over

internal nodes. Furthermore, T t is a row-stochastic matrix corresponding to t consecutive steps of

the random walk. By Markov’s inequality [82, Thm. 3.2] and the definition of τ, it follows that
∑

vj 6∈B T 2τ
ij ≤ 1/2. Combining these facts with the triangle inequality, we have

∣∣f2τ
i − fi

∣∣ =
∣∣∣
∑

vj 6∈B

T 2τ
ij (f0

j − fj)
∣∣∣ ≤

∑

vj 6∈B

T 2τ
ij max

j
|f0

j − fj | ≤ max
j

|f0
j − fj |/2.

Finally, the stated theorem holds by applying this argument to all i.

By using Equation (6.6), one can characterize the long-term convergence speed in terms of the

eigenvalue gap of T, but the O(τ) upper bound suffices for our purposes.

For some graphs, τ may be exponentially large, such as [30, Example 4]. It is well-known that

τ = O(mn) for undirected graphs and this also holds for directed Eulerian graphs (we give a proof

in Section 6.5). Assuming that f initially achieves its maximum and minimum on the boundary, the

averaging process will converge to within εDiam(f) of the true harmonic values in O(mn log ε−1)

rounds. The assumption is easy to satisfy, for example pick any boundary value as the initial value

for all internal nodes.

As an application, we can distributively compute the exact values of a harmonic function,

provided that the edge weights and boundary values are integers. By Proposition 6.1.4, f =

(D − Aint)
−1Dg. Applying Hadamard’s inequality [90], we have det(D − Aint) ≤ ∏n

i=1

√
2wi ≤
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2n/2Wn. By the matrix inversion formula, each value fi is a rational number with denominator

O(log n + n log W ) bits long. Therefore, in O(τ(log n + n log W + log Diam(f))) rounds, each node

vi will have a precise enough value to perform rational reconstruction of fi via continued fractions.

In the CONGEST model of computation, there is additional slowdown due to congestion, since the

floating-point values exchanged between nodes are ω(log n) bits long.

6.5 Hitting Time of Eulerian Graphs

The hitting time hij is the expected number of steps taken by a random walk to reach vj starting

from vi. It is known [82, p. 134] that hij ≤ 2mn when G is undirected. We now show that this result

also holds for Eulerian graphs.

Lemma 6.5.1. Suppose we have a weighted directed Eulerian graph G and that vj ∈ Γ(vi). Then

hij ≤ W

wij
.

Proof. By the Fundamental Theorem of Markov Chains [82, p. 132], the expected time between

successive visits to vi on our walk is the reciprocal W/wi of the stationary probability. Once we are

at vi, we expect to leave via the edge (vi, vj) once every wi/wij attempts. So, in expectation we get

to vj within W/wi · wi/wij = W/wij steps.

Theorem 6.5.2. Let G be a weighted directed Eulerian graph and let wmin be the minimum weight

of any edge. If G is strongly connected, then

max
vi,vj∈V

hij ≤ Diam(G)
W

wmin
.

Proof. Fix any particular vi and vj ; then there is a path of length at most Diam(G) between them.

We can apply the previous lemma to show that the expected time to advance on each step of the

path is at most W
wmin

. By the linearity of expectation, the expected time to traverse the total path

is bounded by W
wmin

times the length of the path.

In particular, this gives a bound of O(mn) on the hitting time of a directed Eulerian multigraph.

For some graphs like the “lollipop” graph [82, p. 133] this bound is tight.
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6.6 A Distributed Eulerizing Algorithm

The idea of using a harmonic function as a computational tool seems to be more appealing for

Eulerian graphs than for arbitrary graphs, as evidenced by the nice theorems of the last three

sections. For the applications which we discuss in Section 6.7, the correctness is not affected if

we change the edge weights. We will prove in this section that any graph can be Eulerized (made

Eulerian), and give a distributed algorithm for Eulerization that fits the balancing model of Chapter

4.

Note that the Eulerian property is independent of the boundary, so even if the boundary of a

graph changes with time, the graph will only have to be Eulerized once.

Proposition 6.6.1. Let G be a strongly connected directed graph. It is possible to assign positive

integer weights of size at most n2 to the edges such that the resulting graph is Eulerian.

