$$
\frac{2}{\pi}=\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}-\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2}-\frac{1}{2} \sqrt{\frac{1}{2}-\frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots
$$

$$
4 / \pi=1+\frac{1}{2+\frac{3^{2}}{2+\frac{5^{2}}{2+\frac{7^{2}}{2+\frac{9^{2}}{\cdot \cdot}}}}}
$$

$$
\frac{\pi}{2}=1+\frac{1}{3}\left(1+\frac{2}{5}\left(1+\frac{3}{7}\left(1+\frac{4}{9}(1+\cdots)\right)\right)\right)
$$

$$
\pi=\sum_{n=0}^{\infty}\binom{2 n}{n}^{3} \frac{42 n+5}{2^{12 n+4}}
$$

$\frac{\pi}{4}=\sum_{i=1}^{\infty} \arctan \left(1 / F_{2 i+2}\right)$
$=\arctan \frac{1}{3}+\arctan \frac{1}{8}+\arctan \frac{1}{21}+\cdots$
$\pi=11$.
00100100001111110110101010001000100 00101101000110000100011010011000100 11000110011000101000101110000000110 11100000111001101000100101001000000 10010011100000100010001010011001111 10011000111010000000010000010111011 11101010011000111011000100111001101 10010001001010001010010100000100001 11100110001110001101000000010011011 10111101111100101010001100110110011 11001101001110100100001100011011001 10000001010110000101001101101111100 10010111110001010000110111010011111 11000010011010101101101011011010101 00011100001001000101111001001000010 11011010101110110011000100101111001 11111011000110111101000100110001000 01011101001101001100011011111101101 $011010110000101111111111010111_{(2)} \ldots$

$$
\pi=\lim _{n^{2} \rightarrow \infty} \frac{4}{n^{2}} \sum_{j=0}^{n} \sqrt{n^{2}-j^{2}}
$$

$$
\begin{aligned}
\pi= & 6\left(\frac{1}{2}+\frac{1}{2 \cdot 3 \cdot 2^{2}}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^{4}}\right. \\
& \left.+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 2^{8}}+\cdots\right)
\end{aligned}
$$

$$
\pi=\frac{1}{2 i} \oint_{\gamma} \frac{d x}{x+i y}+\frac{i d y}{x+i y}
$$

where γ is any simple closed
counterclockwise path in \mathbb{C} containing the origin

$$
\frac{6}{\pi^{2}}
$$

is the limit, as n goes to infinity, of the probability that two random integers selected uniformly from $1, \ldots, n$, are not relatively prime
the symbol π was first used to denote the ratio of a circle's circumference to its radius around 1706, by William Jones, in his Synopsis Palmariorum Matheseos

$$
1-\left\langle e^{\sqrt{163} \pi}\right\rangle<10^{-12}
$$

where $\langle x\rangle$ denotes the fractional part of x
is the probability that a needle of length ℓ will land on a line, given a floor with equally spaced parallel lines a distance ℓ apart

$2 \sqrt{\pi}$

is the minimum length of fence needed to completely enclose one square unit of area
"Why, π ! Stop, π ! Weird anomalies do behave badly! You, madly conjured, imperfect, strange, numerical, Why do you maintain this facade?

In finite time you are barbaric!
You do wonders, mesmerize minds!
O, do elements numerous have a beautiful meaning-
A system isolating all mysteries, solutions for puzzles, chaos, a
O snafu apparent in O Universal Concept from believing lies?
That there, obstinate in you, O Strange Constant,
A Divine Sign O exists is unlikely unless
Is O revealed Something Brilliant, negating belief!
In formulas, O, you show yourself in Greek and math as a π forever-
O hidden wonders absconded, infinite, in a tiny constant,
O, sneakily, rather?
Never, I say!"
encodes the first 144 digits of π : the number of letters in each word gives the sequence of digits, and O stands for 0

$$
\frac{2}{\pi}=\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}-\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2}-\frac{1}{2} \sqrt{\frac{1}{2}-\frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots
$$

Not π. Change the - symbols to + signs and you get Viète's formula, the first (1593) infinite series for π.

$$
4 / \pi=1+\frac{1}{2+\frac{3^{2}}{2+\frac{5^{2}}{2+\frac{7^{2}}{2+\frac{9^{2}}{\ddots}}}}}
$$

π. This formula comes from Brouckner (circa 1650), and was derived from Wallis' formula.

