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What Is a Tree?

o A forestis a collection of trees.
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What Is a Tree?

@ Trees have lots of interesting characterizationgraphs. ..
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What Is a Tree?

@ Trees have lots of interesting characterizationgraphs. ..

» A connected graph with no cycles
» A graph where there is each pair of vertices is joined by alsipgth
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What Is a Tree?

@ Trees have lots of interesting characterizationgraphs. ..

» A connected graph with no cycles
» A graph where there is each pair of vertices is joined by alsipgth

o ...but we won't talk about this here.
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Basic Botany

@ In this talk we mainly deal withooted, labelled
trees.

@ There is aoot vertex.

o Each other node that we add to the tree is the
child of an existing node.
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Basic Botany

@ In this talk we mainly deal witmooted, labelled

trees.
o There is aoot vertex. G
o Each other node that we add to the tree is the
child of an existing node. @ e

o If nodex s a child of nodey then we say that is
the parent ok. Each non-root node has exactly G @ 0

one parent. Q @ a
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Basic Botany

@ In this talk we mainly deal witmooted, labelled

trees.
o There is aoot vertex. G
o Each other node that we add to the tree is the
child of an existing node. @ e

o If nodex s a child of nodey then we say that is
the parent ok. Each non-root node has exactly G @ 0

one parent. Q m a

o For example, sinckl is a child of G, nodeG is
the parent ofH.
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Basic Botany

@ A node with no children is called leaf.

@ A node that is not a leaf is called amternal
node

o In this tree the leaves are F, D, H, |, A.

[} F = = E waw

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 6/47



Basic Botany

@ A node with no children is called leaf.
@ A node that is not a leaf is called amternal
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Basic Botany

@ A node with no children is called leaf.
@ A node that is not a leaf is called amternal

node
o Inthis tree the leaves are F, D, H, I, A.
@ In contest problems, explicitly given trees often e

model: e G
o a work hierarchy (nodes = people; parent = boss,

child = subordinate) e e @

@ an expression (leaves = values, internal nodes =

functions) Q m 0

o states of a game (nodes = board positions, root =
initial board, edges = valid moves, leaves =
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Basic Botany

@ A node with no children is called leaf.
@ A node that is not a leaf is called amternal

node
o Inthis tree the leaves are F, D, H, I, A.
@ In contest problems, explicitly given trees often e

model: e G
o a work hierarchy (nodes = people; parent = boss,

child = subordinate) e e @

@ an expression (leaves = values, internal nodes =

functions) Q m 0

o states of a game (nodes = board positions, root =
initial board, edges = valid moves, leaves =
ending positions)

@ occasionally, a tree (leaves = leaves, root = root)
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Basic Botany
o Straightforward representation: keep an affay
of the nodes’ parents and an ar@yf child-lists.
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o If we don't care about (or don’t know) the order
of each node’s children then we may only need to
keep track oP.
o Alternatively, we can just keep track Gf o
=y = E A
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Aside: Binary Trees

@ Another form of tree is ®inary tree.

o Each node may or may not have a left child, and
may or may not have a right child.

@ Each node is a record with fields (value, left,
right), where left and right are pointers to nodes.
A null pointer means that that child doesn’t exist.

o If we stick values in the nodes the right way, we
can make &inary search treavhich is useful for
some applications.

o Different generalizationk child positions is a
k-ary tree
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Definitions

@ A graph G= (V,E) is a setV of n nodes (which we call 1,. ., n)

together with a collectiok of edges Each edge is just a pair of nodes
o E.g., nodes/edges = cities/roads or computers/links.
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Definitions

@ A graph G= (V,E) is a setV of n nodes (which we call 1,. ., n)
together with a collectiok of edges Each edge is just a pair of nodes

o E.g., nodes/edges = cities/roads or computers/links.

@ A spanning treés a tree that contains every node.

@ Here’s a spanning tree with root 8:
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Definitions

@ A graph G= (V,E) is a setv of n nodes (which we call 1,. ., n)
together with a collectiolk of edges Each edge is just a pair of nodes.

o E.g., nodes/edges = cities/roads or computers/links.

@ A spanning treés a tree that contains every node.
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Spanning Tree> Check Bipartite

@ Thelevelof a node in any tree is the number of tree edges between th
node and the root. l.e., level(root)=0 and lexgHevel(P[x])+1.
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Spanning Trees- Check Bipartite

@ Thelevelof a node in any tree is the number of tree edges between th

node and the root. l.e., level(root)=0 and lexgHevel(P[x])+1.
@ The spanning tree pictured has thésels
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Spanning Trees>- Check Bipartite

@ Thelevelof a node in any tree is the number of tree edges between th
node and the root. l.e., level(root)=0 and lexgHevel(P[x])+1.

@ The spanning tree pictured has thésels

o Definition: a graph idipartite if the nodes can be colored green and bl
so that each there are no green-green or blue-blue edges.
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1 4 5
5
2 3
0 4
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Spanning Trees>- Check Bipartite

@ Thelevelof a node in any tree is the number of tree edges between th
node and the root. l.e., level(root)=0 and lexgHevel(P[x])+1.

@ The spanning tree pictured has thésels

o Definition: a graph idipartite if the nodes can be colored green and bl
so that each there are no green-green or blue-blue edges.

@ You can show that a graph is bipartite if and only if for each non-tree
edge{u, v} we have levdl) # level(v) (mod 2.
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Spanning Tree> Check Bipartite

o Last slide: “You can show that a graph is bipartite if and only if for eac
non-tree edgégu, v} we have levgl) # level(v) (mod 2.
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Spanning Trees- Check Bipartite

o Last slide: “You can show that a graph is bipartite if and only if for eac
non-tree edgégu, v} we have levgl) # level(v) (mod 2.

