
Get To Know Your Trees

David Pritchard

Canadian Computing Competition, 2006 Stage 2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 1 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 2 / 47

What Is a Tree?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 3 / 47

What Is a Tree?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 3 / 47

What Is a Tree?

A forestis a collection of trees.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 3 / 47

What Is a Tree?

Trees have lots of interesting characterizations asgraphs. . .

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 4 / 47

What Is a Tree?

Trees have lots of interesting characterizations asgraphs. . .
◮ A connected graph with no cycles
◮ A graph where there is each pair of vertices is joined by a single path

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 4 / 47

What Is a Tree?

Trees have lots of interesting characterizations asgraphs. . .
◮ A connected graph with no cycles
◮ A graph where there is each pair of vertices is joined by a single path

. . . but we won’t talk about this here.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 4 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex. E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex.

Each other node that we add to the tree is the
child of an existing node.

E

C

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex.

Each other node that we add to the tree is the
child of an existing node.

E

C

G

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex.

Each other node that we add to the tree is the
child of an existing node.

E

C

G

B

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex.

Each other node that we add to the tree is the
child of an existing node.

If nodex is a child of nodey then we say thaty is
the parent ofx. Each non-root node has exactly
one parent.

E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex.

Each other node that we add to the tree is the
child of an existing node.

If nodex is a child of nodey then we say thaty is
the parent ofx. Each non-root node has exactly
one parent.

For example, sinceH

E

C

G

B

ID

F

HH

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex.

Each other node that we add to the tree is the
child of an existing node.

If nodex is a child of nodey then we say thaty is
the parent ofx. Each non-root node has exactly
one parent.

For example, sinceH is a child ofG,

E

C

GG

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

In this talk we mainly deal withrooted, labelled
trees.

There is aroot vertex.

Each other node that we add to the tree is the
child of an existing node.

If nodex is a child of nodey then we say thaty is
the parent ofx. Each non-root node has exactly
one parent.

For example, sinceH is a child ofG, nodeG is
the parent ofH.

E

C

GG

B

ID

F

HH

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 5 / 47

Basic Botany

A node with no children is called aleaf.

A node that is not a leaf is called aninternal
node.

In this tree the leaves are F, D, H, I, A.
E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 6 / 47

Basic Botany

A node with no children is called aleaf.

A node that is not a leaf is called aninternal
node.

In this tree the leaves are F, D, H, I, A.

In contest problems, explicitly given trees often
model:

E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 6 / 47

Basic Botany

A node with no children is called aleaf.

A node that is not a leaf is called aninternal
node.

In this tree the leaves are F, D, H, I, A.

In contest problems, explicitly given trees often
model:

a work hierarchy (nodes = people; parent = boss,
child = subordinate)

E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 6 / 47

Basic Botany

A node with no children is called aleaf.

A node that is not a leaf is called aninternal
node.

In this tree the leaves are F, D, H, I, A.

In contest problems, explicitly given trees often
model:

a work hierarchy (nodes = people; parent = boss,
child = subordinate)

an expression (leaves = values, internal nodes =
functions)

E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 6 / 47

Basic Botany

A node with no children is called aleaf.

A node that is not a leaf is called aninternal
node.

In this tree the leaves are F, D, H, I, A.

In contest problems, explicitly given trees often
model:

a work hierarchy (nodes = people; parent = boss,
child = subordinate)

an expression (leaves = values, internal nodes =
functions)

states of a game (nodes = board positions, root =
initial board, edges = valid moves, leaves =
ending positions)

E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 6 / 47

Basic Botany

A node with no children is called aleaf.

A node that is not a leaf is called aninternal
node.

In this tree the leaves are F, D, H, I, A.

In contest problems, explicitly given trees often
model:

a work hierarchy (nodes = people; parent = boss,
child = subordinate)

an expression (leaves = values, internal nodes =
functions)

states of a game (nodes = board positions, root =
initial board, edges = valid moves, leaves =
ending positions)

occasionally, a tree (leaves = leaves, root = root)

E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 6 / 47

Basic Botany
Straightforward representation: keep an arrayP
of the nodes’ parents and an arrayC of child-lists.

x P[x] C[x]
A C ()
B E (F)
C E (G,A)
D G ()
E nil (B,C)
F B ()
G C (D,H,I)
H G ()
I G ()

If we don’t care about (or don’t know) the order
of each node’s children then we may only need to
keep track ofP.

Alternatively, we can just keep track ofC.

E

C

G

B

ID

F

H

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 7 / 47

Aside: Binary Trees

Another form of tree is abinary tree.

Each node may or may not have a left child, and
may or may not have a right child.

Each node is a record with fields (value, left,
right), where left and right are pointers to nodes.
A null pointer means that that child doesn’t exist.

If we stick values in the nodes the right way, we
can make abinary search treewhich is useful for
some applications.

Different generalization:k child positions is a
k-ary tree.

5

11

7

3

6

1

9

13

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 8 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 9 / 47

Definitions

A graph G= (V, E) is a setV of n nodes (which we call 1,. . . , n)
together with a collectionE of edges. Each edge is just a pair of nodes.

E.g., nodes/edges = cities/roads or computers/links.

8

4

12

7

3

2

11

10

9

1

5

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 10 / 47

Definitions

A graph G= (V, E) is a setV of n nodes (which we call 1,. . . , n)
together with a collectionE of edges. Each edge is just a pair of nodes.

E.g., nodes/edges = cities/roads or computers/links.

A spanning treeis a tree that contains every node.

Here’s a spanning tree with root 8:

8

4

12

7

3

2

11

10

9

1

5

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 10 / 47

Definitions

A graph G= (V, E) is a setV of n nodes (which we call 1,. . . , n)
together with a collectionE of edges. Each edge is just a pair of nodes.

