An Optimal Distributed Edge-Biconnectivity Algorithm

David Pritchard

Algorithms and Complexity, 2006

Outline

(1) Preliminaries

(2) Biconnectivity Boot Camp

(3) Distributed Bridge-Finding Algorithms and Lower Bounds

4 The Proposed Algorithm
(5) Afterword

Reliable Networks

- Model a network by a graph $G=(V, E)$: nodes are computers and edges are two-way communication channels.
- A graph (network) is connected if every pair of nodes is connected by some path of edges. Otherwise we say the network is disconnected.
- Connectedness is very desirable, and necessary if we want global information about our distributed network.
- Sometimes the removal (or equivalently, failure) of a single edge or node can cause a connected network to become disconnected.

Reliable Networks

- Model a network by a graph $G=(V, E)$: nodes are computers and edges are two-way communication channels.
- A graph (network) is connected if every pair of nodes is connected by some path of edges. Otherwise we say the network is disconnected.
- Connectedness is very desirable, and necessary if we want global information about our distributed network.
- Sometimes the removal (or equivalently, failure) of a single edge or node can cause a connected network to become disconnected.

Reliable Networks

- Model a network by a graph $G=(V, E)$: nodes are computers and edges are two-way communication channels.
- A graph (network) is connected if every pair of nodes is connected by some path of edges. Otherwise we say the network is disconnected.
- Connectedness is very desirable, and necessary if we want global information about our distributed network.
- Sometimes the removal (or equivalently, failure) of a single edge or node can cause a connected network to become disconnected.

The Connectivity of a Graph

- We would like to characterize, for a given graph, how many failures can it tolerate and still remain connected?
- Definition: a graph is k-edge-connected if, despite the failure of any ($k-1$) edges, the graph still remains connected.
- Replacing "edge" by "node" gives definition of k-node-connected.
- For both cases, a graph is 1-connected iff it is connected.
- The (edge or node) connectivity of a graph is the largest k for which it is k-(edge or node)-connected. (An exception, by convention, is that K_{n} has node connectivity $n-1$, not ∞.)

Our Distributed Model

- All nodes begin with distinct identifiers.
- Initially nodes do not know the network size, or the identities of their neighbours, but have a fixed list of neighbouring edges.
- Nodes have unbounded computational power.
- Communication takes place in synchronous rounds: on round i, each node reads the messages sent to it by its neighbours in round $i-1$, performs some computation, and then sends up to one message to each neighbour.
- Initially a single leader node is "jumpstarted" to initiate the algorithm.
- We restrict our attention to algorithms where all messages are $O(\log n)$ bits in size.
- Peleg's 2000 book is a good reference - this model is called $\mathcal{C O N G E S T}$.

Our Distributed Model

- You may think of each node v as a Turing machine with $\operatorname{deg}(v)$ input tapes, $\operatorname{deg}(v)$ output tapes, and a read-only tape containing its ID.
- Two interesting measures of complexity.
- Time complexity: number of rounds elapsed before the algorithm completes.
- Communication complexity: number of messages sent before the algorithm completes.

Example Algorithm: BFS

- We represent a BFS tree in the network by each node storing the identifier of its parent. Initially parent $(v)=$ nil for each node v.
- The leader joins the tree in the first round. Non-leader node v joins the tree when its parent is set to a non-null value.
- When node v joins the tree it sends "node v joined" to each neighbour.
- When a non-leader node v that is not in the tree receives one or more "node w_{i} joined" messages it picks one w_{i} arbitrarily, joins the tree, and sets parent $(v):=w_{i}$.

Example Algorithm: BFS

Analysis of BFS

- Each message is a single number between 1 and $|V|$, hence messages are at most $\log _{2}|V|+1$ bits long.
- Require that graph is connected.
- Each node v sends out $\operatorname{deg}(v)$ messages.
- Thus message complexity is $2|E|$.
- Let r be the leader node. Node v joins the tree in $d(r, v)$ rounds.
- Thus time complexity is

$$
\max _{v \in V} d(r, v):=\operatorname{radius}(r, G)
$$

- As

$$
\operatorname{Diam}(G) / 2 \leq \operatorname{radius}(r, G) \leq \operatorname{Diam}(G)
$$

it is more customary to write running time as Θ (Diam), which is independent of the choice of leader.