@ Because of the edge pictured (among others) we k@asvnot bipartite
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Spanning Trees>- Check Bipartite

o Last slide: “You can show that a graph is bipartite if and only if for eac
non-tree edgégu, v} we have levgl) # level(v) (mod 2.

@ Because of the edge pictured (among others) we k@asvnot bipartite.
@ But this other graph (with the same spanning tiséjpartite.
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Spanning Trees>- Check Bipartite

o Last slide: “You can show that a graph is bipartite if and only if for eac
non-tree edgégu, v} we have levgl) # level(v) (mod 2.

@ Because of the edge pictured (among others) we k@asvnot bipartite.
@ But this other graph (with the same spanning tiséjpartite.
@ We color the even-level nodes green and the odd-level nodes blue.
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Three Important Data Structures

o Data structures allow you foush(insert) andoop (remove) items.
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Three Important Data Structures

o Data structures allow you foush(insert) andoop (remove) items.
@ A stackis a LIFO (last-in, first-out) data structure.
o When wepop,the newest item in the stack is returned & removed.

o E.g. push A, then push B. Then a pop returns B. If we push C and the
pop again we get C, and another pop finally retrieves A.
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Three Important Data Structures

Data structures allow you foush(insert) andoop (remove) items.

A stackis a LIFO (last-in, first-out) data structure.

When wepop,the newest item in the stack is returned & removed.
E.g. push A, then push B. Then a pop returns B. If we push C and the
pop again we get C, and another pop finally retrieves A.

A queueis a FIFO (first-in, first-out) data structure.

Popping removes & returns the oldest remaining item.

E.g. push A, then push B. Then a pop returns A. If we push C and the
pop again we get B, and another pop will return C.

Note: for a queue, order of removal = order of insertion.
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pop again we get B, and another pop will return C.
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Three Important Data Structures
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Data structures allow you foush(insert) andoop (remove) items.

A stackis a LIFO (last-in, first-out) data structure.

When wepop,the newest item in the stack is returned & removed.
E.g. push A, then push B. Then a pop returns B. If we push C and the
pop again we get C, and another pop finally retrieves A.

A queueis a FIFO (first-in, first-out) data structure.

Popping removes & returns the oldest remaining item.

E.g. push A, then push B. Then a pop returns A. If we push C and the
pop again we get B, and another pop will return C.

Note: for a queue, order of removal = order of insertion.

A priority queueis a cheapest-out structure.

Each item is inserted with a fixed numerical priority.

Popping returns & removes the least-priority remaining item.

E.g. push(A, 2) then push(B, 3). Pop returns A. If we push(C, fl) an
then pop again we get C, and another pop will return B.
Implement priority queue with heapor balancgzd bﬁiinarx tree
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Exploring a Graph
@ Here is an abstract algorithm for exploring a graph.

1: procedure SEARCH-GRAPH(G, root)

2: isExplored:= boolean|vertices df], initially false
3 waitingEdges := strugtpair( vertex))

4: waitingEdges.add( | , root))

5: while waitingEdges is not emptylo

6 (p, v) := waitingEdges.remove()

7 if (lisExploredv]) then

8 isExploredv] :=true

9: parenty] := p
10: for all neighboursw of v such that sExploredw] do
11: waitingEdges.aday( w))

o Basically we try to explore every edge that we learn about.
@ No matter what order edges are removed from waitingEdges, we get
spanning tree. e o e 3 eee
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Depth-First Search

o Make waitingEdges atack depth-first search.
@ Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean|[vertices oB]

3 waitingEdges :sstack pair( vertex))

4 waitingEdges.add(( | , root))

5: while waitingEdges is not emptylo

6 (p, V) := waitingEdges.remove()

7 if (lisExploredv]) then

8 isExploredv] := true

9

; parenty] :=p
10: for all neighbourswv of v such that
lisExploredw] do
11: waitingEdges.adady( w))

[Top] [Bot]
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Depth-First Search

o Make waitingEdges atack depth-first search.
@ Stack is LIFO (last in, first out).
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@ Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean|[vertices oB]

3 waitingEdges :sstack pair( vertex))

4 waitingEdges.add(( | , root))

5: while waitingEdges is not emptylo

6 (p, V) := waitingEdges.remove()

7 if (lisExploredv]) then

8 isExploredv] := true

9

; parenty] :=p
10: for all neighbourswv of v such that
lisExploredw] do
11: waitingEdges.adady( w))

[Top] (D, C)[Bot]
CCCStage2,2006 1714
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Properties of Depth-First Search

o Complexity

o Each edge enters and leaves the stack exactly
once.

@ SoO(m+ n) time complexity where
m=|E/,n=|V|
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Properties of Depth-First Search

o Complexity

o Each edge enters and leaves the stack exactly
once.

@ SoO(m+ n) time complexity where
m= |E[,n=|V|

@ Properties

o For each non-tree edgw, eitheruis a

descendant of in the DFS tree or vice-versa.
(No cross edgés
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Properties of Depth-First Search

o Complexity

o Each edge enters and leaves the stack exactly
once.

