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Reliable Networks

Model a network by a graphG = (V, E): nodes are computers and edges
are two-way communication channels.

A graph (network) isconnectedif every pair of nodes is connected by
some path of edges. Otherwise we say the network isdisconnected.

Connectedness is very desirable, and necessary if we want global
information about our distributed network.

Sometimes the removal (or equivalently, failure) of asingleedge or node
can cause a connected network to become disconnected.
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The Connectivity of a Graph

We would like to characterize, for a given graph, how many failures can
it tolerate and still remain connected?

Definition: a graph isk-edge-connectedif, despite the failure of any
(k− 1) edges, the graph still remains connected.

Replacing “edge” by “node” gives definition ofk-node-connected.

For both cases, a graph is 1-connected iff it is connected.

The (edge or node)connectivityof a graph is the largestk for which it is
k-(edge or node)-connected. (An exception, by convention, is thatKn has
node connectivityn− 1, not∞.)
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Our Distributed Model

All nodes begin with distinct identifiers.

Initially nodes do not know the network size, or the identities of their
neighbours, but have a fixed list of neighbouring edges.

Nodes have unbounded computational power.

Communication takes place in synchronous rounds: on roundi, each
node reads the messages sent to it by its neighbours in roundi − 1,
performs some computation, and then sends up to one message to each
neighbour.

Initially a singleleadernode is “jumpstarted” to initiate the algorithm.

We restrict our attention to algorithms where all messages areO(logn)
bits in size.

Peleg’s 2000 book is a good reference — this model is called
CONGEST .
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Our Distributed Model

You may think of each nodev as a Turing machine with deg(v) input
tapes, deg(v) output tapes, and a read-only tape containing its ID.

Two interesting measures of complexity.

Time complexity:number of rounds elapsed before the algorithm
completes.

Communication complexity:number of messages sent before the
algorithm completes.
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Example Algorithm: BFS

We represent a BFS tree in the network by each node storing the
identifier of its parent. Initiallyparent(v) = nil for each nodev.

The leader joins the tree in the first round. Non-leader nodev joins the
tree when its parent is set to a non-null value.

When nodev joins the tree it sends “nodev joined” to each neighbour.

When a non-leader nodev that is not in the tree receives one or more
“nodewi joined” messages it picks onewi arbitrarily, joins the tree, and
setsparent(v) := wi .
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Example Algorithm: BFS
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Analysis of BFS
Each message is a single number between 1 and|V|, hence messages are
at most log2 |V| + 1 bits long.
Require that graph is connected.
Each nodev sends outdeg(v) messages.
Thus message complexity is 2|E|.
Let r be the leader node. Nodev joins the tree ind(r, v) rounds.
Thus time complexity is

max
v∈V

d(r, v) := radius(r, G).

As
Diam(G)/2 ≤ radius(r, G) ≤ Diam(G)

it is more customary to write running time asΘ(Diam), which is
independent of the choice of leader.
Straightforward to make each node aware of its children. To add
notification of termination: when a node’s subtree is complete, it informs
its parent; this doubles the running time.
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Justifying the Model

Why synchronous? By applying asynchronizerany asynchronous
network (i.e., where not all nodes run in lock-step, or messages are
subject to unequal delays) can simulate a synchronous one. Mind you,
this incurs an increase in complexity.

Why short messages? Short messages make the algorithms practical.

Furthermore, if we allow arbitrarily large messages, then any graph
theoretic problem can be trivially solved inO(Diam) rounds and with
O(m) messages as follows: in roundi, each node broadcasts the nodes
and edges of its radius-(i − 1) neighbourhood to all neighbours, and in
the next round determines its radius-i neighbourhood based on the
messages received.

After Diam rounds each node knows the entire network topology and
can solve any (decidable) graph-theoretic problem locally.