- Straightforward to make each node aware of its children. To add notification of termination: when a node's subtree is complete, it informs its parent; this doubles the running time.

Justifying the Model

- Why synchronous? By applying a synchronizer any asynchronous network (i.e., where not all nodes run in lock-step, or messages are subject to unequal delays) can simulate a synchronous one. Mind you, this incurs an increase in complexity.
- Why short messages? Short messages make the algorithms practical.
- Furthermore, if we allow arbitrarily large messages, then any graph theoretic problem can be trivially solved in O (Diam) rounds and with $O(m)$ messages as follows: in round i, each node broadcasts the nodes and edges of its radius- $(i-1)$ neighbourhood to all neighbours, and in the next round determines its radius- i neighbourhood based on the messages received.
- After Diam rounds each node knows the entire network topology and can solve any (decidable) graph-theoretic problem locally.

Outline

(1) Preliminaries

(2) Biconnectivity Boot Camp

(3) Distributed Bridge-Finding Algorithms and Lower Bounds

4 The Proposed Algorithm
(5) Afterword

Back to Connectivity

- Perhaps our graph is not k-connected, but we would still like to know how well it can tolerate failures.
- Specifically, is there a succinct way to determine the pairs of points which would remain connected despite any $(k-1)$ failures?
- The edge- k-connected case is easier to describe. Write $u \approx_{k}^{e} v$ if u and v remain connected despite the deletion of any $(k-1)$ edges.
- This is an equivalence relation: if u remains connected to v despite any $k-1$ edge failures and v remains connected to w despite any $k-1$ edge failures then u remains connected to w despite any $k-1$ edge failures.

Back to Connectivity

- In general the equivalence relation \approx_{k}^{e} which we just defined is hard to work with.
- For example, in the graph shown below with $k=3$, the equivalence classes of \approx_{3}^{e} are $\{\{1,5\},\{2\},\{3\},\{4\}\}$.

- Classes like $\{1,5\}$ are hard to deal with since they do not induce connected subgraphs of G.
- So hereafter we focus on the somewhat "special" case $k=2$, where we can show that the equivalence classes are connected.

Edge-Biconnectivity

- A bridge is an edge whose deletion causes the graph to become disconnected.
- In other words, a graph is 2-edge-connected if it has no bridge.
- An edge e is a bridge if and only if it does not lie in some simple cycle of G. Follows from the fact that simple cycles containing (u, v) correspond bijectively to simple u, v paths in $G-(u, v)$.
- Further, from this we can deduce that an edge (u, v) is a bridge if and only if $u \not \nsim 2_{e}^{e} v$.
- So the equivalence classes of \approx_{2}^{e} are just the connected components of $G-\operatorname{bridges}(G)$.
- Call the equivalence classes of \approx_{2}^{e} the biconnected components.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm (S. Vempala)

- We know that once we identify the bridges of the graph, it is straightforward to determine the biconnected components.
- Consider putting a "walker" on the graph. Orient each edge arbitrarily and give it a counter initialized to 0 .
- When the walker traverses an edge, change the counter by +1 if the step was in agreement with its orientation, and change the counter by -1 otherwise.

An "Alternative" Biconnectivity Algorithm

- First, no matter how the walker moves, the counter of a bridge will always remain in $\{-1,0,1\}$.

- Second, if the walker performs a random walk, it can be shown a given non-bridge edge is expected to exceed ± 1 in $O(|V||E|)$ steps.
- Proof idea: make a new graph that represents the walker's position and also the counter's value. A special node \star indicates that the value on the counter exceeds 1 in absolute value.
- A random walk on the old graph corresponds to a random walk on the new graph. So, by classical results about random walks, we expect to hit \star in $O\left(\left|V^{\prime}\right|\left|E^{\prime}\right|\right)$ steps, where the modified graph is $\left(V^{\prime}, E^{\prime}\right)$. Observe $\left|V^{\prime}\right|=O(|V|)$ and $\left|E^{\prime}\right|=O(|E|)$.

An "Alternative" Biconnectivity Algorithm

- First, no matter how the walker moves, the counter of a bridge will always remain in $\{-1,0,1\}$.