@ SoO(m+ n) time complexity where
m= |E[,n=|V|

@ Properties

o For each non-tree edgw, eitheruis a

descendant of in the DFS tree or vice-versa.
(No cross edgés

@ Applications
o We will see later that using DFS and some other
ideas (preorder, postorder) we can get efficient

algorithms for biconnectivity and strong
connectivity.
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Breadth-First Search

o Make waitingedges gueue breath-first search.
@ Queue is FIFO (firstin, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean|[vertices oB]

3 waitingEdges :xueu€ pair({ vertex))

4: waitingEdges.add(( | , root))

5: while waitingEdges is not emptyglo

6 (p, V) := waitingEdges.remove()

7 if (lisExploredv]) then

8 isExploredv] := true

9

; parent{] :=p
10: for all neighbourswv of v such that
lisExploredw] do
11: waitingEdges.adady( w))

[Head] [Tail]
CCC Stage 2,2006 20/ 47
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Breadth-First Search

o Make waitingEdges gueue breath-first search.
@ Queue is FIFO (firstin, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices of]

3 waitingEdges :xjueud pair( vertex))

4: waitingEdges.add | , root))

5: while waitingEdges is not emptylo

6 (p, V) := waitingEdges.remove()

7 if (lisExploreqv]) then

8 isExploredv] := true

9

: parenty] :=p
10: for all neighbourswv of v such that
lisExploredw] do
11: waitingEdges.adady( w))

[Head](ni | , D) [Tail]
CCCStage2,2006 2014
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Breadth-First Search

o Make waitingEdges gueue breath-first search.
@ Queue is FIFO (firstin, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices of]

3 waitingEdges :xjueud pair( vertex))

4: waitingEdges.add | , root))

5: while waitingEdges is not emptylo

6 (p, V) := waitingEdges.remove()

7 if (lisExploreqv]) then

8 isExploredv] := true

9

: parenty] :=p
10: for all neighbourswv of v such that
lisExploredw] do
11: waitingEdges.adady( w))

[Head] (D, B)(D, F)(D, C)[Taill
CCCStage2,2006 2014
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Breadth-First Search

o Make waitingEdges gueue breath-first search.
@ Queue is FIFO (firstin, first out).
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9
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Breadth-First Search

o Make waitingEdges gueue breath-first search.
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Breadth-First Search

o Make waitingEdges gueue breath-first search.
@ Queue is FIFO (firstin, first out).
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Breadth-First Search

o Make waitingEdges gueue breath-first search.
@ Queue is FIFO (firstin, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices of]
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Breadth-First Search

o Make waitingEdges gueue breath-first search.
@ Queue is FIFO (firstin, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices of]

3 waitingEdges :xjueud pair( vertex))

4: waitingEdges.add | , root))

5: while waitingEdges is not emptylo

6 (p, V) := waitingEdges.remove()

7 if (lisExploreqv]) then

8 isExploredv] := true

9

: parenty] :=p
10: for all neighbourswv of v such that
lisExploredw] do
11: waitingEdges.adady( w))

[Head] (A, E) [Tail]
CCCStage2,2006 2014
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Properties of Breadth-First Search
e Complexity O(m+ n) time.
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Properties of Breadth-First Search

e Complexity O(m+ n) time.

@ Properties

o levelv] = dist(root,v) (shortest paths!)

e Edgeuvnotin tree= |leve[u]-levelv]| <1
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Properties of Breadth-First Search

e Complexity O(m+ n) time.

@ Properties

o leve|v] = dist(root,v) (shortest paths!)

e Edgeuvnotin tree= |leve[u]-levelv]| <1
o An Application

o Girth g : length of the shortest cycle.

)

There is a lengtly cycle through the root if and
only if some non-tree edgev satisfies
leve[u]+leve[v]+1=g.

@ So to computg : do a BFS from each vertex and
return the minimum value oevelu]+leve[v]+1
over all non-tree edgasvin all trees.
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Properties of Breadth-First Search

e Complexity O(m+ n) time.

@ Properties

o leve|v] = dist(root,v) (shortest paths!)

e Edgeuvnotin tree= |leve[u]-levelv]| <1
o An Application

o Girth g : length of the shortest cycle.

)

There is a lengtly cycle through the root if and
only if some non-tree edgev satisfies
leve[ul+levev]+1=g.

@ So to computg : do a BFS from each vertex and
return the minimum value oevelu]+leve[v]+1
over all non-tree edgasvin all trees.

@ No known fast algorithm for determining the
longestcycle.

=] 5 = = E DA

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 21/ 47



Interlude
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Interlude

o What if the graph we are given is not connected?

@ Then Searcl, root) will hit only those nodes that have some path to
root. We call these node®nnectedo root.

o The set of all nodes reachable from root iscmnected componenthe

vertices of every graph are naturally partitioned into connected
components.

[m] = = =
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Interlude

o What if the graph we are given is not connected?
@ Then Searcl, root) will hit only those nodes that have some path to
root. We call these node®nnectedo root.

o The set of all nodes reachable from root iscmnected componenthe
vertices of every graph are naturally partitioned into connected
components.

@ Here’s pseudocode for connected components. Search-ant{&Gabe
root) is any kind of search routine, but when it explores a neitesets
connected-component-labe][:= root.

1: procedure CONNECTED-COMPONENTYG)

2 isExplored := boolean] > Assume vertices are 0,.,v—1
3 fori:=1tov—1do

4: if lisExplored]|] then

5 Search-and-Labeg; i)
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Interlude

o What if the graph we are given is not connected?

@ Then Searcl, root) will hit only those nodes that have some path to
root. We call these node®nnectedo root.

o The set of all nodes reachable from root iscmnected componenthe
vertices of every graph are naturally partitioned into connected
components.

@ Here’s pseudocode for connected components. Search-ant{&Gabe
root) is any kind of search routine, but when it explores a neitesets
connected-component-labe][:= root.