E.g., nodes/edges = cities/roads or computers/links.

A spanning treeis a tree that contains every node.

Here’s a spanning tree with root 8:

8

4

12

7

3

2

11

10

9

1

5

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 10 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

0

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

0

1

1

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

0

1

1
2

2 2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

0

1

1 3
2

2 2

3

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

0

1

1 3

4

2

2 2

3
4

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

Definition: a graph isbipartite if the nodes can be colored green and blue
so that each there are no green-green or blue-blue edges.

0

1

1 3

4

2

2 2

3
4

5

5

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

The levelof a node in any tree is the number of tree edges between that
node and the root. I.e., level(root)=0 and level(x)=level(P[x])+1.

The spanning tree pictured has theselevels:

Definition: a graph isbipartite if the nodes can be colored green and blue
so that each there are no green-green or blue-blue edges.

You can show that a graph is bipartite if and only if for each non-tree
edge{u, v} we have level(u) 6≡ level(v) (mod 2).

0

1

1 3

4

2

2 2

3
4

5

5

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 11 / 47

Spanning Tree⇒ Check Bipartite

Last slide: “You can show that a graph is bipartite if and only if for each
non-tree edge{u, v} we have level(u) 6≡ level(v) (mod 2)”.

0

1

1 3

4

2

2 2

3
4

5

5

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 12 / 47

Spanning Tree⇒ Check Bipartite

Last slide: “You can show that a graph is bipartite if and only if for each
non-tree edge{u, v} we have level(u) 6≡ level(v) (mod 2)”.

Because of the edge pictured (among others) we knowG is not bipartite.

0

1

1 3

4

2

2 2

3
4

5

5

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 12 / 47

Spanning Tree⇒ Check Bipartite

Last slide: “You can show that a graph is bipartite if and only if for each
non-tree edge{u, v} we have level(u) 6≡ level(v) (mod 2)”.

Because of the edge pictured (among others) we knowG is not bipartite.

But this other graph (with the same spanning tree)is bipartite.

0

1

1 3

4

2

2 2

3
4

5

5

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 12 / 47

Spanning Tree⇒ Check Bipartite

Last slide: “You can show that a graph is bipartite if and only if for each
non-tree edge{u, v} we have level(u) 6≡ level(v) (mod 2)”.

Because of the edge pictured (among others) we knowG is not bipartite.

But this other graph (with the same spanning tree)is bipartite.

We color the even-level nodes green and the odd-level nodes blue.

0

1

1 3

4

2

2 2

3
4

5

5

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 12 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 13 / 47

Three Important Data Structures
Data structures allow you topush(insert) andpop(remove) items.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 14 / 47

Three Important Data Structures
Data structures allow you topush(insert) andpop(remove) items.
A stackis a LIFO (last-in, first-out) data structure.
When wepop,the newest item in the stack is returned & removed.
E.g. push A, then push B. Then a pop returns B. If we push C and then
pop again we get C, and another pop finally retrieves A.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 14 / 47

Three Important Data Structures
Data structures allow you topush(insert) andpop(remove) items.
A stackis a LIFO (last-in, first-out) data structure.
When wepop,the newest item in the stack is returned & removed.
E.g. push A, then push B. Then a pop returns B. If we push C and then
pop again we get C, and another pop finally retrieves A.
A queueis a FIFO (first-in, first-out) data structure.
Popping removes & returns the oldest remaining item.
E.g. push A, then push B. Then a pop returns A. If we push C and then
pop again we get B, and another pop will return C.
Note: for a queue, order of removal = order of insertion.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 14 / 47

Three Important Data Structures
Data structures allow you topush(insert) andpop(remove) items.
A stackis a LIFO (last-in, first-out) data structure.
When wepop,the newest item in the stack is returned & removed.
E.g. push A, then push B. Then a pop returns B. If we push C and then
pop again we get C, and another pop finally retrieves A.
A queueis a FIFO (first-in, first-out) data structure.
Popping removes & returns the oldest remaining item.
E.g. push A, then push B. Then a pop returns A. If we push C and then
pop again we get B, and another pop will return C.
Note: for a queue, order of removal = order of insertion.
A priority queueis a cheapest-out structure.
Each item is inserted with a fixed numerical priority.
Popping returns & removes the least-priority remaining item.
E.g. push(A, 2) then push(B, 3). Pop returns A. If we push(C, 1) and
then pop again we get C, and another pop will return B.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 14 / 47

Three Important Data Structures
Data structures allow you topush(insert) andpop(remove) items.
A stackis a LIFO (last-in, first-out) data structure.
When wepop,the newest item in the stack is returned & removed.
E.g. push A, then push B. Then a pop returns B. If we push C and then
pop again we get C, and another pop finally retrieves A.
A queueis a FIFO (first-in, first-out) data structure.
Popping removes & returns the oldest remaining item.
E.g. push A, then push B. Then a pop returns A. If we push C and then
pop again we get B, and another pop will return C.
Note: for a queue, order of removal = order of insertion.
A priority queueis a cheapest-out structure.
Each item is inserted with a fixed numerical priority.
Popping returns & removes the least-priority remaining item.
E.g. push(A, 2) then push(B, 3). Pop returns A. If we push(C, 1) and
then pop again we get C, and another pop will return B.
Implement priority queue with aheapor balanced binary tree.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 14 / 47

Exploring a Graph
Here is an abstract algorithm for exploring a graph.