Proof. Let us initially set all of the weights to 1. For each vertex vi, define φi to be the sum of the

weights leaving vi minus the sum of the weights entering vi:

φi =
∑

(i,j)∈E

wij −
∑

(j,i)∈E

wji.

Note that
∑

φi = 0. Also, note that the graph is Eulerian if and only if each φi is zero. We define

the discrepancy Φ by

Φ =
∑

φi>0

φi =
1

2

∑

vi∈V

|φi|.

Initially, |φi| < n for each i, and so Φ < n2/2. Our strategy is to iteratively reduce Φ to 0, at which

point the graph is Eulerian.

At each step, we find a vertex vt for which φt > 0 and a vertex vu for which φu < 0. Then, we

pick any simple path from vu to vt, and add one to the weight of each edge along that path. As a

result, φt decreases by 1, φu increases by 1, and the other φi are unchanged. Thus Φ decreases by

1 as well.

Since there are O(n2) iterations, and each edge weight is increased by at most 1 in each iteration,

the final edge weights are O(n2).

The above bound on the weights is tight. Consider a graph on n = 2k+2 nodes v0, . . . , vk, v′
0, . . . , v

′
k,
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with k2 + 2k + 1 directed edges

(vi, v0) for 1 ≤ i ≤ k,

(v0, v
′
0),

(v′
0, v

′
i) for 1 ≤ i ≤ k, and

(v′
i, vj) for 1 ≤ i, j ≤ k.

Since each vi has indegree k and a sole outgoing edge (vi, v0), the weight of that edge must be at

least k if the graph is made Eulerian. Thus, the total weight incoming on v0 is at least k2, and so

(v0, v
′
0) has weight at least k2 = Θ(n2).

We now describe how Eulerization can be done in our model via a modification of the preflow-

push algorithm mentioned in Section 4.6.4. We start out with multiple sinks (resp. sources) at

nodes vi where φi is positive (resp. negative), with initial excesses of φi. Each node vi maintains its

estimate ℓi of the distance to a sink, and each source augments a shortest path to a sink. This is

fleshed out in Algorithm 6.1.

Algorithm 6.1 The basic Eulerization algorithm.

1: procedure Distributed-Eulerize

2: Let vi denote this node
3: Compute φi =

∑
vj∈Γ(vi)

wij −
∑

vi∈Γ(vj)
wji

4: if φi > 0 then

5: ℓi ← 0
6: else

7: ℓi ← 1 + minvj∈Γ(vi) ℓj

8: end if

9: if φi < 0 then

10: Let vj be the outneighbor of vi for which ℓj is minimal
11: Increase wij by 1
12: end if

13: end procedure

In contrast to the preflow algorithm of Tarjan and Goldberg [54], the Eulerizing algorithm does

not require a residual graph. Also, in line 11, the edge weight is augmented by only 1, whereas in

[54] edges are augmented as much as possible. Nonetheless, the asynchronous O(n2)-time bound of

the preflow algorithm also applies to Eulerization.

Edge capacities may be useful in practice. Suppose, after the graph is made Eulerian, that a

node/edge either joins or leaves the network. More augmenting will occur, increasing the weights.

Thus, in a network where failures continue to occur, the individual edge weights will grow without

bound. Since the bounds of Theorems 6.3.4 and 6.5.2 depend on the total weight of the network,

bounding the edge weights — by using capacities and a residual graph — would improve performance.

We would also probably use the additional stabilizing operation described in [53].
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6.7 Applications

In this section, we expand on a couple of known algorithmic applications of harmonic functions. In

addition to these applications, harmonic functions have been used to give sequential and parallel

directed k-vertex connectivity algorithms [29][72].

6.7.1 Planar Embedding

In 1963, Tutte published a classic paper [103] in which harmonic functions played a central role.

For a graph G, any cycle C such that G −C is connected is called peripheral. He showed that every

planar graph has exactly 2 peripheral cycles through each edge. The main result of Tutte’s paper is

that, if we use this cycle as the boundary of a harmonic function, and embed it as a convex polygon

in R
2, then the resulting harmonic function gives a planar, straight-line embedding of G.

Now, if the graph is not planar, then the harmonic embedding will of course not be planar. This

gives us a simple test for planarity: compute the harmonic embedding of a graph, and then check

for intersecting edges.

Question 6.7.1. Is there a simple polynomial-time distributed algorithm to determine if a graph

planar?