1: procedure CONNECTED-COMPONENTYG)

2 isExplored := boolean] > Assume vertices are 0,.,v—1
3 fori:=1tov—1do

4: if lisExplored]|] then

5: Search-and-Labeg; i)

@ Computes apanning foresof G.
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Minimum Spanning Tree
e Each edgeivis given a costju, V| = c[v, u].

o What spanning tree has minimal sum of edge
costs?
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
@ What spanning tree has minimal sum of edge
Costs?

e Use apriority queue priority(uv) = c[u, v].

1: procedure MINIMUM -SPANNING-TREE(G, root)
2 waitingEdges :9pri-queud pair{ vertex))
3 waitingEdges.add(On( | , root))
4 while waitingEdges is not emptylo
5: (p, v) := waitingEdges.remove()
6 if (lisExploredv]) then

7 isExploredv] := true

8 parenty] := p

9 for all neighbourswv of v such that

lisExploredw] do

10: waitingEdges.add{v. w], (v, w))
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
@ What spanning tree has minimal sum of edge
Costs?

e Use apriority queue priority(uv) = c[u, v].

1: procedure MINIMUM -SPANNING-TREE(G, root)
2 waitingEdges :9pri-queud pair{ vertex))
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
@ What spanning tree has minimal sum of edge
Costs?
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
@ What spanning tree has minimal sum of edge
Costs?

e Use apriority queue priority(uv) = c[u, v].
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
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e Each edgeuvis given a cost|u, V| = c|v, u].
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
@ What spanning tree has minimal sum of edge
Costs?

e Use apriority queue priority(uv) = c[u, v].
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
@ What spanning tree has minimal sum of edge
Costs?

e Use apriority queue priority(uv) = c[u, v].
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Minimum Spanning Tree
e Each edgeuvis given a cost|u, V| = c|v, u].
@ What spanning tree has minimal sum of edge
Costs?

e Use apriority queue priority(uv) = c[u, v].

1: procedure MINIMUM -SPANNING-TREE(G, root)
2 waitingEdges :9pri-queud pair{ vertex))
3 waitingEdges.add(On( | , root))
4 while waitingEdges is not emptylo
5: (p, v) := waitingEdges.remove()
6 if (lisExploredv]) then

7 isExploredv] := true

8 parenty] := p

9 for all neighbourswv of v such that

lisExploredw] do

10: waitingEdges.add{v. w], (v, w))
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Minimum Spanning Tree

o Intuitively, we are “growing” a spanning tree starting from the specifie
root.

o The priority queue always contains all edges thafrgm the current tree
to some non-tree vertex.

o (In the priority queue there will additionally be some edges that go
between 2 tree vertices, but they will be skipped)

@ We always grow the tree in the cheapest way possible!

=] =y = = E vwaAw
David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 25/ 47



Minimum Spanning Tree

o Intuitively, we are “growing” a spanning tree starting from the specifie
root.

o The priority queue always contains all edges thafrgm the current tree
to some non-tree vertex.

o (In the priority queue there will additionally be some edges that go
between 2 tree vertices, but they will be skipped)

We always grow the tree in the cheapest way possible!
Complexity
Each edge enters and leaves the priority queue exactly once.

Priority queues generally ha¥®logn) time complexity per access so
total time complexity iO(mlogn)

e © o ¢
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Minimum Spanning Tree

o Intuitively, we are “growing” a spanning tree starting from the specifie
root.

o The priority queue always contains all edges thafrgm the current tree
to some non-tree vertex.

o (In the priority queue there will additionally be some edges that go
between 2 tree vertices, but they will be skipped)

We always grow the tree in the cheapest way possible!
Complexity
Each edge enters and leaves the priority queue exactly once.

Priority queues generally ha¥®logn) time complexity per access so
total time complexity iO(mlogn)

Also known as Prim’s algorithm.

e © o ¢

@ Can be implemented somewhat fasteiQim + nlogn) time.
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@ Dijkstra’s Shortest Paths Algorithm
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Single-Source Weighted Shortest Paths

@ Find the shortest distancexifrom root to each
vertexx in aweightedgraph.

[Top]
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Single-Source Weighted Shortest Paths
@ Find the shortest distancexifrom root to each
vertexx in aweightedgraph.

o Use apriority queue priority(uv) = d[u] + c[u, v].

1: procedure SHORTESFPATHS(G, root)
2 waitingEdges :9ri-queug pair{ vertex))
3 waitingEdges.add(On( | , root))
4 while waitingEdges is not emptylo
5: (p, V) := waitingEdges.remove()
6 if (lisExploredv]) then

7 isExploredv] := true

8 parent{/] := p, d[v] := d[p] + c[p, V]

9 for all neighbourswv of v such that

lisExploredw] do

10: waitingEdges.addi(v] + c[v, w|, (v, w))
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Single-Source Weighted Shortest Paths
@ Find the shortest distancexifrom root to each
vertexx in aweightedgraph.

o Use apriority queue priority(uv) = d[u] + c[u, v].

1: procedure SHORTESFPATHS(G, root)
2 waitingEdges :9ri-queug pair{ vertex))
3 waitingEdges.add(On( | , root))
4 while waitingEdges is not emptylo
5: (p, V) := waitingEdges.remove()
6 if (lisExploredv]) then

7 isExploredv] := true

8 parent{/] := p, d[v] := d[p] + c[p, V]

9 for all neighbourswv of v such that

lisExploredw] do

10: waitingEdges.addi(v] + c[v, w|, (v, w))
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Single-Source Weighted Shortest Paths
@ Find the shortest distancexifrom root to each
vertexx in aweightedgraph.

o Use apriority queue priority(uv) = d[u] + c[u, v].