1: procedure SEARCH-GRAPH(G, root)
2: isExplored:= boolean[vertices ofG], initially false
3: waitingEdges := struct〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that !isExplored[w] do
11: waitingEdges.add((v, w))

Basically we try to explore every edge that we learn about.
No matter what order edges are removed from waitingEdges, we get a
spanning tree.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 15 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 16 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] [Bot]

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (nil, D)[Bot]

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (D, B)(D, F)(D, C)[Bot]

D

B C

A F

E

D

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (B, A)(B, E)(B, F)(D, F)(D, C)[Bot]

D

B C

A F

E

D

B

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (A, E)(B, E)(B, F)(D, F)(D, C)[Bot]

D

B C

A F

E

D

B

A

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (B, E)(B, F)(D, F)(D, C)[Bot]

D

B C

A F

E

D

B

A

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (B, F)(D, F)(D, C)[Bot]

D

B C

A F

E

D

B

A

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (F, C)(D, F)(D, C)[Bot]

D

B C

A F

E

D

B

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (D, F)(D, C)[Bot]

D

B C

A F

E

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Depth-First Search
Make waitingEdges astack: depth-first search.

Stack is LIFO (last in, first out).

1: procedure DEPTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=stack〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Top] (D, C)[Bot]

D

B C

A F

E

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 17 / 47

Properties of Depth-First Search

Complexity

Each edge enters and leaves the stack exactly
once.

SoO(m+ n) time complexity where
m = |E|, n = |V|

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 18 / 47

Properties of Depth-First Search

Complexity

Each edge enters and leaves the stack exactly
once.

SoO(m+ n) time complexity where
m = |E|, n = |V|

Properties

For each non-tree edgeuv, eitheru is a
descendant ofv in the DFS tree or vice-versa.
(No cross edges)

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 18 / 47

Properties of Depth-First Search

Complexity

Each edge enters and leaves the stack exactly
once.

SoO(m+ n) time complexity where
m = |E|, n = |V|

Properties

For each non-tree edgeuv, eitheru is a
descendant ofv in the DFS tree or vice-versa.
(No cross edges)

Applications

We will see later that using DFS and some other
ideas (preorder, postorder) we can get efficient
algorithms for biconnectivity and strong
connectivity.

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 18 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 19 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head] [Tail]

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](nil, D) [Tail]

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](D, B)(D, F)(D, C)[Tail]

D

B C

A F

E

D

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](D, F)(D, C)(B, A)(B, E)(B, F)[Tail]

D

B C

A F

E

D

B

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](D, C)(B, A)(B, E)(B, F)(F, C)[Tail]

D

B C

A F

E

D

B

F

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](B, A)(B, E)(B, F)(F, C)[Tail]

D

B C

A F

E

D

B C

F

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](B, E)(B, F)(F, C)(A, E)[Tail]

D

B C

A F

E

D

B C

A F

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](B, F)(F, C)(A, E)[Tail]

D

B C

A F

E

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](F, C)(A, E)[Tail]

D

B C

A F

E

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Breadth-First Search
Make waitingEdges aqueue: breath-first search.

Queue is FIFO (first in, first out).

1: procedure BREADTH-FIRST-SEARCH(G, root)
2: isExplored:= boolean[vertices ofG]
3: waitingEdges :=queue〈 pair〈 vertex〉〉
4: waitingEdges.add((nil, root))
5: while waitingEdges is not emptydo
6: (p, v) := waitingEdges.remove()
7: if (!isExplored[v]) then
8: isExplored[v] := true
9: parent[v] := p

10: for all neighboursw of v such that
!isExplored[w] do

11: waitingEdges.add((v, w))

[Head](A, E) [Tail]

D

B C

A F

E

D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 20 / 47

Properties of Breadth-First Search

Complexity: O(m+ n) time.
D

B C

A F

E

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 21 / 47

Properties of Breadth-First Search

Complexity: O(m+ n) time.

Properties

level[v] = dist(root,v) (shortest paths!)

Edgeuvnot in tree⇒ |level[u]-level[v]| ≤ 1

0

1 1

2 1

2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 21 / 47

Properties of Breadth-First Search

Complexity: O(m+ n) time.

Properties

level[v] = dist(root,v) (shortest paths!)

Edgeuvnot in tree⇒ |level[u]-level[v]| ≤ 1

An Application

Girth g : length of the shortest cycle.

There is a length-g cycle through the root if and
only if some non-tree edgeuvsatisfies
level[u]+level[v]+1=g.

So to computeg : do a BFS from each vertex and
return the minimum value oflevel[u]+level[v]+1
over all non-tree edgesuv in all trees.

0

1 1

2 1

2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 21 / 47

Properties of Breadth-First Search

Complexity: O(m+ n) time.

Properties

level[v] = dist(root,v) (shortest paths!)

Edgeuvnot in tree⇒ |level[u]-level[v]| ≤ 1

An Application

Girth g : length of the shortest cycle.

There is a length-g cycle through the root if and
only if some non-tree edgeuvsatisfies
level[u]+level[v]+1=g.

So to computeg : do a BFS from each vertex and
return the minimum value oflevel[u]+level[v]+1
over all non-tree edgesuv in all trees.

No known fast algorithm for determining the
longestcycle.

0

1 1

2 1

2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 21 / 47

Interlude

What if the graph we are given is not connected?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 22 / 47

Interlude

What if the graph we are given is not connected?

Then Search(G, root) will hit only those nodes that have some path to
root. We call these nodesconnectedto root.

The set of all nodes reachable from root is aconnected component.The
vertices of every graph are naturally partitioned into connected
components.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 22 / 47

Interlude

What if the graph we are given is not connected?

Then Search(G, root) will hit only those nodes that have some path to
root. We call these nodesconnectedto root.

The set of all nodes reachable from root is aconnected component.The
vertices of every graph are naturally partitioned into connected
components.

Here’s pseudocode for connected components. Search-and-Label(G,
root) is any kind of search routine, but when it explores a nodew it sets
connected-component-label[w] := root.