$$
\frac{\pi}{2}=1+\frac{1}{3}\left(1+\frac{2}{5}\left(1+\frac{3}{7}\left(1+\frac{4}{9}(1+\cdots)\right)\right)\right)
$$

π. Beeler et al, 1972. Converges at one bit per term.

$$
\pi=\sum_{n=0}^{\infty}\binom{2 n}{n}^{3} \frac{42 n+5}{2^{12 n+4}}
$$

Not π. Change π to $1 / \pi$ and you get an identity of Ramanujan's.

$$
\begin{aligned}
\frac{\pi}{4} & =\sum_{i=1}^{\infty} \arctan \left(1 / F_{2 i+2}\right) \\
& =\arctan \frac{1}{3}+\arctan \frac{1}{8}+\arctan \frac{1}{21}+\cdots
\end{aligned}
$$

Not π. Change $F_{2 i+2}$ to $F_{2 i+1}$ and the equality is true.

$$
\begin{aligned}
& \pi=11 \\
& 00100100001111110110101010001000100 \\
& 001011010001100001000110100110_{(2)} \ldots
\end{aligned}
$$

π. Computed using Maple.

$$
\pi=\lim _{n^{2} \rightarrow \infty} \frac{4}{n^{2}} \sum_{j=0}^{n} \sqrt{n^{2}-j^{2}}
$$

π. This represents four times the area of a quarter-circle, converted from integral form.

$$
\begin{aligned}
\pi= & 6\left(\frac{1}{2}+\frac{1}{2 \cdot 3 \cdot 2^{2}}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^{4}}\right. \\
& \left.+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 2^{8}}+\cdots\right)
\end{aligned}
$$

Not π. Change $3,5,7, \ldots$, to $2,4,8, \ldots$, and you obtain an identity of Newton's derived from the arcsine power series. In 22 terms it gave 16 decimal places.

$$
\pi=\frac{1}{2 i} \oint_{\gamma} \frac{d x}{x+i y}+\frac{i d y}{x+i y}
$$

where γ is any simple closed
counterclockwise path in C containing the origin
π. This is a rewriting of the definition of the winding number from complex analysis.

$$
\frac{6}{\pi^{2}}
$$

is the limit, as n goes to infinity, of the probability that two random integers selected uniformly from $1, \ldots, n$, are not relatively prime Not π. Remove the word, ' n not', and this is true. It can be proved by using the fact that the sum of the reciprocals of the square numbers is $\pi^{2} / 6$.
the symbol π was first used to denote the ratio of a circle's circumference to its diameter around 1706, by William Jones, in his Synopsis Palmariorum Matheseos
π. Previously, the famous ratio was called the Ludolphian number, after Ludolph van Ceulen, a German mathematician. The use of the symbol was popularized by Euler later that century.

$$
1-\left\langle e^{\sqrt{163} \pi}\right\rangle<10^{-12}
$$

where $\langle x\rangle$ denotes the fractional part of x π. Actually, Martin Gardner once falsely claimed that Ramanujan proved $e^{\sqrt{163 \pi}}$ to be an integer. (It was the April 1st issue.) For this reason the number is called the Ramanujan constant.
is the probability that a needle of length ℓ will land on a line, given a floor with equally spaced parallel lines a distance ℓ apart Not π. The left hand side should be $2 / \pi$. This is Buffon's needle problem.

$$
2 \sqrt{\pi}
$$

is the minimum length of fence needed to completely enclose one square unit of area
π. This relates to the isoperimetric problem: among all closed curves with a given perimeter, the circle has the largest area.
"Why, $\pi!$ Stop, $\pi!$ Weird anomalies do behave badly! You, madly conjured, imperfect, strange, numerical, Why do you maintain this facade?

In finite time you are barbaric! You do wonders, mesmerize minds!
O, do elements numerous have a beautiful meaningA system isolating all mysteries, solutions for puzzles, chaos, a O snafu apparent in O Universal Concept from believing lies?

That there, obstinate in you, O Strange Constant, A Divine Sign O exists is unlikely unless
Is O revealed Something Brilliant, negating belief!
In formulas, O , you show yourself in Greek and math as a π forever-
O hidden wonders absconded, infinite, in a tiny constant, O, sneakily, rather? Never, I say!"
encodes the first 144 digits of π : the number of letters in each word gives the sequence of digits, and O stands for 0
Not π. There are 112 words.