Two obstacles to the obvious approach are the identification of a peripheral cycle, and the location

of intersecting edges. A possible solution to the latter problem might be walkers that try to traverse

the faces of the embedding.

There is a related distributed algorithm [21] which can determine the genus of a graph in polyno-

mial time, given an upper bound on the genus. Planar graphs are exactly those with genus zero, and

so this gives an efficient test for planarity, by setting the upper bound to 1. However, the algorithm

is quite complicated, and relies on observing a rather large subset of the graph.

6.7.2 Single-failure Tolerant Broadcast

Consider a real-valued harmonic function. Proposition 6.1.2 informs us that strict local minima

appear only on the boundary. If we can somehow remove all local minima from the interior, then

each interior node vi has two outneighbors vj and vk such that

fj < fi < fk. (6.7)

A function f satisfying Equation (6.7) for each interior vertex vi is called an s-t labeling of V .
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If G has an articulation point vi, then we claim that no s-t labeling can exist. Let vj ∈ Γ−1(vi);

then it is straightforward to show that fj = fk for all vk ∈ Γ(vj). Consequently, vj does not satisfy

Equation (6.7), completing the claim.

If a graph has no articulation points, then it is called 2-vertex connected. We can obtain an s-t

labeling of a 2-vertex connected graph by using a harmonic function with randomly perturbed edge

weights. First, we need a lemma. All paths in what follows are assumed to be simple.

Lemma 6.7.2. Let G be a 2-vertex connected, directed graph. Let u,w1, w2 be distinct vertices of

G. There exist paths P1 and P2 such that Pi goes from u to wi, and the Pi are disjoint except for u.

Proof. Since G is 2-connected, there exist 2 vertex-disjoint paths Q1, Q2 from u to w1. Let R be any

path from u to w2. Let the last node of R that also lies on Q1 or Q2 be x; without loss of generality,

x ∈ Q1. Let R′ be the part of R starting from x and going to w2, and Q′
1 be the part of Q1 from u

to x. Then the paths Q′
1 ◦ R′ (Q′

1 followed by R′) and Q2 have the claimed properties.

Theorem 6.7.3. Let G be a directed, weighted graph, with proper boundary v1, v2. Assume that G
is 2-vertex connected. For each edge e, let there be k distinct possible positive weights w1

e , . . . , wk
e

for that edge. Select a weight for each edge uniformly and independently at random. Let f denote

the harmonic function induced by the boundary values v1 = 0, v2 = 1. Then with probability at least

1 − n(n − 2)/k, the values of f form an s-t labeling of V.

Proof. We will show that, for each interior vertex vi, with probability at least 1−n/k, there are two

nodes {va, vb} ⊆ Γ(vi) having unequal values in f. It will follow in that case that Equation (6.7) is

satisfied by some vj and vk in Γ(vi), and a union bound then proves the theorem.

Apply Lemma 6.7.2 to G with u = vi, w1 = v1, and w2 = v2; let va and vb be, respectively, the

second nodes on P1 and P2. Let êj denote the unit vector with êj
j = 1 and all other entries zero. By

Proposition 6.1.4, the difference fa − fb is (êa − êb)T (D − Aint)
−1Dg. Thus fa = fb if and only if

F = 0, where

F := (êa − êb)T (D − Aint)
∗T Dg,

and ∗ denotes the adjoint operator. The quantity F is a polynomial of degree n in the edge weights.

We will shortly show that F is not the zero polynomial. Then, by the Schwartz-Zippel Theorem [82,

Thm. 7.2], when we randomly choose the edge weights, F = 0 with probability at most n/k. When

F 6= 0 we have fa 6= fb as needed.

Finally, we show that F cannot be identically zero, completing the proof. If F is identically

zero, then fa = fb for all edge weightings. However, as we increase the edge weights on P1 and P2

without bound, holding the other edge weights constant, we have fa → 0 and fb → 1. Thus F is not
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identically zero, as needed.

Theorem 6.7.3 may not be tight, and the author suspects that perturbations actually succeed

with probability 1 − O(n/k).