1: procedure CONNECTED-COMPONENTS(G)
2: isExplored := boolean[v] ⊲ Assume vertices are 0,. . . , v− 1
3: for i := 1 tov− 1 do
4: if !isExplored[i] then
5: Search-and-Label(G, i)

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 22 / 47

Interlude

What if the graph we are given is not connected?

Then Search(G, root) will hit only those nodes that have some path to
root. We call these nodesconnectedto root.

The set of all nodes reachable from root is aconnected component.The
vertices of every graph are naturally partitioned into connected
components.

Here’s pseudocode for connected components. Search-and-Label(G,
root) is any kind of search routine, but when it explores a nodew it sets
connected-component-label[w] := root.

1: procedure CONNECTED-COMPONENTS(G)
2: isExplored := boolean[v] ⊲ Assume vertices are 0,. . . , v− 1
3: for i := 1 tov− 1 do
4: if !isExplored[i] then
5: Search-and-Label(G, i)

Computes aspanning forestof G.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 22 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 23 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

[Top]

D

B C

A F

E

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top]

D

B C

A F

E

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (nil, D)0

D

B C

A F

E

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (D, F)3(D, B)4(D, C)5

D

B C

A F

E

D

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (F, B)2(F, C)4(D, B)4(D, C)5

D

B C

A F

E

D

F

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (B, A)1(F, C)4(D, B)4(D, C)5(B, E)5

D

B C

A F

E

D

B

F

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (F, C)4(D, B)4(D, C)5(B, E)5(A, E)6

D

B C

A F

E

D

B

A F

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (D, B)4(D, C)5(B, E)5(A, E)6

D

B C

A F

E

D

B C

A F

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (D, C)5(B, E)5(A, E)6

D

B C

A F

E

D

B C

A F

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (B, E)5(A, E)6

D

B C

A F

E

D

B C

A F

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree
Each edgeuv is given a costc[u, v] = c[v, u].

What spanning tree has minimal sum of edge
costs?

Use apriority queue,priority(uv) = c[u, v].

1: procedure M INIMUM -SPANNING-TREE(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(c[v, w], (v, w))

[Top] (A, E)6

D

B C

A F

E

D

B C

A F

E

4

5

3

5

2
41

6

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 24 / 47

Minimum Spanning Tree

Intuitively, we are “growing” a spanning tree starting from the specified
root.

The priority queue always contains all edges that gofrom the current tree
to some non-tree vertex.

(In the priority queue there will additionally be some edges that go
between 2 tree vertices, but they will be skipped)

We always grow the tree in the cheapest way possible!

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 25 / 47

Minimum Spanning Tree

Intuitively, we are “growing” a spanning tree starting from the specified
root.

The priority queue always contains all edges that gofrom the current tree
to some non-tree vertex.

(In the priority queue there will additionally be some edges that go
between 2 tree vertices, but they will be skipped)

We always grow the tree in the cheapest way possible!

Complexity

Each edge enters and leaves the priority queue exactly once.

Priority queues generally haveO(logn) time complexity per access so
total time complexity isO(mlogn)

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 25 / 47

Minimum Spanning Tree

Intuitively, we are “growing” a spanning tree starting from the specified
root.

The priority queue always contains all edges that gofrom the current tree
to some non-tree vertex.

(In the priority queue there will additionally be some edges that go
between 2 tree vertices, but they will be skipped)

We always grow the tree in the cheapest way possible!

Complexity

Each edge enters and leaves the priority queue exactly once.

Priority queues generally haveO(logn) time complexity per access so
total time complexity isO(mlogn)

Also known as Prim’s algorithm.

Can be implemented somewhat faster, inO(m+ n logn) time.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 25 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 26 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

[Top]

D

B C

A F

E

2

1

5

1

2
34

2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top]

D

B C

A F

E

2

1

5

1

2
34

2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (nil, D)0

D

B C

A F

E

2

1

5

1

2
34

2

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (D, C)1(D, B)2(D, F)5

D

B C

A F

E

D

2

1

5

1

2
34

2

0

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (D, B)2(C, F)4(D, F)5(E, A)5

D

B C

A F

E

D

C

2

1

5

1

2
34

2

0

1

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (B, E)3(C, F)4(B, F)4(D, F)5(E, A)5(B, A)6

D

B C

A F

E

D

B C

2

1

5

1

2
34

2

0

12

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (C, F)4(B, F)4(D, F)5(E, A)5(B, A)6

D

B C

A F

E

D

B C

E

2

1

5

1

2
34

2

0

12

3

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (B, F)4(D, F)5(E, A)5(B, A)6

D

B C

A F

E

D

B C

F

E

2

1

5

1

2
34

2

0

12

3

4

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (D, F)5(E, A)5(B, A)6

D

B C

A F

E

D

B C

F

E

2

1

5

1

2
34

2

0

12

3

4

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (E, A)5(B, A)6

D

B C

A F

E

D

B C

F

E

2

1

5

1

2
34

2

0

12

3

4

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths
Find the shortest distance d[x] from root to each
vertexx in aweightedgraph.

Use apriority queue,priority(uv) = d[u] + c[u, v].

1: procedure SHORTEST-PATHS(G, root)
2: waitingEdges :=pri-queue〈 pair〈 vertex〉〉
3: waitingEdges.add(0, (nil, root))
4: while waitingEdges is not emptydo
5: (p, v) := waitingEdges.remove()
6: if (!isExplored[v]) then
7: isExplored[v] := true
8: parent[v] := p, d[v] := d[p] + c[p, v]
9: for all neighboursw of v such that

!isExplored[w] do
10: waitingEdges.add(d[v] + c[v, w], (v, w))

[Top] (B, A)6

D

B C

A F

E

D

B C

A F

E

2

1

5

1

2
34

2

0

12

3

45

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 27 / 47

Single-Source Weighted Shortest Paths

Is it somewhat surprising that the shortest paths
can be even berepresentedby a tree?