- Second, if the walker performs a random walk, it can be shown a given non-bridge edge is expected to exceed ± 1 in $O(|V||E|)$ steps.
- Proof idea: make a new graph that represents the walker's position and also the counter's value. A special node \star indicates that the value on the counter exceeds 1 in absolute value.
- A random walk on the old graph corresponds to a random walk on the new graph. So, by classical results about random walks, we expect to hit \star in $O\left(\left|V^{\prime}\right|\left|E^{\prime}\right|\right)$ steps, where the modified graph is $\left(V^{\prime}, E^{\prime}\right)$. Observe $\left|V^{\prime}\right|=O(|V|)$ and $\left|E^{\prime}\right|=O(|E|)$.

An "Alternative" Biconnectivity Algorithm

- First, no matter how the walker moves, the counter of a bridge will always remain in $\{-1,0,1\}$.

- Second, if the walker performs a random walk, it can be shown a given non-bridge edge is expected to exceed ± 1 in $O(|V||E|)$ steps.
- Proof idea: make a new graph that represents the walker's position and also the counter's value. A special node \star indicates that the value on the counter exceeds 1 in absolute value.
- A random walk on the old graph corresponds to a random walk on the new graph. So, by classical results about random walks, we expect to hit \star in $O\left(\left|V^{\prime}\right|\left|E^{\prime}\right|\right)$ steps, where the modified graph is $\left(V^{\prime}, E^{\prime}\right)$. Observe $\left|V^{\prime}\right|=O(|V|)$ and $\left|E^{\prime}\right|=O(|E|)$.

An "Alternative" Biconnectivity Algorithm

- First, no matter how the walker moves, the counter of a bridge will always remain in $\{-1,0,1\}$.

- Second, if the walker performs a random walk, it can be shown a given non-bridge edge is expected to exceed ± 1 in $O(|V||E|)$ steps.
- Proof idea: make a new graph that represents the walker's position and also the counter's value. A special node \star indicates that the value on the counter exceeds 1 in absolute value.
- A random walk on the old graph corresponds to a random walk on the new graph. So, by classical results about random walks, we expect to hit \star in $O\left(\left|V^{\prime}\right|\left|E^{\prime}\right|\right)$ steps, where the modified graph is $\left(V^{\prime}, E^{\prime}\right)$. Observe $\left|V^{\prime}\right|=O(|V|)$ and $\left|E^{\prime}\right|=O(|E|)$.

An "Alternative" Biconnectivity Algorithm

- First, no matter how the walker moves, the counter of a bridge will always remain in $\{-1,0,1\}$.

- Second, if the walker performs a random walk, it can be shown a given non-bridge edge is expected to exceed ± 1 in $O(|V||E|)$ steps.
- Proof idea: make a new graph that represents the walker's position and also the counter's value. A special node \star indicates that the value on the counter exceeds 1 in absolute value.
- A random walk on the old graph corresponds to a random walk on the new graph. So, by classical results about random walks, we expect to hit \star in $O\left(\left|V^{\prime}\right|\left|E^{\prime}\right|\right)$ steps, where the modified graph is $\left(V^{\prime}, E^{\prime}\right)$. Observe $\left|V^{\prime}\right|=O(|V|)$ and $\left|E^{\prime}\right|=O(|E|)$.

An "Alternative" Biconnectivity Algorithm

- First, no matter how the walker moves, the counter of a bridge will always remain in $\{-1,0,1\}$.

- Second, if the walker performs a random walk, it can be shown a given non-bridge edge is expected to exceed ± 1 in $O(|V||E|)$ steps.
- Proof idea: make a new graph that represents the walker's position and also the counter's value. A special node \star indicates that the value on the counter exceeds 1 in absolute value.
- A random walk on the old graph corresponds to a random walk on the new graph. So, by classical results about random walks, we expect to hit \star in $O\left(\left|V^{\prime}\right|\left|E^{\prime}\right|\right)$ steps, where the modified graph is $\left(V^{\prime}, E^{\prime}\right)$. Observe $\left|V^{\prime}\right|=O(|V|)$ and $\left|E^{\prime}\right|=O(|E|)$.

