# The Greedy Tourist

#### David Pritchard<sup>1</sup>

<sup>1</sup>Department of Combinatorics and Optimization University of Waterloo

Graduate Student Seminar, 2006

David Pritchard (Waterloo)

The Greedy Tourist

Graduate Student Seminar, 2006 1 / 29

3 →



2 A Self-Contained Proof of the Upper Bound  $L = O(n \log n)$ 

A Construction Where 
$$L = \Omega(n \log n)$$



イロト イポト イヨト イヨト

### **Tourist Season**

- We have just landed at the airport of a foreign island, and wish to visit every village. The catch is that we didn't buy a map.
- From each village there are a number of outgoing expressways, and there are signs that indicate the destination of each one.
- We maintain our own map of the villages we've been to and the destinations of all outgoing expressways. How can we visit all of the cities efficiently?



伺 ト イヨ ト イヨ ト

# A Greedy Approach

- Here is a greedy strategy for exploring the island.
  - Initially our map contains the airport's village and its outgoing expressways.
  - Whenever we visit a previously unvisited village, add its outgoing expressways to the map.
  - As long as there is some unvisited village, use the map to determine the closest unvisited village, and go there by traversing a series of known expressways.
- Note: we might have to travel through villages that have already been visited in order to get to an unvisited village.
- We call a "step" the process of moving from one village, along an outgoing expressway, to an adjacent village.
- How many steps will the tourist take, in the worst case?

イロト 不得 とくき とくき とうき

# Modeling the Greedy Approach

- Model the island by an *unweighted* graph  $\mathcal{G} = (V(\mathcal{G}), E(\mathcal{G}))$ .
- villages  $\leftrightarrow V$ , expressways  $\leftrightarrow E$ , city with airport  $\leftrightarrow v_1 \in V$ .
- In the tourist story, nodes become *known* when we go to one of their neighbours for the first time; the tourist greedily picks the closest known unvisited vertex, repeatedly.
- Claim: even if the whole graph had been known to the tourist in the first place, the tourist would still produce the exact same behaviour. Follows from a lemma on the next slide:

・ロト ・ 同ト ・ ヨト ・ ヨト

#### Lemma

At any point during the tourist's trip, all nearest unvisited vertices are known.

### Proof.

Suppose some nearest unvisited vertex v is unknown. Consider any shortest path from the tourist's current position to v. Since v is unknown, the vertex w preceding v on that path is unvisited. But then w is unvisited and strictly closer to the tourist's current position than v.

- The greedy tourist algorithm may thus be described as follows.
- 1: Let  $pos := v_1$ ; *visited* := { $v_1$ }
- 2: while visited  $\neq V(\mathcal{G})$  do
- 3: Select  $dest \in (V(\mathcal{G}) visited)$  such that  $d_{\mathcal{G}}(pos, dest)$  is minimum, breaking ties arbitrarily  $\triangleright$  (nondeterministic step)
- 4:  $pos := dest; visited := visited \cup \{dest\}$
- 5: end while

### An Example on Ten Nodes

- Below is an undirected, unweighted graph on 10 vertices.
- The nodes are labeled in the order that they are visited. For example the airport where we start is labeled "1."



• In total the tourist takes

$$1 + 1 + 1 + 1 + 1 + 2 + 3 + 4 + 6 = 20$$

steps.

# Analysis of the Greedy Approach

- Hereafter let *n* denote the total number of vertices.
- We should never get stuck; thus we assume that the graph is strongly connected.
- To reiterate, the main question is: In the worst case, how many steps might the tourist take, as a function of *n*?
- Here is a simple upper bound.
- We need to visit *n* cities in total.
- For any vertices v, v' we must have  $d_{\mathcal{G}}(v, v') \leq n 1$ .
- Thus the total number of steps is less than  $n^2$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Bad Performance in Directed Graphs

- It turns out that the *n*<sup>2</sup> bound is essentially as good as can be proved if we allow the graph to have directed edges.
- Consider the following graph on n = 2k vertices. There are k + 1 vertices  $v_1, \ldots, v_{k+1}$  in the center region. The other vertices  $v_{k+2}, \ldots, v_{2k}$  form a path of length k 2.
- Starting from *v*<sub>1</sub>, one must make at least *k* trips around the loop in order to visit all of the vertices in the center.
- Thus the tourist will take at least k(k - 2 + 1 + 1) = k<sup>2</sup> = Ω(n<sup>2</sup>) steps.
- Therefore in directed graphs the  $O(n^2)$  upper bound is tight.