1: procedure SHORTESFPATHS(G, root)
2 waitingEdges :9ri-queug pair{ vertex))
3 waitingEdges.add(On( | , root))
4 while waitingEdges is not emptylo
5: (p, V) := waitingEdges.remove()
6 if (lisExploredv]) then

7 isExploredv] := true

8 parent{/] := p, d[v] := d[p] + c[p, V]

9 for all neighbourswv of v such that

lisExploredw] do

10: waitingEdges.addi(v] + c[v, w|, (v, w))
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Single-Source Weighted Shortest Paths
@ Find the shortest distancexifrom root to each
vertexx in aweightedgraph.

o Use apriority queue priority(uv) = d[u] + c[u, v].

1: procedure SHORTESFPATHS(G, root)
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9 for all neighbourswv of v such that

lisExploredw] do

10: waitingEdges.addi(v] + c[v, w|, (v, w))

[Top] (D, B)X(C, FY(D, F)®(E, A)®

=] 5 = = E DA



Single-Source Weighted Shortest Paths
@ Find the shortest distancexifrom root to each
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Single-Source Weighted Shortest Paths
@ Find the shortest distancexifrom root to each
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Single-Source Weighted Shortest Paths
@ Find the shortest distancexifrom root to each
vertexx in aweightedgraph.

o Use apriority queue priority(uv) = d[u] + c[u, v].

1: procedure SHORTESFPATHS(G, root)
2 waitingEdges :9ri-queug pair{ vertex))
3 waitingEdges.add(On( | , root))
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5: (p, V) := waitingEdges.remove()
6 if (lisExploredv]) then

7 isExploredv] := true

8 parent{/] := p, d[v] := d[p] + c[p, V]
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@ Find the shortest distancexifrom root to each
vertexx in aweightedgraph.

o Use apriority queue priority(uv) = d[u] + c[u, v].

1: procedure SHORTESFPATHS(G, root)
2 waitingEdges :9ri-queug pair{ vertex))
3 waitingEdges.add(On( | , root))
4 while waitingEdges is not emptylo
5: (p, V) := waitingEdges.remove()
6 if (lisExploredv]) then

7 isExploredv] := true

8 parent{/] := p, d[v] := d[p] + c[p, V]
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Single-Source Weighted Shortest Paths

o Is it somewhat surprising that the shortest paths
can be even bepresentedby a tree?

o =) = =
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Single-Source Weighted Shortest Paths

@ Is it somewhat surprising that the shortest paths
can be even bepresentedby a tree?

@ Basic reason: if the shortest path from rookto
needs to go throughfirst, then it needs to
actually take a shortest pathyo

@ Nodes are discovered in increasing order of
distance from root.
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@ Nodes are discovered in increasing order of
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Single-Source Weighted Shortest Paths

@ Is it somewhat surprising that the shortest paths
can be even bepresentedby a tree?

@ Basic reason: if the shortest path from rookto
needs to go throughfirst, then it needs to
actually take a shortest pathyo

@ Nodes are discovered in increasing order of
distance from root.

e Side note: ¢u] < d[v] + c[u, V] for all edgesuv.
o Complexity

o TakesO(mlogn) time, like Prim's MST
algorithm.
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Single-Source Weighted Shortest Paths

@ Is it somewhat surprising that the shortest paths
can be even bepresentedby a tree?

@ Basic reason: if the shortest path from rookto
needs to go throughfirst, then it needs to
actually take a shortest pathyo

@ Nodes are discovered in increasing order of
distance from root.

e Side note: ¢u] < d[v] + c[u, V] for all edgesuv.
e Complexity

o TakesO(mlogn) time, like Prim's MST
algorithm.

o Works for directed graph$oesn’t workif there
are negative edge weights.
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Generalized Searching

@ What if we have a graph that is givémplicitly?
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Generalized Searching

@ What if we have a graph that is givémplicitly?

@ Example: Nodes arstatesof Rubik’s cube, edges are valid moves
@ Want to solve the cube quickks shortest path.
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@ Want to solve the cube quickks shortest path.
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Generalized Searching

@ What if we have a graph that is givémplicitly?

@ Example: Nodes arstatesof Rubik’s cube, edges are valid moves
@ Want to solve the cube quickks shortest path.

@ Can we use BFS without actually constructing the whole graph?
@ Sure. Itis trickier to keep track of isExplored; you can use a Set class

like ahash sebr asorted set/ balanced binary tree .
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Generalized Searching

o Summary of last slide: to find path frorto y do a BFS fronx, stopping
when we hity.

@ The “implicit graph” idea is used a lot in Al: planning driving routes,
automatic theorem proving, operations research.
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Generalized Searching

o Summary of last slide: to find path frorto y do a BFS fronx, stopping
when we hity.

@ The “implicit graph” idea is used a lot in Al: planning driving routes,
automatic theorem proving, operations research.

@ A caveat. If there is no path fromto y, then our BFS will explore the
whole graph anyway, which is inefficient!

@ 43,252,003,274,489,856,000 positions for a Rubik’s cube.
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Generalized Searching

o Summary of last slide: to find path frorto y do a BFS fronx, stopping
when we hity.

@ The “implicit graph” idea is used a lot in Al: planning driving routes,
automatic theorem proving, operations research.

@ A caveat. If there is no path fromto y, then our BFS will explore the
whole graph anyway, which is inefficient!

@ 43,252,003,274,489,856,000 positions for a Rubik’s cube.

o Actually, if x andy are diametrically opposite then the given strategy s
would explore (nearly) the entire graph just to find ¥agpath.

@ But now | will explain 2 ways to improve performance even in this
“worst” case: Meet-in-the-Middle and*A("A-star") search.
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Meet in the Middle

@ Suppose that each node of our graph kasighbours, and we are
applying the previous BFS technique to find a shortest path between
andy who are at distance.