An "Alternative" Biconnectivity Algorithm

An "Alternative" Biconnectivity Algorithm

- The walk-based algorithm is nice for a couple of reasons.
- First, the algorithm never misclassifies a bridge as a non-bridge.
- Further, assuming the walker never dies due to being caught in a failure, all non-bridges in the connected component ultimately containing the walker are correctly identified, in polynomial time, with high probability.
- But in a reliable dense network the running time of $\Omega\left(n^{3}\right)$ is much too high.

Outline

(1) Preliminaries

(2) Biconnectivity Boot Camp
(3) Distributed Bridge-Finding Algorithms and Lower Bounds

4 The Proposed Algorithm
(5) Afterword

Distributing Tarjan's Node-Biconnectivity Algorithm

 Tarjan 1972 "DFS and Linear Graph Algorithms"- The first distributed biconnectivity algorithms were based off of an older sequential biconnectivity algorithm of Tarjan.
- An articulation point is a vertex whose deletion causes the graph to become disconnected.
- The blocks of a graph are the classes of an equivalence relation on the edges, such that two edges are equivalent iff they are contained in a simple cycle together (No proof here but easy).
- Bridges are singleton blocks and articulation points are those vertices which are incident on more than one block.
- Thus edge-biconnectivity is easy, given node-biconnectivity.
- Tarjan's 1972 algorithm, using DFS, computes the blocks, bridges, etc.
- Uses a preordering of the DFS spanning tree. Leads to distributed time complexity of $O(n)$ - bottleneck is DFS.

Improving Performance, I

- In a series of papers the basic algorithm was reformulated and streamlined.
- In what follows $n=|V|$ and $m=|E|$.
- In [Tarjan and Vishkin 1984; Huang 1989] it was realized that any spanning tree could be used, not just DFS. The algorithm, given a graph G, determines an auxiliary graph H such that each node of H is an edge of G, and the connected components of H are the blocks of G.
- The distributed complexity as described in these papers is O (Diam) time and $O(m n)$ messages, but uses messages of size $\Omega(n)$.
- The algorithm I will give later may be viewed as a refinement and streamlining of these ideas.

Improving Performance, II

- In [Thurimella 1995; Thurimella 1997] the algorithm is further optimized to use a subgraph K of G that can be computed distributively.
- Can't use an arbitrary tree, rather a generalization of BFS called scan-first search.
- The algorithm uses MST and other subroutines that dominate the time complexity. Plugging in the best known subroutines the total complexity is $O^{\sim}(\sqrt{n}+$ Diam $)$, where \sim indicates that factors of $\log n$ are ignored.
- There are polynomially many messages, each of size $O(\log n)$.
- MST has a known lower bound of $\Omega^{\sim}(\sqrt{n}+$ Diam $)$ time, so this is about as good as this technique can achieve.

Use of Minimum Weight Spanning Tree

- Why is MST a useful technique?
- The algorithm determines a subgraph K of G and wants to determine the connected components of K quickly.
- The connected components of K might have much larger diameter than G.
- Set the weight of each edge of K to 0 and each edge of $G-K$ to 1 .
- Then a minimum-weight spanning tree of G will contain a spanning tree for each connected component of K.
- MST is also used in the fastest-known distributed leader election algorithm.

Improving Performance, III

- The algorithm I am presenting improves on the previous ones in time and message complexity, and is fairly simple.
- The algorithm has O (Diam) time complexity and $O(m)$ communication complexity, using messages of size $O(\log n)$.
- Computes the bridges and biconnected components.
- It doesn't seem possible to extend the method to computing articulation points and blocks.
- Uses preordering like the older algorithms.

A Universal Lower Bound

- Let us restrict our attention to event-driven algorithms: a node can only send a message in a given round if it received a message in the previous round, plus the leader can send messages in the first round.
- For every graph, there is a Diam/2 lower bound on the time complexity of a correct edge-biconnectivity algorithm, assuming the algorithm is event-driven.
- Why? Only the leader can send messages in the 1 st round, and in the i th round, only nodes within distance $(i-1)$ of the leader can send messages.

A Universal Lower Bound

- So if the algorithm terminates in less than Diam/2<radius (r) rounds, some node w never receives or sends a message.
- Modify G into G^{\prime} by attaching some bridges and cycles to w.

- When running on G^{\prime}, the algorithm will never send any messages to the new nodes and edges, so it cannot be correct.