D

B C

A F

E

2

1

5

1

2
34

2

0

12

3

45

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 28 / 47

Single-Source Weighted Shortest Paths

Is it somewhat surprising that the shortest paths
can be even berepresentedby a tree?

Basic reason: if the shortest path from root tox
needs to go throughy first, then it needs to
actually take a shortest path toy.

Nodes are discovered in increasing order of
distance from root.

D

B C

A F

E

2

1

5

1

2
34

2

0

12

3

45

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 28 / 47

Single-Source Weighted Shortest Paths

Is it somewhat surprising that the shortest paths
can be even berepresentedby a tree?

Basic reason: if the shortest path from root tox
needs to go throughy first, then it needs to
actually take a shortest path toy.

Nodes are discovered in increasing order of
distance from root.

Side note: d[u] ≤ d[v] + c[u, v] for all edgesuv.

D

B C

A F

E

2

1

5

1

2
34

2

0

12

3

45

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 28 / 47

Single-Source Weighted Shortest Paths

Is it somewhat surprising that the shortest paths
can be even berepresentedby a tree?

Basic reason: if the shortest path from root tox
needs to go throughy first, then it needs to
actually take a shortest path toy.

Nodes are discovered in increasing order of
distance from root.

Side note: d[u] ≤ d[v] + c[u, v] for all edgesuv.

Complexity

TakesO(mlogn) time, like Prim’s MST
algorithm.

D

B C

A F

E

2

1

5

1

2
34

2

0

12

3

45

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 28 / 47

Single-Source Weighted Shortest Paths

Is it somewhat surprising that the shortest paths
can be even berepresentedby a tree?

Basic reason: if the shortest path from root tox
needs to go throughy first, then it needs to
actually take a shortest path toy.

Nodes are discovered in increasing order of
distance from root.

Side note: d[u] ≤ d[v] + c[u, v] for all edgesuv.

Complexity

TakesO(mlogn) time, like Prim’s MST
algorithm.

Works for directed graphs.Doesn’t workif there
are negative edge weights.

D

B C

A F

E

2

1

5

1

2
34

2

0

12

3

45

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 28 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 29 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 30 / 47

Generalized Searching
What if we have a graph that is givenimplicitly?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 31 / 47

Generalized Searching
What if we have a graph that is givenimplicitly?
Example: Nodes arestatesof Rubik’s cube, edges are valid moves.
Want to solve the cube quickly⇔ shortest path.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 31 / 47

Generalized Searching
What if we have a graph that is givenimplicitly?
Example: Nodes arestatesof Rubik’s cube, edges are valid moves.
Want to solve the cube quickly⇔ shortest path.

Can we use BFS without actually constructing the whole graph?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 31 / 47

Generalized Searching
What if we have a graph that is givenimplicitly?
Example: Nodes arestatesof Rubik’s cube, edges are valid moves.
Want to solve the cube quickly⇔ shortest path.

Can we use BFS without actually constructing the whole graph?
Sure. It is trickier to keep track of isExplored; you can use a Set class
like ahash setor asorted set / balanced binary tree.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 31 / 47

Generalized Searching

Summary of last slide: to find path fromx to y do a BFS fromx, stopping
when we hity.

The “implicit graph” idea is used a lot in AI: planning driving routes,
automatic theorem proving, operations research.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 32 / 47

Generalized Searching

Summary of last slide: to find path fromx to y do a BFS fromx, stopping
when we hity.

The “implicit graph” idea is used a lot in AI: planning driving routes,
automatic theorem proving, operations research.

A caveat. If there is no path fromx to y, then our BFS will explore the
whole graph anyway, which is inefficient!

43,252,003,274,489,856,000 positions for a Rubik’s cube.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 32 / 47

Generalized Searching

Summary of last slide: to find path fromx to y do a BFS fromx, stopping
when we hity.

The “implicit graph” idea is used a lot in AI: planning driving routes,
automatic theorem proving, operations research.

A caveat. If there is no path fromx to y, then our BFS will explore the
whole graph anyway, which is inefficient!

43,252,003,274,489,856,000 positions for a Rubik’s cube.

Actually, if x andy are diametrically opposite then the given strategy still
would explore (nearly) the entire graph just to find thex-y path.

But now I will explain 2 ways to improve performance even in this
“worst” case: Meet-in-the-Middle and A∗ (“A-star") search.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 32 / 47

Meet in the Middle

Suppose that each node of our graph hask neighbours, and we are
applying the previous BFS technique to find a shortest path betweenx
andy who are at distanced.

Roughly speaking, each level of the search will expand the universe of
“explored” nodes by a factor ofd, so aboutdk total time is needed.

What’s a simple way to improve? (Hint: look at the title)

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 33 / 47

Meet in the Middle

Suppose that each node of our graph hask neighbours, and we are
applying the previous BFS technique to find a shortest path betweenx
andy who are at distanced.

Roughly speaking, each level of the search will expand the universe of
“explored” nodes by a factor ofd, so aboutdk total time is needed.

What’s a simple way to improve? (Hint: look at the title)

Conduct a BFS simultaneously fromx andy.

Think of the BFS fromy as going backwards.

Do a level ofx’s BFS, theny’s BFS, thenx’s, etc.

Let P be a shortest path betweenx andy, andzbe a middle point of that
path; hence it is distancek/2 from bothx andy.

We can detect that two trees will hit afterk/2 rounds — total time
complexityO(dk/2).