@ Roughly speaking, each level of the search will expand the univérse c
“explored” nodes by a factor af, so about total time is needed.

@ What's a simple way to improve? (Hint: look at the title)
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Meet in the Middle

@ Suppose that each node of our graph kasighbours, and we are
applying the previous BFS technique to find a shortest path between
andy who are at distance.

@ Roughly speaking, each level of the search will expand the univérse c
“explored” nodes by a factor af, so about total time is needed.

What's a simple way to improve? (Hint: look at the title)
Conduct a BFS simultaneously fraxandy.

Think of the BFS frommy as going backwards.

Do a level ofx's BFS, theny's BFS, therx’s, etc.

Let P be a shortest path betwerandy, andz be a middle point of that
path; hence it is distandg'2 from bothx andy.

o We can detect that two trees will hit aftef2 rounds — total time
complexityO(d¥/?).

e & © ¢ ¢
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A-Star Search

@ Again, we want to search fromto y in a huge graph.

o Basic idea: We can improve Dijsktra’s shortest path algorithm by takir
in to account arestimateof how far each node is from the target.
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A-Star Search

@ Again, we want to search fromto y in a huge graph.

o Basic idea: We can improve Dijsktra’s shortest path algorithm by takir
in to account arestimateof how far each node is from the target.
@ Leth be a nonnegative underestimating function:

for all v : dist(y, v) > h(v).

[} F = E
David Pritchard (U Waterloo C&O) Famous Trees

nae
CCC Stage 2, 2006

34/ 4



A-Star Search

@ Again, we want to search fromto y in a huge graph.

o Basic idea: We can improve Dijsktra’s shortest path algorithm by takir
in to account arestimateof how far each node is from the target.
@ Leth be a nonnegative underestimating function:

for all v : dist(y, v) > h(v).
@ Intuition: if h(v1) > h(v2) then we should explore first.
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A-Star Search

@ Again, we want to search fromto y in a huge graph.

o Basic idea: We can improve Dijsktra’s shortest path algorithm by takir
in to account arestimateof how far each node is from the target.

@ Leth be a nonnegative underestimating function:

for all v : dist(y, v) > h(v).

@ Intuition: if h(v1) > h(v2) then we should explore first.
o Example: 15-square. Each step we can slide a square into the hole.
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A-Star Search

@ Again, we want to search fromto y in a huge graph.

o Basic idea: We can improve Dijsktra’s shortest path algorithm by takir
in to account arestimateof how far each node is from the target.

@ Leth be a nonnegative underestimating function:

for all v : dist(y, v) > h(v).

@ Intuition: if h(v1) > h(v2) then we should explore first.
o Example: 15-square. Each step we can slide a square into the hole.
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o If yis the unscrambled state, then we may take

h(v) = number of out-of-position elementsn

@ In route planningh can be the Euclidean distgnc%/to ~
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A-Star Search

o Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edde, w) priority d[v]+c]v,w].
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A-Star Search

o Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edde, w) priority d[v]+c[v, w].

o Instead, give it priority @/]+c[v, w]+h(w).

@ Penalizes the search away from nodes believed to be far off-target.
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A-Star Search

o Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edde, w) priority d[v]+c[v, w].

o Instead, give it priority f/]+c[v, w]+h(w).

@ Penalizes the search away from nodes believed to be far off-target.

@ Unfortunately, this doesn’t exactly work as we had hoped. In ordeeto
the right answer we may have to explore some nodes many times.

o Essentially, inconsistent local overestimates can deter us from short

paths.
@ We must add the following twoonsistencygonditions toh :
» h(y) =0,

» h(p) — h(q) < c[p, q] wheneveipgis an edge of the graph.
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A-Star Search

o Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edde, w) priority d[v]+c[v, w].

o Instead, give it priority f/]+c[v, w]+h(w).

@ Penalizes the search away from nodes believed to be far off-target.

@ Unfortunately, this doesn’t exactly work as we had hoped. In ordeeto
the right answer we may have to explore some nodes many times.

o Essentially, inconsistent local overestimates can deter us from short

paths.
@ We must add the following twoonsistencygonditions toh :
» h(y) =0,

» h(p) — h(q) < c[p, q] wheneveipgis an edge of the graph.
o Thisalwaysperforms at least as quickly as Dijkstra’s algorithm.

@ Ash(v) increases towards a better underapproximatiatisifv, y|, the
number of iterations required By search decreases.
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Walking on Trees

o Given: atree, with the children of each node in
some order (here, left-to-right).

@ Imagine a squirrel walking along the edges of the
tree, starting with the root.
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Walking on Trees

o Given: a tree, with the children of each node in
some order (here, left-to-right).

@ Imagine a squirrel walking along the edges of the
tree, starting with the root.

o The squirrel always goes to the leftmost unvisited
child of his current position.

=} F = = E DA

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 /47



Walking on Trees

o Given: a tree, with the children of each node in
some order (here, left-to-right).

@ Imagine a squirrel walking along the edges of the
tree, starting with the root.

o The squirrel always goes to the leftmost unvisited
child of his current position.

=} F = = E DA

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 /47



Walking on Trees

o Given: a tree, with the children of each node in
some order (here, left-to-right).

@ Imagine a squirrel walking along the edges of the
tree, starting with the root.

o The squirrel always goes to the leftmost unvisited
child of his current position.

@ If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.
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tree, starting with the root.

o The squirrel always goes to the leftmost unvisited
child of his current position.