A Universal Lower Bound

- Thus, the older algorithms are time-optimal for some graphs, i.e., those with diameter larger than \sqrt{n}.
- Under the assumptions made above the new algorithm is time-optimal for all graphs.
- The proof that m messages are necessary is similar: each edge (u, v) must communicate some message, or else we can modify G into G^{\prime} such that the algorithm does not reach all parts of G^{\prime}.

Outline

(1) Preliminaries

(2) Biconnectivity Boot Camp

3 Distributed Bridge-Finding Algorithms and Lower Bounds

(4) The Proposed Algorithm
(5) Afterword

Overview

- After some squinting this algorithm can be seen as a distributed version of a 1984 paper by Tarjan.
- As mentioned before, the main task is bridge-finding, and then the biconnected components are just the connected components of $G-\operatorname{Bridges}(G)$.
- In order to find bridges it suffices to mark every edge that is lies in a simple cycle, then the bridges will just be the unmarked edges.
- The algorithm begins with a spanning tree of G. It works fastest when it is a BFS tree but any tree will do.

Overview

- Input: A rooted tree \mathcal{T} is given.
(1) Each node computes its number of descendants.
(2) We preorder the nodes.
(3) Mark each edge in every cycle of a cycle basis by upcasting.
(9) Label each node according to its biconnected component.
- Output: Each node gets a label such that two nodes share the same label if and only if they remain connected despite any single edge deletion.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

1. Each node computes its number of descendants

- Fix any rooted spanning tree with root r.
- Convention: every node is a descendant/ancestor of itself.
- First, each node v needs to compute the size $\# \operatorname{desc}(v)$ of its subtree (i.e., the number of descendants it has).
- Straightforward if we use a down/convergecast, as follows.
- The root sends "compute \#desc of yourself" to each child and all nodes pass this message down the tree.
- Each leaf immediately determines that their size is 1 and reports this to their parent; each other
 node waits to hear from all its children, sums their values, adds 1 , and reports to its parent.

2. Preordering the Vertices

- In a preorder, the label of a vertex is smaller than the label of each of its children.
- We can compute a preorder of the vertices with respect to \mathcal{T} distributively.
- The root gives itself label 1.
- When node v labels itself x, it orders its children arbitrarily as c_{1}, c_{2}, \ldots. Then it sends "Label yourself ℓ_{i} " to each c_{i}, where ℓ_{i} is computed by v as

$$
\ell_{i}=x+1+\sum_{j<i} \# \operatorname{desc}\left(c_{j}\right)
$$

- Takes height (\mathcal{T}) time.

2. Preordering the Vertices

- In a preorder, the label of a vertex is smaller than the label of each of its children.
- We can compute a preorder of the vertices with respect to \mathcal{T} distributively.
- The root gives itself label 1.
- When node v labels itself x, it orders its children arbitrarily as c_{1}, c_{2}, \ldots. Then it sends "Label yourself ℓ_{i} " to each c_{i}, where ℓ_{i} is computed by v as

$$
\ell_{i}=x+1+\sum_{j<i} \# \operatorname{desc}\left(c_{j}\right)
$$

- Takes height (\mathcal{T}) time.

2. Preordering the Vertices

- In a preorder, the label of a vertex is smaller than the label of each of its children.
- We can compute a preorder of the vertices with respect to \mathcal{T} distributively.
- The root gives itself label 1.
- When node v labels itself x, it orders its children arbitrarily as c_{1}, c_{2}, \ldots. Then it sends "Label yourself ℓ_{i} " to each c_{i}, where ℓ_{i} is computed by v as

$$
\ell_{i}=x+1+\sum_{j<i} \# \operatorname{desc}\left(c_{j}\right)
$$

- Takes height (\mathcal{T}) time.

2. Preordering the Vertices

- In a preorder, the label of a vertex is smaller than the label of each of its children.
- We can compute a preorder of the vertices with respect to \mathcal{T} distributively.
- The root gives itself label 1.
- When node v labels itself x, it orders its children arbitrarily as c_{1}, c_{2}, \ldots. Then it sends "Label yourself ℓ_{i} " to each c_{i}, where ℓ_{i} is computed by v as

$$
\ell_{i}=x+1+\sum_{j<i} \# \operatorname{desc}\left(c_{j}\right)
$$

- Takes height (\mathcal{T}) time.