(日) (日) (日)

# The Undirected Case: Connection to TSP

[Rosenkrantz, Stearns, and Lewis, 1977]

- When the graph is undirected, the performance is much better than  $n^2$  steps, namely  $O(n \log n)$ .
- By using [RSL 77] this bound is easily proved.
- That paper is concerned with approximate solutions to the Traveling Salesman Problem on complete undirected graphs with edge weights that satisfy the triangle inequality.
- They show that the length L of the tour taken by the tourist satisfies

$$L \leq \left(\frac{1}{2} \lceil \log_2 n \rceil + \frac{1}{2}\right) MINTSP,$$

where MINTSP is the minimum possible cost of a Hamilton circuit in  $\mathcal{G}$ .

10/29

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# The Undirected Case: Connection to TSP, II

[Rosenkrantz, Stearns, and Lewis, 1977]

- In our case the weight of the edge between u and v is just d<sub>G</sub>(u, v).
- Note that  $d_{\mathcal{G}}$  satisfies the triangle inequality.
- Let  $\mathcal{T}$  be any spanning tree of  $\mathcal{G}$ .
- Walking around the outside of T takes 2(n-1) steps.
- By the triangle inequality, visiting nodes in preorder gives a Hamilton circuit of cost ≤ 2(n − 1) in G.
- Thus MINTSP  $\leq 2(n-1)$  in our case, and consequently  $L = O(n \log n)$  by [RSL 77].



・ 同 ト ・ ヨ ト ・ ヨ ト

### What's To Come

- We will see a simpler proof of the upper bound using vertex partitions.
- The authors of [RSL 77] give an explicit construction showing that the greedy tourist may walk a total distance of

 $\Omega(\log n \cdot \text{MINTSP}).$ 

- However, their construction uses weights and cannot be modified to work for the unweighted case.
- We will see an unweighted construction in which the tourist takes  $\Omega(n \log n)$  steps, proving that our upper bound is tight.

・ロット (四)・ (日)・ (日)

### Outline



### 2 A Self-Contained Proof of the Upper Bound $L = O(n \log n)$

#### A Construction Where $L = \Omega(n \log n)$

### 4 Further Ideas

イロト イポト イヨト イヨト

### Overview: Proof of the $O(n \log n)$ Upper Bound

- A node is *explored* when it is visited for the first time.
- Henceforth, consider a specific execution of the greedy algorithm. Label the nodes, in order of exploration,  $(v_1, v_2, \ldots, v_n)$ .
- For a given traversal, call the steps from  $v_i$  to  $v_{i+1}$  the *i*th *leg* of the traversal, and let  $\ell_i = d_{\mathcal{G}}(v_i, v_{i+1})$  be the length of leg *i*.
- So we want to bound  $L = \sum_{i=1}^{n-1} \ell_i$ .
- First, we rephrase the desired bound in terms of counting long legs.
- Next, we observe that, if the vertices can be partitioned into few graphs of small diameter, then there aren't many long legs.
- Finally, we show how every graph has a vertex partition of this form.

イロト 不得 とくき とくき とうき

## Rephrasing the Problem

- The total number of steps which the tourist takes is  $L = \sum_{i=1}^{n-1} \ell_i$ .
- Use an idea from partition theory: define a *conjugate* sequence  $\lambda_j$  such that  $\sum \ell_i = \sum \lambda_j$ .
- Specifically, we have that

$$\sum_{i=1}^{n-1} \ell_i = \sum_{i=1}^{n-1} \sum_{j=1}^{\ell_i} 1$$
$$= \sum_{j=1}^{n-1} \sum_{i:\ell_i \ge j} 1$$
$$= \sum_{j=1}^{n-1} \#\{i \mid \ell_i \ge j\}$$

• Thus we define  $\lambda_j = \#\{i \mid \ell_i \ge j\}$  and will bound the  $\lambda_j$ 's instead.

## Bounding the $\lambda_j$ with Vertex Partitions of Small Diameter

#### Lemma

Let  $\{P_j\}_{i=1}^k$  be a partition of V, and  $D = \max_j \text{Diam}(G[P_j])$ . Then  $\lambda_{D+1} \leq k$ .