@ If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.
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Walking on Trees
0:16

o Given: a tree, with the children of each node in /R
some order (here, left-to-right). 3111312 15:17

@ Imagine a squirrel walking along the edges of the (S
tree, starting with the root.

o The squirrel always goes to the leftmost unvisited
child of his current position. 4:4 610 16:16

e If the squirrel cannot move to any child (becauseé é
he has visited them all, or none exist) he instead
77 99

goes to the parent of that node.
@ For each node record the first and last time the
squirrel visited the node. é)
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Walking on Trees

o If we order the nodes according to their 0:16
first-visited times, we get preorderon the
nodes. /R

@ Each vertex has preorder label less than its _
children. 3:11 13 1215:17

o Conceptually: visit children af aftervisiting x.

4:4 6:10 16:16
V V
O O

77 99
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Walking on Trees

e If we order the nodes according to their 0:16
first-visited times, we get preorderon the
nodes. /R

@ Each vertex has preorder label less than its _
children. 3:11 13 1:15:17

o Conceptually: visit children af aftervisiting x.
o Similarly the last-visited times definepmstorder

o Each vertex has postorder label greater thanits 44 '6:10 1616
children. \

! |
o Conceptually: visit children ot beforevisiting x. O ﬂ O
77 99
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Walking on Trees

o If we order the nodes according to their 0:16
first-visited times, we get preorderon the
nodes. /R
@ Each vertex has preorder label less than its

children. 3:11 13 1:15:17

o Conceptually: visit children af aftervisiting x.
o Similarly the last-visited times definepmstorder

o Each vertex has postorder label greater thanits 44 '6:10 1616
children. \

! |
o Conceptually: visit children ot beforevisiting x. O ﬂ O

o Forget the names? lreorder,x precedes its
children. 77 99
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Walking on Trees

e If we order the nodes according to their 0:16
first-visited times, we get preorderon the
nodes. /R

@ Each vertex has preorder label less than its _
children. 3:11 13 1:15:17

o Conceptually: visit children af aftervisiting x.
o Similarly the last-visited times definepmstorder

o Each vertex has postorder label greater thanits 44 '6:10 1616
children. \

! |
o Conceptually: visit children ot beforevisiting x. O ﬂ O

o Forget the names? lreorder,x precedes its
children. 77 99

@ Aside:for binary trees there is alsnorder where
you first visit the left child, then the root, then the
right child.
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Topological Sort

@ Topological sortmodels the following problem.

1Usually DFS as it leads to efficient postorder computatian. - =
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o Itis early in the morning and we are getting dressed.

@ We have shoes, a hat, underwear, socks, jacket, pants, etc.
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Topological Sort

@ Topological sortmodels the following problem.

o Itis early in the morning and we are getting dressed.

@ We have shoes, a hat, underwear, socks, jacket, pants, etc.
@ But if we are too tired to figure out the correct order: disaster!
[}

Formally, we have some vertices, and directed edges between the
vertices. Edg&v meanss must be put on before.

@ Assume there are no cycles (or else getting dressed is impossible).
other words this is a directed acyclic graph (DAG)

@ How can we determine an order to get dressed?

1Usually DFS as it leads to efficient postorder computatian. - = - = = wacr
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Topological Sort

@ Topological sortmodels the following problem.

o Itis early in the morning and we are getting dressed.

@ We have shoes, a hat, underwear, socks, jacket, pants, etc.
@ But if we are too tired to figure out the correct order: disaster!
[}

Formally, we have some vertices, and directed edges between the
vertices. Edg&v meanss must be put on before.

@ Assume there are no cycles (or else getting dressed is impossible).
other words this is a directed acyclic graph (DAG)

@ How can we determine an order to get dressed?
o Basic idea: make ardy(directed) search tree and use postorder.
o Complication: may need to pick multiple trees.
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Topological Sort

Topological sortmodels the following problem.

Itis early in the morning and we are getting dressed.

We have shoes, a hat, underwear, socks, jacket, pants, etc.
But if we are too tired to figure out the correct order: disaster!

Formally, we have some vertices, and directed edges between the
vertices. Edg&v meanss must be put on before.

Assume there are no cycles (or else getting dressed is impossible).
other words this is a directed acyclic graph (DAG)

How can we determine an order to get dressed?

Basic idea: make afy(directed) search tree and use postorder.
Complication: may need to pick multiple trees.

Same idea givesycle detection.

e © 6 e ¢ ¢

¢ & ¢ ¢

'Usually DFS as it leads to efficient postorder computatian. - = - = T 9ac
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DFS Lite & Topological Sort

o DFS is often implemented without axplicit stack.
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DFS Lite & Topological Sort

o DFS is often implemented without axplicit stack.
@ Here’s a short implementation of topological sort:

1: isExplored := boolean] > Initialized to false.
2: postList :=list int ) > Initially empty.
3. procedure DFS-ORDER(G, V)
isExploredy] := true
/lpreList.addy)
for all outneighboursv of vdo
if (lisExplored]) then DFS-OrderG, w)
postList.add()
: procedure TOPOLOGICALSORT(G, V)
10: fori:=0tov—1do
11: DFS-OrderG, i)
12: return postList

Er

© o N’
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Outline

© Advanced Tactics

@ Biconnectivity, Strong Connectivity

o (=2
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Bridge-Finding

@ An edge of a connected graph i®adgeif, when it is deleted, the graph
is no longer connected.

o Equivalentlyuvis a bridge if every path frora to v uses the edgev.
@ How can we determine the bridges of a graph?
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Bridge-Finding

@ An edge of a connected graph i®adgeif, when it is deleted, the graph
is no longer connected.

o Equivalentlyuvis a bridge if every path frora to v uses the edgev.
@ How can we determine the bridges of a graph?
o Itis clear that any spanning tree contains all bridges.

o Furthermore we can argue that the tree eddje|, v) is a bridge exactly
when there are no edges “out of” the subtree rooted at
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Bridge-Finding

An edge of a connected graph i®adgeif, when it is deleted, the graph
is no longer connected.