2. Preordering the Vertices

- In a preorder, the label of a vertex is smaller than the label of each of its children.
- We can compute a preorder of the vertices with respect to \mathcal{T} distributively.
- The root gives itself label 1.
- When node v labels itself x, it orders its children arbitrarily as c_{1}, c_{2}, \ldots. Then it sends "Label yourself ℓ_{i} " to each c_{i}, where ℓ_{i} is computed by v as

$$
\ell_{i}=x+1+\sum_{j<i} \# \operatorname{desc}\left(c_{j}\right)
$$

- Takes height (\mathcal{T}) time.

2. Preordering the Vertices

- In a preorder, the label of a vertex is smaller than the label of each of its children.
- We can compute a preorder of the vertices with respect to \mathcal{T} distributively.
- The root gives itself label 1.
- When node v labels itself x, it orders its children arbitrarily as c_{1}, c_{2}, \ldots. Then it sends "Label yourself ℓ_{i} " to each c_{i}, where ℓ_{i} is computed by v as

$$
\ell_{i}=x+1+\sum_{j<i} \# \operatorname{desc}\left(c_{j}\right)
$$

- Takes height (\mathcal{T}) time.

2. Preordering the Vertices

- In a preorder, the label of a vertex is smaller than the label of each of its children.
- We can compute a preorder of the vertices with respect to \mathcal{T} distributively.
- The root gives itself label 1.
- When node v labels itself x, it orders its children arbitrarily as c_{1}, c_{2}, \ldots. Then it sends "Label yourself ℓ_{i} " to each c_{i}, where ℓ_{i} is computed by v as

$$
\ell_{i}=x+1+\sum_{j<i} \# \operatorname{desc}\left(c_{j}\right)
$$

- Takes height (\mathcal{T}) time.

3. Marking Cycles

- Hereafter we refer to every node by its preorder label.
- In order to mark cycles we take advantage of some nice properties of "lowest common ancestors" in preorder. Let LCA (u, \ldots, v) denote the lowest node of \mathcal{T} that is an ancestor of all of u, \ldots, v.
- Note that the descendants of node v are precisely

$$
\{u \mid v \leq u<v+\# \operatorname{desc}(v)\}
$$

Corollary

(1) If $v_{1} \leq v_{2} \leq v_{3}$, then $\operatorname{LCA}\left(v_{1}, v_{3}\right)$ is an ancestor of v_{2}.
(2) $\operatorname{LCA}\left(u_{1}, u_{2}, \ldots u_{k}\right)=\operatorname{LCA}\left(\min _{i}\left(u_{i}\right), \max _{i}\left(u_{i}\right)\right)$.
(3) If $u_{i} \leq v_{i}$ for all i, then

$$
\operatorname{LCA}\left(\operatorname{LCA}\left(u_{1}, v_{1}\right), \ldots \operatorname{LCA}\left(u_{k}, v_{k}\right)\right)=\operatorname{LCA}\left(\min _{i}\left(u_{i}\right), \max _{i}\left(v_{i}\right)\right)
$$

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."
- When node w checks ancestry condition it just
 checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- Each non-tree edge e determines a single fundamental cycle of $\mathcal{T} \cup\{e\}$. It can be shown that each non-bridge edge lies in some fundamental cycle and so once we mark these cycles, only bridges are unmarked.
- Non-tree edges are never bridges.
- For a given non-tree edge (u, v), to mark its fundamental cycle, send the message $\mathrm{M}[u, v]$ along the edge in both directions:
- M $[u, v]$: "If you are an ancestor of both u and v, then ignore this message. Otherwise, pass this message up to your parent, and mark the edge joining you to your parent."

- When node w checks ancestry condition it just checks if $\{u, v\} \subseteq\{w, \ldots, w+\# \operatorname{desc}(w)-1\}$.