#### Proof.

Let  $v_i$  be a node from the walker's tour, and  $P_j$  be the component containing  $v_i$ . Suppose that  $v_i$  is not the last node of  $P_j$  to be explored, say i' > i satisfies  $v_{i'} \in P_j$ . Then after exploring  $v_i$ , since the tourist is greedy and  $v_{i'}$  is not yet visited, he will choose to explore  $v_{i+1}$  such that

$$\ell_i = d_{\mathcal{G}}(v_i, v_{i+1}) \le d_{\mathcal{G}}(v_i, v_{i'}) \le \mathsf{Diam}(G[P_j]) \le D.$$

Thus, for each part  $P_i$ ,  $1 \le i \le k$ , at most one leg from a vertex of that part (namely, the last leg) has length D + 1 or more. Thus at most k legs are of length D + 1 or more. The result follows since  $\lambda_{D+1} = \#\{i \mid \ell_i \ge D+1\}$ .  $\Box$ 

イロト イポト イヨト イヨト

# The Existence of Good Partitions

#### Lemma

Let t be a non-negative integer. There exists a partition of  $V(\mathcal{G})$  into at most  $\lceil n/t \rceil$  parts, such that  $\mathsf{Diam}(\mathcal{G}[P]) \leq 2t - 2$  for each part P.

#### Proof. (Sketch).

Let  $\mathcal{T}$  be any rooted spanning tree of  $\mathcal{G}$ .

As long as  $\mathcal{T}$  has height *t* or more, we cut off a subtree of height t - 1 and make its vertices into a part. Eventually the tree has height < t and we put all remaining vertices into a part. A (sub)tree's diameter is at most twice its height, so each part induces a subgraph of diameter at most 2(t - 1) in  $\mathcal{T}$ . Since each part, except possibly the last one, contains at least *t* vertices, we have no more than  $\lceil n/t \rceil$  parts in total.

But as replacing the nontree edges cannot increase the distance between two nodes,  $\text{Diam}(\mathcal{G}[P]) \leq \text{Diam}(\mathcal{T}[P]) \leq 2(t-1)$  for each part *P*.

17/29

## Conclusion of the Upper Bound

- From the second lemma, for each *t*, there is a partition of the vertices into  $\lceil n/t \rceil$  parts with diameter at most 2t 2.
- Thus, by the first lemma,  $\lambda_{2t-1} \leq \lceil n/t \rceil$ .
- Note that  $\lambda_j$  is nonincreasing, so  $\lambda_{2t} \leq \lceil n/t \rceil$ .
- Also,  $\lambda_j = 0$  for  $j > \mathsf{Diam}(\mathcal{G})$ .
- It follows that the total number of steps is

$$\sum_{i=1}^{n-1} \ell_i = \sum_{t=1}^{\lceil \mathsf{Diam}(\mathcal{G})/2 \rceil} \lambda_{2t-1} + \lambda_{2t}$$

$$\leq \sum_{t=1}^{\lceil \mathsf{Diam}(\mathcal{G})/2 \rceil} 2 \lceil n/t \rceil$$

$$= 2n \ln(\mathsf{Diam}(\mathcal{G})) + O(n)$$

• (Or if  $\mathcal{G}$  is weighted, modify 2nd lemma to get same bound as [RSL 77].)

18 / 29

### Outline



A Self-Contained Proof of the Upper Bound  $L = O(n \log n)$ 

### 3 A Construction Where $L = \Omega(n \log n)$

### 4 Further Ideas

イロト イポト イヨト イヨト

# Tightness of the $O(n \log n)$ Upper Bound

- Now let's actually find a family of graphs that can take  $\Omega(n \log n)$  steps.
- What about very simple graphs?
- The densest graph  $K_n$  is always traversed in n-1 steps.
- The sparsest graphs trees take at most 2n 3 steps. (The greedy tourist performs a depth-first search.)
- From the upper bound of  $O(n \log \text{Diam}(\mathcal{G}))$ , the graphs cannot have very small diameter.

イロト 不得 とくき とくき とうき

## The Layered Ring Construction, Phase 1

- We show the *layered ring* construction for the lower bound.
- The basic idea is to start with a long path, and then augment it using very few nodes so that the whole length of the path can be traversed many times.
- We picture these graphs with their nodes labeled according to the order of exploration.
- The graph is built in phases, starting with a path of  $2^m + 1$  nodes. Here is the first phase for m = 4:



• A sequence of  $2^m$  steps is called a *lap*. Each phase will add one more lap.