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 33 / 47

A-Star Search
Again, we want to search fromx to y in a huge graph.
Basic idea: We can improve Dijsktra’s shortest path algorithm by taking
in to account anestimateof how far each node is from the target.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 34 / 47

A-Star Search
Again, we want to search fromx to y in a huge graph.
Basic idea: We can improve Dijsktra’s shortest path algorithm by taking
in to account anestimateof how far each node is from the target.
Let h be a nonnegative underestimating function:

for all v : dist(y, v) ≥ h(v).

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 34 / 47

A-Star Search
Again, we want to search fromx to y in a huge graph.
Basic idea: We can improve Dijsktra’s shortest path algorithm by taking
in to account anestimateof how far each node is from the target.
Let h be a nonnegative underestimating function:

for all v : dist(y, v) ≥ h(v).

Intuition: if h(v1) ≫ h(v2) then we should explorev2 first.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 34 / 47

A-Star Search
Again, we want to search fromx to y in a huge graph.
Basic idea: We can improve Dijsktra’s shortest path algorithm by taking
in to account anestimateof how far each node is from the target.
Let h be a nonnegative underestimating function:

for all v : dist(y, v) ≥ h(v).

Intuition: if h(v1) ≫ h(v2) then we should explorev2 first.
Example: 15-square. Each step we can slide a square into the hole.

⇒

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 34 / 47

A-Star Search
Again, we want to search fromx to y in a huge graph.
Basic idea: We can improve Dijsktra’s shortest path algorithm by taking
in to account anestimateof how far each node is from the target.
Let h be a nonnegative underestimating function:

for all v : dist(y, v) ≥ h(v).

Intuition: if h(v1) ≫ h(v2) then we should explorev2 first.
Example: 15-square. Each step we can slide a square into the hole.

⇒

If y is the unscrambled state, then we may take

h(v) = number of out-of-position elements inv.

In route planning,h can be the Euclidean distance toy.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 34 / 47

A-Star Search

Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edge(v, w) priority d[v]+c[v, w].

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 35 / 47

A-Star Search

Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edge(v, w) priority d[v]+c[v, w].

Instead, give it priority d[v]+c[v, w]+h(w).

Penalizes the search away from nodes believed to be far off-target.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 35 / 47

A-Star Search

Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edge(v, w) priority d[v]+c[v, w].

Instead, give it priority d[v]+c[v, w]+h(w).

Penalizes the search away from nodes believed to be far off-target.

Unfortunately, this doesn’t exactly work as we had hoped. In order to get
the right answer we may have to explore some nodes many times.

Essentially, inconsistent local overestimates can deter us from short
paths.
We must add the following twoconsistencyconditions toh :

◮ h(y) = 0,
◮ h(p) − h(q) ≤ c[p, q] wheneverpq is an edge of the graph.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 35 / 47

A-Star Search

Implementing the idea: in Dijkstra’s version of the generic search
algorithm, we gave the edge(v, w) priority d[v]+c[v, w].

Instead, give it priority d[v]+c[v, w]+h(w).

Penalizes the search away from nodes believed to be far off-target.

Unfortunately, this doesn’t exactly work as we had hoped. In order to get
the right answer we may have to explore some nodes many times.

Essentially, inconsistent local overestimates can deter us from short
paths.
We must add the following twoconsistencyconditions toh :

◮ h(y) = 0,
◮ h(p) − h(q) ≤ c[p, q] wheneverpq is an edge of the graph.

This alwaysperforms at least as quickly as Dijkstra’s algorithm.

As h(v) increases towards a better underapproximation ofdist[v, y], the
number of iterations required byA∗ search decreases.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 35 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 36 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

s

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees

Given: a tree, with the children of each node in
some order (here, left-to-right).

Imagine a squirrel walking along the edges of the
tree, starting with the root.

The squirrel always goes to the leftmost unvisited
child of his current position.

If the squirrel cannot move to any child (because
he has visited them all, or none exist) he instead
goes to the parent of that node.

For each node record the first and last time the
squirrel visited the node.

0:16

3:11 13:1315:17

4:4 6:10 16:16

7:7 9:9

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 37 / 47

Walking on Trees
If we order the nodes according to their
first-visited times, we get apreorderon the
nodes.

Each vertex has preorder label less than its
children.

Conceptually: visit children ofx aftervisiting x.

0:16

3:11 13:1315:17

4:4 6:10 16:16

7:7 9:9

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 38 / 47

Walking on Trees
If we order the nodes according to their
first-visited times, we get apreorderon the
nodes.

Each vertex has preorder label less than its
children.

Conceptually: visit children ofx aftervisiting x.

Similarly the last-visited times define apostorder.

Each vertex has postorder label greater than its
children.

Conceptually: visit children ofx beforevisiting x.

0:16

3:11 13:1315:17

4:4 6:10 16:16

7:7 9:9

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 38 / 47

Walking on Trees
If we order the nodes according to their
first-visited times, we get apreorderon the
nodes.

Each vertex has preorder label less than its
children.

Conceptually: visit children ofx aftervisiting x.

Similarly the last-visited times define apostorder.

Each vertex has postorder label greater than its
children.

Conceptually: visit children ofx beforevisiting x.

Forget the names? Inpreorder,x precedes its
children.

0:16

3:11 13:1315:17

4:4 6:10 16:16

7:7 9:9

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 38 / 47

Walking on Trees
If we order the nodes according to their
first-visited times, we get apreorderon the
nodes.

Each vertex has preorder label less than its
children.

Conceptually: visit children ofx aftervisiting x.

Similarly the last-visited times define apostorder.

Each vertex has postorder label greater than its
children.

Conceptually: visit children ofx beforevisiting x.

Forget the names? Inpreorder,x precedes its
children.

Aside: for binary trees there is alsoinorderwhere
you first visit the left child, then the root, then the
right child.