3. Marking Cycles

- We are almost done, the protocol described will correctly mark all non-bridges.
- The problem is, a vertex can receive several $\mathrm{M}[u, v]$ messages at once, whereas (due to the limit on message size) only $O(1)$ can be forwarded to its parent in any round.
- Without loss of generality each $\mathrm{M}[u, v]$ is sent with $u \leq v$.
- The fix relies on the earlier corollary, If $u_{i} \leq v_{i}$ for all i, then

$$
\operatorname{LCA}\left(\operatorname{LCA}\left(u_{1}, v_{1}\right), \ldots \operatorname{LCA}\left(u_{k}, v_{k}\right)\right)=\operatorname{LCA}\left(\min _{i}\left(u_{i}\right), \max _{i}\left(v_{i}\right)\right) .
$$

- Namely, when a node receives messages $\mathrm{M}\left[u_{i}, v_{i}\right]$ it should act as if it received the single message $\mathrm{M}\left[\min _{i} u_{i}, \max _{i} v_{i}\right]$.
- Why? The goal of v sending messages to its parent is to mark a certain chain to some ancestor of v, and this formula will reach the oldest of all ancestors specified by any message. (Formal proof omitted).

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and $\max v_{i}$ of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges
 incident on v have sent a message, the node sends a message to its parent.

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and $\max v_{i}$ of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges

incident on v have sent a message, the node sends a message to its parent.

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and $\max v_{i}$ of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges
 incident on v have sent a message, the node sends a message to its parent.

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and $\max v_{i}$ of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges
 incident on v have sent a message, the node sends a message to its parent.

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and max v_{i} of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges
 incident on v have sent a message, the node sends a message to its parent.

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and max v_{i} of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges
 incident on v have sent a message, the node sends a message to its parent.

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and $\max v_{i}$ of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges
 incident on v have sent a message, the node sends a message to its parent.

3. Marking Cycles

- Finally, to reduce the total number of messages sent, we want each node to send exactly one message to its parent during the marking phase.
- Think of each node storing all received messages in a buffer until it hears from each non-parent neighbour.
- Rather than an explicit buffer, which could grow very large, each node just tracks a cumulative $\min u_{i}$ and $\max v_{i}$ of all the $\mathrm{M}\left[u_{i}, v_{i}\right]$ messages it has received.
- Even if v determines that its edge to its parent should not be marked, it sends a token message to its parent.
- When v has received all not-to-parent edges
 incident on v have sent a message, the node sends a message to its parent.

4. Label each node according to its biconnected component.

- As argued (much) earlier, the biconnected components (bccs) are connected, so the spanning tree \mathcal{T} spans the subgraph induced by each bcc.
- In short: labeling is easy.
- The root, and each edge that is just below a bridge, use its own preorder label as its bcc label.
- Each node passes its bcc label downwards once it has been computed, and any edge not just below a bridge uses the label that it receives from its parent.

4. Label each node according to its biconnected component.

- As argued (much) earlier, the biconnected components (bccs) are connected, so the spanning tree \mathcal{T} spans the subgraph induced by each bcc.
- In short: labeling is easy.
- The root, and each edge that is just below a bridge, use its own preorder label as its bcc label.
- Each node passes its bcc label downwards once it has been computed, and any edge not just below a bridge uses the label that it receives from its parent.

4. Label each node according to its biconnected component.

- As argued (much) earlier, the biconnected components (bccs) are connected, so the spanning tree \mathcal{T} spans the subgraph induced by each bcc.
- In short: labeling is easy.
- The root, and each edge that is just below a bridge, use its own preorder label as its bcc label.
- Each node passes its bcc label downwards once it has been computed, and any edge not just below a bridge uses the label that it receives from its parent.

4. Label each node according to its biconnected component.

- As argued (much) earlier, the biconnected components (bccs) are connected, so the spanning tree \mathcal{T} spans the subgraph induced by each bcc.
- In short: labeling is easy.
- The root, and each edge that is just below a bridge, use its own preorder label as its bcc label.
- Each node passes its bcc label downwards once it has been computed, and any edge not just below a bridge uses the label that it receives from its parent.

Complexity Analysis

(1) Each node computes its number of descendants.
(2) We preorder the nodes.
(3) Mark each edge in every cycle of a cycle basis by upcasting.
(9) Label each node according to its biconnected component.