David Pritchard (U Waterloo C&O) Distributed Biconnectivity Algorithms and Complexity, 2006 10 / 44



Outline

1 Preliminaries

2 Biconnectivity Boot Camp

3 Distributed Bridge-Finding Algorithms and Lower Bounds

4 The Proposed Algorithm

5 Afterword

David Pritchard (U Waterloo C&O) Distributed Biconnectivity Algorithms and Complexity, 2006 11 / 44



Back to Connectivity

Perhaps our graph is notk-connected, but we would still like to know
how well it can tolerate failures.

Specifically, is there a succinct way to determine the pairs of points
which would remain connected despite any(k− 1) failures?

The edge-k-connected case is easier to describe. Writeu ≈e
k v if u andv

remain connected despite the deletion of any(k− 1) edges.

This is an equivalence relation: ifu remains connected tov despite any
k− 1 edge failures andv remains connected tow despite anyk− 1 edge
failures thenu remains connected tow despite anyk− 1 edge failures.
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Back to Connectivity
In general the equivalence relation≈e

k which we just defined is hard to
work with.
For example, in the graph shown below withk = 3, the equivalence
classes of≈e

3 are{{1, 5}, {2}, {3}, {4}}.

1

2

3

4

5

Classes like{1, 5} are hard to deal with since they do not induce
connected subgraphs ofG.

So hereafter we focus on the somewhat “special” casek = 2, where we
can show that the equivalence classes are connected.
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Edge-Biconnectivity

A bridge is an edge whose deletion causes the graph to become
disconnected.

In other words, a graph is 2-edge-connected if it has no bridge.

An edgee is a bridge if and only if it does not lie in some simple cycle of
G. Follows from the fact that simple cycles containing(u, v) correspond
bijectively to simpleu, v paths inG− (u, v).

Further, from this we can deduce that an edge(u, v) is a bridge if and
only if u 6≈e

2 v.

So the equivalence classes of≈e
2 are just the connected components of

G− bridges(G).

Call the equivalence classes of≈e
2 thebiconnected components.
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An “Alternative” Biconnectivity Algorithm (S. Vempala)

We know that once we identify the bridges of the graph, it is
straightforward to determine the biconnected components.

Consider putting a “walker” on the graph. Orient each edge arbitrarily
and give it a counter initialized to 0.

When the walker traverses an edge, change the counter by +1 if the step
was in agreement with its orientation, and change the counter by -1
otherwise.
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An “Alternative” Biconnectivity Algorithm

First, no matter how the walker moves, the counter of a bridge will
always remain in{−1, 0, 1}.

0

Second, if the walker performs arandom walk,it can be shown a given
non-bridge edge is expected to exceed±1 in O(|V||E|) steps.

Proof idea: make a new graph that represents the walker’s position and
also the counter’s value. A special node⋆ indicates that the value on the
counter exceeds 1 in absolute value.

A random walk on the old graph corresponds to a random walk on the
new graph. So, by classical results about random walks, we expect tohit
⋆ in O(|V′||E′|) steps, where the modified graph is(V′, E′). Observe
|V′| = O(|V|) and|E′| = O(|E|).
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An “Alternative” Biconnectivity Algorithm

⋆

counter=±2

counter=+1

counter=0

counter=−1
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An “Alternative” Biconnectivity Algorithm

The walk-based algorithm is nice for a couple of reasons.

First, the algorithm never misclassifies a bridge as a non-bridge.

Further, assuming the walker never dies due to being caught in a failure,
all non-bridges in the connected component ultimately containing the
walker are correctly identified, in polynomial time, with high probability.

But in a reliable dense network the running time ofΩ(n3) is much too
high.
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Distributing Tarjan’s Node-Biconnectivity Algorithm
Tarjan 1972 “DFS and Linear Graph Algorithms”

The first distributed biconnectivity algorithms were based off of an older
sequentialbiconnectivity algorithm of Tarjan.

An articulation pointis a vertex whose deletion causes the graph to
become disconnected.

Theblocksof a graph are the classes of an equivalence relation on the
edges, such that two edges are equivalent iff they are contained in a
simple cycle together (No proof here but easy).

Bridges are singleton blocks and articulation points are those vertices
which are incident on more than one block.