0:16

3:11 13:1315:17

4:4 6:10 16:16

7:7 9:9

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 38 / 47

Topological Sort

Topological sortmodels the following problem.

1Usually DFS as it leads to efficient postorder computation.
David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 39 / 47

Topological Sort

Topological sortmodels the following problem.

It is early in the morning and we are getting dressed.

We have shoes, a hat, underwear, socks, jacket, pants, etc.

But if we are too tired to figure out the correct order: disaster!

1Usually DFS as it leads to efficient postorder computation.
David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 39 / 47

Topological Sort

Topological sortmodels the following problem.

It is early in the morning and we are getting dressed.

We have shoes, a hat, underwear, socks, jacket, pants, etc.

But if we are too tired to figure out the correct order: disaster!

Formally, we have some vertices, and directed edges between the
vertices. Edge−→uv meansv must be put on beforeu.

Assume there are no cycles (or else getting dressed is impossible).In
other words this is a directed acyclic graph (DAG).

How can we determine an order to get dressed?

1Usually DFS as it leads to efficient postorder computation.
David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 39 / 47

Topological Sort

Topological sortmodels the following problem.

It is early in the morning and we are getting dressed.

We have shoes, a hat, underwear, socks, jacket, pants, etc.

But if we are too tired to figure out the correct order: disaster!

Formally, we have some vertices, and directed edges between the
vertices. Edge−→uv meansv must be put on beforeu.

Assume there are no cycles (or else getting dressed is impossible).In
other words this is a directed acyclic graph (DAG).

How can we determine an order to get dressed?

Basic idea: make any1 (directed) search tree and use postorder.

Complication: may need to pick multiple trees.

1Usually DFS as it leads to efficient postorder computation.
David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 39 / 47

Topological Sort

Topological sortmodels the following problem.

It is early in the morning and we are getting dressed.

We have shoes, a hat, underwear, socks, jacket, pants, etc.

But if we are too tired to figure out the correct order: disaster!

Formally, we have some vertices, and directed edges between the
vertices. Edge−→uv meansv must be put on beforeu.

Assume there are no cycles (or else getting dressed is impossible).In
other words this is a directed acyclic graph (DAG).

How can we determine an order to get dressed?

Basic idea: make any1 (directed) search tree and use postorder.

Complication: may need to pick multiple trees.

Same idea givescycle detection.

1Usually DFS as it leads to efficient postorder computation.
David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 39 / 47

DFS Lite & Topological Sort

DFS is often implemented without anexplicitstack.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 40 / 47

DFS Lite & Topological Sort

DFS is often implemented without anexplicitstack.

Here’s a short implementation of topological sort:

1: isExplored := boolean[v] ⊲ Initialized to false.
2: postList := list〈 int 〉 ⊲ Initially empty.
3: procedure DFS-ORDER(G, v)
4: isExplored[v] := true
5: //preList.add(v)
6: for all outneighboursw of v do
7: if (!isExplored[w]) then DFS-Order(G, w)
8: postList.add(v)
9: procedure TOPOLOGICALSORT(G, v)

10: for i := 0 tov− 1 do
11: DFS-Order(G, i)
12: return postList

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 40 / 47

Outline
1 Preliminaries

2 Spanning Trees of Graphs

3 A General Framework

Depth-First Search

Breath-First Search

Minimum Spanning Tree

Dijkstra’s Shortest Paths Algorithm

4 Advanced Tactics

A-Star, Meet in the Middle

Preorder, Postorder, Topological Sort

Biconnectivity, Strong Connectivity

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 41 / 47

Bridge-Finding

An edge of a connected graph is abridge if, when it is deleted, the graph
is no longer connected.

Equivalentlyuv is a bridge if every path fromu to v uses the edgeuv.

How can we determine the bridges of a graph?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 42 / 47

Bridge-Finding

An edge of a connected graph is abridge if, when it is deleted, the graph
is no longer connected.

Equivalentlyuv is a bridge if every path fromu to v uses the edgeuv.

How can we determine the bridges of a graph?

It is clear that any spanning tree contains all bridges.

Furthermore we can argue that the tree edge(P[v], v) is a bridge exactly
when there are no edges “out of” the subtree rooted atv.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 42 / 47

Bridge-Finding

An edge of a connected graph is abridge if, when it is deleted, the graph
is no longer connected.

Equivalentlyuv is a bridge if every path fromu to v uses the edgeuv.

How can we determine the bridges of a graph?

It is clear that any spanning tree contains all bridges.

Furthermore we can argue that the tree edge(P[v], v) is a bridge exactly
when there are no edges “out of” the subtree rooted atv.

How can we compute this “out of” property precisely? Use the squirrel.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 42 / 47

Bridge-Finding

What does “out of the subtree”
mean?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 43 / 47

Bridge-Finding

1

2

3
4

5
6
7

8

9 10

11
12

16
13

14 15

What does “out of the subtree”
mean?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 43 / 47

Bridge-Finding

1

2

3
4

5
6
7

8

9 10

11
12

16
13

14 15

What does “out of the subtree”
mean?

For each node letlow(v) be the
minimum of itsprelabel, its
non-tree neighbours’prelabels,
and its children’slow values.

For each node lethigh(v) be the
maximum of itsprelabel, its
non-tree neighbours’prelabels,
and its children’shighvalues.

Can show that(P[v], v) is abridge
if and only if low(v) = pre(v) and
high(v) =
pre(v) + subtreesize(v) − 1.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 43 / 47

Bridge-Finding

An articulation point,analogous to a bridge, is avertexwhose deletion
causes a graph to be disconnected.

By refining the ideas above we can get aO(n + m) time algorithm for
articulation points. The formulation is cleanest using DFS because then
there are nocross edges(edgesuvsuch that neitheru norv is an ancestor
of the other).