- Each edge is used only a constant number of times. Twice to compute \#desc, once to preorder, at most twice for $\mathbf{M}[\cdot, \cdot]$ messages, and once to distribute bcc labels. So $O(m)$ communication complexity.
- Each of the 4 steps takes $O(h e i g h t(\mathcal{T}))$ time to complete.
- All messages have 1 or 2 positive integers less than n, so each message is of length $O(\log n)$.
- The BFS protocol shown earlier gives a spanning tree of height less than Diam, in O (Diam) rounds and using $O(m)$ messages.
- So, as claimed the total complexity is $O(m)$ communication and O (Diam) time.

Outline

(1) Preliminaries

(2) Biconnectivity Boot Camp
(3) Distributed Bridge-Finding Algorithms and Lower Bounds

4 The Proposed Algorithm
(5) Afterword

Tweaking the Algorithm

- Suppose we remove the restriction on messages sizes, and we start all nodes simultaneously.
- Use the "repeatedly broadcast known topology" approach.
- As soon as any node notices that a given edge is not a bridge, it tells that node.
- The time before all non-bridges are identified is $\Upsilon(G)$, where

$$
\Upsilon(G):=\max _{e \text { not a bridge } K} \min _{\substack{\text { a cycle } \\ K \ni e}} \min _{v \in V(G)} \max _{u \in K} \operatorname{dist}_{G}(u, v) \text {. }
$$

- Υ is the least value t such that each non-bridge is contained in a cycle belonging to a t-neighbourhood of some node.
- Furthermore this is also a lower bound on the time to identify all non-bridges (up to a constant), no matter what algorithm is used.

A Fast Local Algorithm

- A $(\log n, \Upsilon)$-neighbourhood cover of G is a collection of connected vertex sets called clusters such that
(1) For each vertex v, the Υ-neighborhood of v is entirely contained in some cluster.
(2) The subgraph of G induced by each cluster has diameter $O(\Upsilon \log n)$.
(3) Each node belongs to $O(\log n)$ clusters.
- Let us run our edge-biconnectivity algorithm on each cluster, one at a time.
- By definition of Υ, each non-bridge will be identified as such in one of these runs. Each cluster's run completes in time proportional to its diameter $O(\Upsilon \log n)$.
- In fact we can process all clusters in parallel at the cost of a multiplicative $\log n$ time factor due to congestion (e.g., message buffering.)

A Fast Local Algorithm

- A recent result [Elkin, 2004] gives a randomized algorithm for computing sparse neighborhood covers which, with high probability, runs in $O\left(\Upsilon \log ^{3} n\right)$ time and uses $O\left(m \log ^{2} n\right)$ messages on a synchronous network.
- Other wacky graph parameters discussed there.
- Stress: we require that all nodes are started at the same time.
- So the total time complexity of this local algorithm is $O\left(\Upsilon \log ^{3} n\right)$, provided that we know Υ.
- Seems hopeless to compute Υ quickly but by guessing $\Upsilon=1,2,4,8, \ldots$ we quickly guess a large-enough value. Results in an algorithm that is optimal up to log factors.

Open Questions

- Is there any way to compute the articulation points and blocks using a version of the proposed algorithm?
- If we could quickly (i.e., in $O($ Diam $)+o(n)$ time) compute a DFS of any given graph, under the $\mathcal{C O N G E S T}$ model, then we could straightforwardly use Tarjan's algorithm to compute the articulation points. Seems to be very hard but as far as I know there is no impossibility result.

Your Questions?

- Thank you for attending!
- M. Elkin. A faster distributed protocol for constructing a minimum spanning tree. In Proc. 15th Symp. Discrete Algorithms, pages 359-368, 2004. Full version at http://www.cs.yale.edu/~elkin/mst.jour.ps.
- S. T. Huang. A new distributed algorithm for the biconnectivity problem. In Proc. 1989 International Conf. Parallel Processing, pages 106-113, 1989.
- D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
- R. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1(2):146-160, 1972.
- R. E. Tarjan. A note on finding the bridges of a graph. Inform. Process. Lett., 2:160-161, 1974.
- R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. Comput., 14(4):862-874, 1985.
- R. Thurimella. Sub-linear distributed algorithms for sparse certificates and biconnected components. In Proc. 14th Symp. Principles of Distributed Computing, pages 28-37, 1995. Journal: J. Algorithms, 23(1):160-179, 1997.