In [62], an s-t labeling is used to perform efficient broadcasting that tolerates the failure of any

one edge. In our terms, we set f1 = 0 and f2 = 1, and compute a harmonic function on the (directed)

graph. Each node chooses a neighbor with a smaller value as its s-parent and one with a larger value

as its t-parent, thereby defining two trees. Any message to be sent is forwarded up the trees to v1

and to v2, and then broadcast down both trees. At most 2n messages are sent in total.

6.8 Extensions and Related Work

To our knowledge, the bounds in this section for the convergence and stability of harmonic functions

are new. The general idea of reweighting edges, exemplified by Eulerization, leads to a couple of

other possibilities.

First, by re-weighting the edges of a graph, it is possible to reduce the mixing time. This

parameter measures how quickly the distribution of a random walker approaches the steady-state

distribution. It is possible [91] to re-weight the edges of an undirected graph so that the mixing

time becomes O(Diam
2), although the method of [91] changes the steady-state distribution of the

walk. The authors of [24] point out that the distributed spectral analysis algorithm of [68] can be

used to minimize the mixing time among those weightings which do not change the steady-state

distribution. This is accomplished by applying convex optimization to maximize the eigenvalue gap.

Their algorithm does not seem very practical, and they give no concrete complexity bounds.

One other possible application of re-weighting is to space out the values of a harmonic function.

An undirected harmonic function on n vertices with {0, 1} boundary can have adjacent nodes whose

values differ by exponentially small values. For example, the n-vertex harmonic function with

boundary v1 = 0, v2 = 1 and graph edges {(vi−1, vi)}n
i=3 ∪ {(v1, vi)}n

i=3 has adjacent nodes that

differ by Θ((3/2 +
√

5/2)−n). By modifying the weights of edges it should be possible to have

adjacent distances at least n−O(1). This would make it possible to determine the relative order of

all nodes quickly, and make it possible to distributively determine the order of nodes while using

only O(log n) bits per node. This would potentially make the broadcast trees of Section 6.7.2 from

[62] more stable. It would be interesting to investigate trade-offs between stability, convergence, and

spacing.
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Appendix A

Message Passing and a

Balancing-FSA Random Walk

In this appendix, we show two results: first, how message-passing can be simulated in the balancing

model, and second, how a network of probabilistic finite state automata (FSAs) can simulate a

random walk on an undirected graph. We assume a non-faulty graph, so the topology stays fixed

over all time.

We first address the basic problem of how message-passing can be simulated in this model, since

this is how the walker travels around the graph. The simplest case is where the graph consists of

two adjacent nodes v1 and v2. We simulate message passing as follows: each node vi holds a message

buffer mi and a mod-3 counter ci. The idea is that, modulo 3, the counters determines how many

distinct messages have been sent back and forth. Each node reads incoming messages by checking

the message buffer of the other node. Full pseudocode is shown in Algorithm A.1.

Note that the buffer is of a fixed size, as only one message can be in transit at a time. To turn

the counted-buffer technique into a method of simulating message-passing on arbitrary topologies,

each node needs a buffer for each of its neighbors. Furthermore, when a node u reads the state

of v ∈ Γ(u), some kind of labeling scheme is needed, in order that u can determine which of v’s

outgoing buffers holds messages for u. This can be accomplished with indirect addressing, although

this destroys the property that our model is ambiguous. We ignore this problem for now.

Now we describe the FSA-based random walk. In our model, each automaton can read the states

of all of its neighbors, but only change its own state. The automata run asynchronously. Each node

is aware of its neighbors’ states only as an unordered multiset (i.e., the network is ambiguous).
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Algorithm A.1 Message passing using finite automata.

1: procedure Message-Passing

2: Let vme denote this node and vother denote its neighbor
3: if cother ≡ cme + 1 (mod 3) then

4: Read incoming message from mother

5: Write outgoing message to mme

6: cme ← cother + 1 (mod 3)
7: else if cme ≡ cother + 1 (mod 3) then

8: Do nothing, my neighbor has not activated since I last sent a message
9: else

10: Perform initialization
11: Write outgoing message to mme

12: cme ← cother + 1 (mod 3)
13: end if

14: end procedure

To simulate a random walk, the nodes clearly need access to some source of randomness. If the

nodes have O(log n) bits of memory, then the node containing the walker can randomly pick an

integer from 1 to n. However, a finite automaton has O(1) memory. We propose a finite-automaton

based walk using as little randomness as possible: only one state allows randomness, and it enters

one of two states Won or Lost, each with probability 1/2. In Algorithm A.2 we give the formal

description of the FSA.