Note that the naive algorithm for articulation points — delete each point
in turn and see if the graph is connected — takesO(n(m+ n)) time.

You can also compute some other things calledbiconnected components
andblocks. Roughly speaking, you can cut the graph into parts such that
each part can tolerate any single node or vertex failure.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 44 / 47

Strong Connectivity
Consider a directed graph. Writex ↔ y if there is a path fromx to y and
also fromy to x.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 45 / 47

Strong Connectivity
Consider a directed graph. Writex ↔ y if there is a path fromx to y and
also fromy to x.
Note: if x ↔ y andy ↔ z thenx ↔ z. Thus↔ is anequivalence relation.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 45 / 47

Strong Connectivity
Consider a directed graph. Writex ↔ y if there is a path fromx to y and
also fromy to x.
Note: if x ↔ y andy ↔ z thenx ↔ z. Thus↔ is anequivalence relation.
In English: the vertices can be partitioned intostrong componentsso that
x ↔ y if and only if x andy are in the same component.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 45 / 47

Strong Connectivity
Consider a directed graph. Writex ↔ y if there is a path fromx to y and
also fromy to x.
Note: if x ↔ y andy ↔ z thenx ↔ z. Thus↔ is anequivalence relation.
In English: the vertices can be partitioned intostrong componentsso that
x ↔ y if and only if x andy are in the same component.

1: isExplored := boolean[v] ⊲ Initialized to false.
2: postList := list〈 int 〉 ⊲ Initially empty.
3: procedure STRONGCOMPONENTS(G, v)
4: for i := 0 tov− 1 do
5: DFS-Order(G, i)
6: newOrder := postList.copy().reverse()
7: fill(isExplore, false)
8: for i in newOrderdo
9: if !isExplored[i] then

10: DFS-Label(GT, i) ⊲ Whenj is explored, label[j] := i.
11: return labels

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 45 / 47

Strong Components

Why does this DFS
witchcraft work?

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 46 / 47

Strong Components

Why does this DFS
witchcraft work?

Thestrong component
blobsform a DAG
(directed acyclic graph).

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 46 / 47

Strong Components

14

6

43

1
2

13

5 12
11

109

7 8

Why does this DFS
witchcraft work?

Thestrong component
blobsform a DAG
(directed acyclic graph).

Compute postorder,

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 46 / 47

Strong Components

14

6

43

1
2

13

5 12
11

109

7 8

Why does this DFS
witchcraft work?

Thestrong component
blobsform a DAG
(directed acyclic graph).

Compute postorder,
reverseG.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 46 / 47

Strong Components

14

6

43

1
2

13

5 12
11

109

7 8

Why does this DFS
witchcraft work?

Thestrong component
blobsform a DAG
(directed acyclic graph).

Compute postorder,
reverseG.

Now starting from the
highest-numbered vertex,
the DFS gets “stuck” in
that blob.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 46 / 47

Strong Components

14

6

43

1
2

13

5 12
11

109

7 8

Why does this DFS
witchcraft work?

Thestrong component
blobsform a DAG
(directed acyclic graph).

Compute postorder,
reverseG.

Now starting from the
highest-numbered vertex,
the DFS gets “stuck” in
that blob.

Explore other blobs in
turn.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 46 / 47

Summary

BFS is most useful for finding shortest paths.

DFS can be coded very quickly. Gives manyO(m+ n) time algorithms:
topological sort, biconnectivity, strong connectivity,planarity, triconnectivity, . . .

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 47 / 47

Summary

BFS is most useful for finding shortest paths.

DFS can be coded very quickly. Gives manyO(m+ n) time algorithms:
topological sort, biconnectivity, strong connectivity,planarity, triconnectivity, . . .

Minimum Spanning Tree (Prim) and Single-Source Nonnegative
Weighted Paths (Dijkstra) can be solved in the same framework.

(Implementing heaps efficiently is left as a homework exercise)

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 47 / 47

Summary

BFS is most useful for finding shortest paths.

DFS can be coded very quickly. Gives manyO(m+ n) time algorithms:
topological sort, biconnectivity, strong connectivity,planarity, triconnectivity, . . .

Minimum Spanning Tree (Prim) and Single-Source Nonnegative
Weighted Paths (Dijkstra) can be solved in the same framework.

(Implementing heaps efficiently is left as a homework exercise)

Other useful ideas: preorder, postorder, bipartite.

Can also searchimplicit graphs;then Meet-in-the-Middle and A∗ are
useful.

A∗ heuristic function must be an underestimate and must also be
consistent.

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 47 / 47

Summary

BFS is most useful for finding shortest paths.

DFS can be coded very quickly. Gives manyO(m+ n) time algorithms:
topological sort, biconnectivity, strong connectivity,planarity, triconnectivity, . . .

Minimum Spanning Tree (Prim) and Single-Source Nonnegative
Weighted Paths (Dijkstra) can be solved in the same framework.

(Implementing heaps efficiently is left as a homework exercise)

Other useful ideas: preorder, postorder, bipartite.

Can also searchimplicit graphs;then Meet-in-the-Middle and A∗ are
useful.

A∗ heuristic function must be an underestimate and must also be
consistent.

return 0

David Pritchard (U Waterloo C&O) Famous Trees CCC Stage 2, 2006 47 / 47

	Preliminaries
	Spanning Trees of Graphs
	A General Framework
	Depth-First Search
	Breath-First Search
	Minimum Spanning Tree
	Dijkstra's Shortest Paths Algorithm

	Advanced Tactics
	A-Star, Meet in the Middle
	Preorder, Postorder, Topological Sort
	Biconnectivity, Strong Connectivity