Thus edge-biconnectivity is easy, given node-biconnectivity.

Tarjan’s 1972 algorithm, using DFS, computes the blocks, bridges, etc.

Uses a preordering of the DFS spanning tree. Leads to distributed time
complexity ofO(n) — bottleneck is DFS.
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Improving Performance, I

In a series of papers the basic algorithm was reformulated and
streamlined.

In what followsn = |V| andm = |E|.
In [Tarjan and Vishkin 1984; Huang 1989] it was realized that any
spanning tree could be used, not just DFS. The algorithm, given a graph
G, determines an auxiliary graphH such that each node ofH is an edge
of G, and the connected components ofH are the blocks ofG.

The distributed complexity as described in these papers isO(Diam) time
andO(mn) messages, but uses messages of sizeΩ(n).

The algorithm I will give later may be viewed as a refinement and
streamlining of these ideas.
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Improving Performance, II

In [Thurimella 1995; Thurimella 1997] the algorithm is further
optimized to use a subgraphK of G that can be computed distributively.

Can’t use an arbitrary tree, rather a generalization of BFS called
scan-first search.

The algorithm uses MST and other subroutines that dominate the time
complexity. Plugging in the best known subroutines the total complexity
is O∼(

√
n + Diam), where∼ indicates that factors of logn are ignored.

There are polynomially many messages, each of sizeO(logn).

MST has a known lower bound ofΩ∼(
√

n+ Diam) time, so this is about
as good as this technique can achieve.
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Use of Minimum Weight Spanning Tree

Why is MST a useful technique?

The algorithm determines a subgraphK of G and wants to determine the
connected components ofK quickly.

The connected components ofK might have much larger diameter than
G.

Set the weight of each edge ofK to 0 and each edge ofG− K to 1.

Then a minimum-weight spanning tree ofG will contain a spanning tree
for each connected component ofK.

MST is also used in the fastest-known distributed leader election
algorithm.
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Improving Performance, III

The algorithm I am presenting improves on the previous ones in time and
message complexity, and is fairly simple.

The algorithm hasO(Diam) time complexity andO(m) communication
complexity, using messages of sizeO(logn).

Computes the bridges and biconnected components.

It doesn’t seem possible to extend the method to computing articulation
points and blocks.

Uses preordering like the older algorithms.
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A Universal Lower Bound

Let us restrict our attention toevent-drivenalgorithms: a node can only
send a message in a given round if it received a message in the previous
round, plus the leader can send messages in the first round.

For every graph, there is aDiam/2 lower bound on the time complexity
of a correct edge-biconnectivity algorithm, assuming the algorithm is
event-driven.

Why? Only the leader can send messages in the 1st round, and in theith
round, only nodes within distance(i − 1) of the leader can send
messages.
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A Universal Lower Bound

So if the algorithm terminates in less thanDiam/2 < radius(r) rounds,
some nodew never receives or sends a message.

Modify G into G′ by attaching some bridges and cycles tow.

w
⇒

w

When running onG′, the algorithm will never send any messages to the
new nodes and edges, so it cannot be correct.
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A Universal Lower Bound

Thus, the older algorithms are time-optimal forsomegraphs, i.e., those
with diameter larger than

√
n.

Under the assumptions made above the new algorithm is time-optimal
for all graphs.

The proof thatmmessages are necessary is similar: each edge(u, v)
must communicate some message, or else we can modifyG into G′ such
that the algorithm does not reach all parts ofG′.

u v
⇒

u w v
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Overview

After some squinting this algorithm can be seen as a distributed version
of a 1984 paper by Tarjan.

As mentioned before, the main task is bridge-finding, and then the
biconnected components are just the connected components of
G− Bridges(G).

In order to find bridges it suffices to mark every edge that is lies in a
simple cycle, then the bridges will just be the unmarked edges.

The algorithm begins with a spanning tree ofG. It works fastest when it
is a BFS tree but any tree will do.
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Overview

Input: A rooted treeT is given.