There are nine states, which we denote by Blank, Won, Lost, Defeated, CSending, CRe-

ceived, WFlip, WReflip, and WReset. A node in a state prefixed by W contains the ran-

dom walker. The walker travels by moving from a node in the CSending state to a node in the

CReceived state. After the old position of the walker is “cleaned up,” the CReceived node enters

WFlip.

The basic mechanism for picking a random outgoing neighbor is as follows. The node containing

the walker enters WFlip and asks all of its neighbors to flip a coin, thereby entering Won or Lost.

If exactly one neighbor wins, then that neighbor will be passed the walker. However, if multiple

neighbors win, then more flips must take place. The walker’s node enters WReflip, which causes

those nodes that win to become Blank, and those that lose to become Defeated. Then the walker

node enters WFlip again and the non-defeated nodes flip coins.

In the event that there are no winners, then the coin flipping must be restarted from scratch.

This is the purpose of the state WReset. It waits until all neighbors enter Blank, and then the

walker node becomes WFlip to begin flipping again.

When the walker node finally has a single neighbor in Won, it enters CSending and waits for

the winner to become CReceived. Then, the CReceived node enters WFlip and the next step

takes place.
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Algorithm A.2 Random walk using finite automata.

1: procedure Blank-Action

2: if any neighbor is in state WFlip then

3: Enter Won with probability 1/2 and Lost with probability 1/2
4: end if

5: end procedure

6: procedure WReceived-Action

7: if all neighbors are in state Blank then

8: Enter WFlip

9: end if

10: end procedure

11: procedure WFlip-Action

12: if any neighbor is in state Blank then

13: Do nothing
14: else if exactly one neighbor is in state Won then

15: Enter WSending

16: else if no neighbors are in state Won then

17: Enter WReset

18: else

19: Enter WReflip

20: end if

21: end procedure

22: procedure WReflip-Action

23: if all neighbors are in state Blank or Defeated then

24: Enter WFlip

25: end if

26: end procedure

27: procedure WReset-Action

28: if all neighbors are in state Blank then

29: Enter WFlip

30: end if

31: end procedure

32: procedure Won-Action

33: if one neighbor is in state WSending then

34: Enter WReceived

35: else if one neighbor is in state WReset or WReflip then

36: Enter Blank

37: end if

38: end procedure

39: procedure Lost-Action

40: if one neighbor is in state WSending or WReset then

41: Enter Blank

42: else if one neighbor is in state WReflip then

43: Enter Defeated

44: end if

45: end procedure

46: procedure Defeated-Action

47: if one neighbor is in state WSending or WReset then

48: Enter Blank

49: end if

50: end procedure

51: procedure WSending-Action

52: if one neighbor is in state WReceived, and all other neighbors are in state Blank then

53: Enter Blank

54: end if

55: end procedure
89



Each step of the walker takes multiple rounds (where a round, in the asynchronous model, consists

of every node activating at least once). It is straightforward to show that the time for the walker to

step away from a node of degree δ is O(log δ) rounds.

This rather complicated algorithm has been included in this appendix for two reasons. First, it

demonstrates that, even with finite state, we can do some interesting computation. The 2-coloring

algorithm of Section 4.6.1 can also be expressed using finite-state automata.

The second reason relates to how these automata determine their next state. All of the conditions

in Algorithm A.2 for changing state can be expressed using the logical connectives “and,” “or,” and

“not,” together with basic expressions of the form “there are k or more neighbors in State.” Recall

the terminology of Section 4.5, and the commutative, associative operator ⋆σ. It is easy to show that

all of the logical connectives here can be expressed using ⋆σ, with finite domain D. In other words,

for each state σ of our automata, the order in which neighbors are “read” does not matter, and the

computation of the next state can be performed in finite space.

Thus, the ⋆σ model may be interesting from a theoretic standpoint. We can actually show that

any finite space-computable, commutative, associative operator must compute a boolean formula in

the atoms “there are k or more neighbors in State” and “the number of neighbors in State, mod

j, is equal to k.” The converse result is also true: any such formula can be expressed using a finite

space-computable, commutative, associative operation on the neighbors. From this equivalence we

might derive some impossibility results in the balancing finite automaton model.
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