Equivalentlyuvis a bridge if every path frora to v uses the edgev.
How can we determine the bridges of a graph?
It is clear that any spanning tree contains all bridges.

Furthermore we can argue that the tree eddje|, v) is a bridge exactly
when there are no edges “out of” the subtree rooted at

How can we compute this “out of” property precisely? Use the squirre

(]
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Bridge-Finding

@ What does “out of the subtree”
mean?
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Bridge-Finding

@ What does “out of the subtree”
mean?

@ For each node ldbw(v) be the
minimum of itsprelabe] its
non-tree neighbourgrelabels
and its children’dow values.

@ For each node ldtigh(v) be the
maximum of itsprelabe] its
non-tree neighbourgrelabels
and its children’high values.

@ Can show thatP|v], V) is abridge
if and only if low(v) = pre(v) and

high(v) =
pre(v) + subtreesiz@r) — 1.
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Bridge-Finding

o An articulation point,analogous to a bridge, isvertexwhose deletion
causes a graph to be disconnected.

@ By refining the ideas above we can géd@ + m) time algorithm for
articulation points. The formulation is cleanest using DFS because th
there are naross edgegedgeauv such that neithem norv is an ancestor
of the other).

@ Note that the naive algorithm for articulation points — delete each poi
in turn and see if the graph is connected — ta®¢s(m -+ n)) time.
@ You can also compute some other things caliemnnected components

andblocks Roughly speaking, you can cut the graph into parts such tt
each part can tolerate any single node or vertex failure.
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Strong Connectivity

o Consider a directed graph. Write— vy if there is a path fronx to y and
also fromy to x.
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Strong Connectivity
o Consider a directed graph. Write— vy if there is a path fronx to y and
also fromy to x.

@ Note: ifx + yandy <« zthenx < z Thus« is anequivalence relation.
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Strong Connectivity

o Consider a directed graph. Write— vy if there is a path fronx to y and
also fromy to x.

@ Note: ifx + yandy <« zthenx < z Thus« is anequivalence relation.

@ In English: the vertices can be partitioned istoong componentso that
X « yif and only if x andy are in the same component.
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Strong Connectivity

o Consider a directed graph. Write— vy if there is a path fronx to y and
also fromy to x.

@ Note: ifx + yandy <« zthenx < z Thus« is anequivalence relation.

@ In English: the vertices can be partitioned istoong componentso that
X « yif and only if x andy are in the same component.

1: isExplored := boolean] > Initialized to false.
2: postList :=list int ) > Initially empty.
3: procedure STRONGCOMPONENTYG, V)
4 fori:=0tov—1do

DFS-OrdergG, i)
newOrder ;= postList.copy().reverse()
fill(isExplore, false)
for i in newOrderdo

if lisExploredi] then
10: DFS-LabelG", i) > Whenj is explored, labéj] :=i.
11: return labels
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Strong Components

@ Why does this DFS
witchcraft work?
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Strong Components

@ Why does this DFS
witchcraft work?

@ Thestrong component
blobsform a DAG
(directed acyclic graph).

o Compute postorder,
reverseG.

@ Now starting from the
highest-numbered vertex,
the DFS gets “stuck” in
that blob.
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Strong Components

David Pritchard (U Waterloo C&O)

Famous Trees

@ Why does this DFS
witchcraft work?

@ Thestrong component
blobsform a DAG
(directed acyclic graph).

o Compute postorder,
reverseG.

@ Now starting from the
highest-numbered vertex,
the DFS gets “stuck” in
that blob.

o Explore other blobs in
turn.



Summary

@ BFS is most useful for finding shortest paths.

o DFS can be coded very quickly. Gives madym+ n) time algorithms:
topological sort, biconnectivity, strong connectivipyanarity, riconnectivity, ...
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Summary

o BFS is most useful for finding shortest paths.
o DFS can be coded very quickly. Gives madym+ n) time algorithms:
topological sort, biconnectivity, strong connectivipyanarity, riconnectivity, ...

@ Minimum Spanning Tree (Prim) and Single-Source Nonnegative
Weighted Paths (Dijkstra) can be solved in the same framework.

o (Implementing heaps efficiently is left as a homework exercise)
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Summary

o BFS is most useful for finding shortest paths.

o DFS can be coded very quickly. Gives madym+ n) time algorithms:
topological sort, biconnectivity, strong connectivipyanarity, riconnectivity, ...

@ Minimum Spanning Tree (Prim) and Single-Source Nonnegative
Weighted Paths (Dijkstra) can be solved in the same framework.

o (Implementing heaps efficiently is left as a homework exercise)
@ Other useful ideas: preorder, postorder, bipartite.

@ Can also searcimplicit graphs;then Meet-in-the-Middle and Aare
useful.

o A* heuristic function must be an underestimate and must also be
consistent
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Summary

o BFS is most useful for finding shortest paths.

o DFS can be coded very quickly. Gives madym+ n) time algorithms:
topological sort, biconnectivity, strong connectivipyanarity, riconnectivity, ...

@ Minimum Spanning Tree (Prim) and Single-Source Nonnegative
Weighted Paths (Dijkstra) can be solved in the same framework.

o (Implementing heaps efficiently is left as a homework exercise)
@ Other useful ideas: preorder, postorder, bipartite.

@ Can also searcimplicit graphs;then Meet-in-the-Middle and Aare
useful.

o A* heuristic function must be an underestimate and must also be
consistent

oreturn O
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