1 Each node computes its number of descendants.
2 Wepreorderthe nodes.
3 Mark each edge in every cycle of a cycle basis by upcasting.
4 Label each node according to its biconnected component.

Output: Each node gets a label such that two nodes share the same label
if and only if they remain connected despite any single edge deletion.
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1. Each node computes its number of descendants
Fix any rooted spanning tree with rootr.

Convention: every node is a descendant/ancestor
of itself.

First, each nodev needs to compute the size
#desc(v) of its subtree (i.e., the number of
descendants it has).

Straightforward if we use adown/convergecast,
as follows.

The root sends “compute#descof yourself” to
each child and all nodes pass this message down
the tree.

Each leaf immediately determines that their size
is 1 and reports this to their parent; each other
node waits to hear from all its children, sums
their values, adds 1, and reports to its parent.
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2. Preordering the Vertices

In apreorder,the label of a vertex is smaller than
the label of each of its children.

We can compute a preorder of the vertices with
respect toT distributively.

The root gives itself label 1.

When nodev labels itselfx, it orders its children
arbitrarily asc1, c2, . . .. Then it sends “Label
yourselfℓi" to eachci , whereℓi is computed byv
as

ℓi = x + 1 +
∑

j<i

#desc(cj).

Takesheight(T ) time.
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3. Marking Cycles

Hereafter we refer to every node by its preorder label.

In order to mark cycles we take advantage of some nice properties of
“lowest common ancestors” in preorder. Let LCA(u, . . . , v) denote the
lowest node ofT that is an ancestor of all ofu, . . . , v.

Note that the descendants of nodev are precisely

{u | v ≤ u < v + #desc(v)}.

Corollary
1 If v1 ≤ v2 ≤ v3, thenLCA(v1, v3) is an ancestor of v2.
2 LCA(u1, u2, . . . uk) = LCA(mini(ui), maxi(ui)).

3 If ui ≤ vi for all i, then

LCA(LCA(u1, v1), . . . LCA(uk, vk)) = LCA(min
i

(ui), max
i

(vi)).
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3. Marking Cycles

Each non-tree edgeedetermines a single
fundamental cycleof T ∪ {e}. It can be shown
that each non-bridge edge lies in some
fundamental cycle and so once we mark these
cycles, only bridges are unmarked.

Non-tree edges are never bridges.

For a given non-tree edge(u, v), to mark its
fundamental cycle, send the message M[u, v]
along the edge in both directions:

M[u, v]: “If you are an ancestor of bothu andv,
then ignore this message. Otherwise, pass this
message up to your parent, and mark the edge
joining you to your parent.”

When nodew checks ancestry condition it just
checks if{u, v} ⊆ {w, . . . , w + #desc(w) − 1}.
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Non-tree edges are never bridges.

For a given non-tree edge(u, v), to mark its
fundamental cycle, send the message M[u, v]
along the edge in both directions:

M[u, v]: “If you are an ancestor of bothu andv,
then ignore this message. Otherwise, pass this
message up to your parent, and mark the edge
joining you to your parent.”

When nodew checks ancestry condition it just
checks if{u, v} ⊆ {w, . . . , w + #desc(w) − 1}.
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3. Marking Cycles

We are almost done, the protocol described will correctly mark all
non-bridges.

The problem is, a vertex can receive several M[u, v] messages at once,
whereas (due to the limit on message size) onlyO(1) can be forwarded
to its parent in any round.

Without loss of generality each M[u, v] is sent withu ≤ v.

The fix relies on the earlier corollary,If ui ≤ vi for all i, then

LCA(LCA(u1, v1), . . . LCA(uk, vk)) = LCA(min
i

(ui), max
i

(vi)).

Namely, when a node receives messages M[ui , vi ] it should act as if it
received the single message M[mini ui , maxi vi ].

Why? The goal ofv sending messages to its parent is to mark a certain
chain to some ancestor ofv, and this formula will reach the oldest of all
ancestors specified by any message. (Formal proof omitted).
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3. Marking Cycles
Finally, to reduce the total number of messages
sent, we want each node to sendexactlyone
message to its parent during the marking phase.