・ロト ・ 四ト ・ ヨト ・ ヨト

## The Layered Ring Construction, Phase 2

• In the second phase, add a "layer" of m + 2 nodes that permit the tourist to take a second lap:



• The nodes are spaced out in a binary geometric progression.

| David | Pritchard | (Waterloo) |  |
|-------|-----------|------------|--|
|-------|-----------|------------|--|

## The Layered Ring Construction, Phase 3

• In the third phase, we "splice" in another layer, giving three laps.



- For each leg of length  $2^k$  added in the previous phase, we add k + 1 legs of respective lengths  $1, 1, 2, 4, \ldots, 2^{k-1}$ .
- The tourist traverses the original (black) nodes 1–17 first, then the new (blue) nodes 18–29, then finally we traverse the (red) nodes that have been renamed 30–35.

David Pritchard (Waterloo)

## The Layered Ring Construction, Phases 3, 4, ...

- Since the nodes are spaced in a binary geometric progression, the tourist has enough "momentum" to pick up the layers one at a time.
- For example, here is the third phase of the layered ring:



- After exploring node 27, the closest unvisited nodes are at distance 2, so the tourist can go to node 28; then the closest unvisited nodes are at distance 4, so the tourist can go to node 29.
- The fourth and later phases are just like the third. Splice in a new layer. Each leg of length 2<sup>k</sup> from the previous phase gives rise to k + 1 legs of length 1, 1, 2, 4, ..., 2<sup>k-1</sup> in the new phase. This adds one more lap.
- First the original  $2^m + 1$  nodes are explored, then the new layer, then the second-newest, .... The sparsest layer, of m + 2 nodes, is explored last.

David Pritchard (Waterloo)

24/29

## Analysis of the Construction

- The fact that a leg of length 2<sup>k</sup> decomposes into legs of length 1, 1, 2, 4, ..., 2<sup>k-1</sup> permits a simple recurrence relation for the number of nodes added in each layer. The details are omitted here.
- After  $\ell = m/3$  phases, we can show that the total number of nodes is

$$n = 2^m (1 + o(1)),$$

which also implies  $m = \Theta(\log n)$ .

• Thus, taking  $\ell = m/3$ , the total number of steps is  $\ell$  laps, or

$$\ell \cdot 2^m = \frac{m}{3} 2^m = \Theta(n \log n).$$

・ロト ・ 同 ト ・ ヨ ト ・

### Outline



A Self-Contained Proof of the Upper Bound  $L = O(n \log n)$ 

#### A Construction Where $L = \Omega(n \log n)$

### 4 Further Ideas

イロト イポト イヨト イヨト

## Application to Distributed Networks

- Suppose that we have a network of computers, modeled by a graph.
- It may be desirable to have an *agent* visit every node of the network. This can be used to conduct a census, compute aggregates in the network, assign unique IDs to each node, etc.
- If the network is reliable then DFS is essentially optimal, taking less than 2n steps.
- If the edges of the network are not 100% reliable, then DFS may fail (for example, if the agent can't backtrack from *v* to *parent*(*v*)). We may instead use the greedy tourist strategy to traverse the entire network.
- In order to distributively implement the shortest-path algorithm, each node *v* records the distance *d*(*v*) to the nearest unvisited node.
- At each time step each node recomputes

$$d(v) = \begin{cases} 0, & \text{if } v \text{ has not been visited;} \\ \min_{w \in \Gamma(v)} 1 + d(w), & \text{otherwise.} \end{cases}$$

27/29

・ロト ・ 四ト ・ ヨト ・ ヨト

## Randomized Version of the Greedy Tourist

- We have only shown that on layered rings, for a very particular exploration sequence, the greedy tourist can take  $\Omega(n \log n)$  steps.
- It is possible that a particular tie-breaking rule (to determine which of the closest unvisited nodes should be explored next) could give better performance.
- What if ties are broken randomly? Two reasonable versions of this rule.
- Centralized version: after visiting a new node, of the closest unvisited nodes, pick one uniformly at random and move to it.
- Distributed version: at each step, of all outgoing edges from your current position which lie on the shortest paths to the closest unvisited nodes, pick one uniformly at random and move along it.
- What is the *expected* number of steps taken?
- Hopefully, if the  $\Omega(n \log n)$  lower bound holds, some family of random graphs will exhibit this performance, simplifying analysis.

## Questions?

#### • Thank you for listening!

2

<ロト < 四ト < 三ト < 三ト