Think of each node storing all received messages
in a buffer until it hears from each non-parent
neighbour.

Rather than an explicit buffer, which could grow
very large, each node just tracks a cumulative
minui and maxvi of all the M[ui , vi ] messages it
has received.

Even ifv determines that its edge to its parent
should not be marked, it sends a token message
to its parent.

Whenv has received all not-to-parent edges
incident onv have sent a message, the node sends
a message to its parent.
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4. Label each node according to its biconnected component.

As argued (much) earlier, the biconnected
components (bccs) are connected, so the
spanning treeT spans the subgraph induced by
each bcc.

In short: labeling is easy.

The root, and each edge that is just below a
bridge, use its own preorder label as its bcc label.

Each node passes its bcc label downwards once it
has been computed, and any edge not just below
a bridge uses the label that it receives from its
parent.
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Complexity Analysis
1 Each node computes its number of descendants.
2 Wepreorderthe nodes.
3 Mark each edge in every cycle of a cycle basis by upcasting.
4 Label each node according to its biconnected component.

Each edge is used only a constant number of times. Twice to compute
#desc, once to preorder, at most twice for M[·, ·] messages, and once to
distribute bcc labels. SoO(m) communication complexity.

Each of the 4 steps takesO(height(T )) time to complete.

All messages have 1 or 2 positive integers less thann, so each message is
of lengthO(logn).

The BFS protocol shown earlier gives a spanning tree of height less than
Diam, in O(Diam) rounds and usingO(m) messages.

So, as claimed the total complexity isO(m) communication and
O(Diam) time.
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Tweaking the Algorithm

Suppose we remove the restriction on messages sizes, and we start all
nodes simultaneously.

Use the “repeatedly broadcast known topology” approach.

As soon as any node notices that a given edge is not a bridge, it tells that
node.

The time before all non-bridges are identified isΥ(G), where

Υ(G) := max
enot a bridge

min
K a cycle

K∋e

min
v∈V(G)

max
u∈K

distG(u, v).

Υ is the least valuet such that each non-bridge is contained in a cycle
belonging to at-neighbourhood of some node.

Furthermore this is also a lower bound on the time to identify all
non-bridges (up to a constant), no matter what algorithm is used.
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A Fast Local Algorithm

A (logn, Υ)-neighbourhood cover ofG is a collection of connected
vertex sets calledclusterssuch that

1 For each vertexv, theΥ-neighborhood ofv is entirely contained in some
cluster.

2 The subgraph ofG induced by each cluster has diameterO(Υ logn).
3 Each node belongs toO(logn) clusters.

Let us run our edge-biconnectivity algorithm on each cluster, one at a
time.

By definition ofΥ, each non-bridge will be identified as such in one of
these runs. Each cluster’s run completes in time proportional to its
diameterO(Υ logn).

In fact we can process all clusters in parallel at the cost of a multiplicative
logn time factor due to congestion (e.g., message buffering.)
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A Fast Local Algorithm

A recent result [Elkin, 2004] gives a randomized algorithm for
computing sparse neighborhood covers which, with high probability,
runs inO(Υ log3 n) time and usesO(mlog2 n) messages on a
synchronous network.

Other wacky graph parameters discussed there.

Stress: we require that all nodes are started at the same time.

So the total time complexity of thislocal algorithm isO(Υ log3 n),
provided that we knowΥ.

Seems hopeless to computeΥ quickly but by guessingΥ = 1, 2, 4, 8, . . .
we quickly guess a large-enough value. Results in an algorithm that is
optimal up to log factors.
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Open Questions

Is there any way to compute the articulation points and blocks using a
version of the proposed algorithm?

If we could quickly (i.e., inO(Diam) + o(n) time) compute a DFS of
any given graph, under theCONGEST model, then we could
straightforwardly use Tarjan’s algorithm to compute the articulation
points. Seems to be very hard but as far as I know there is no
impossibility result.
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Your Questions?

Thank you for attending!
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