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Preliminaries

Tourist Season

We have just landed at the airport of a foreign island, and wish to visit
every village. The catch is that we didn’t buy a map.

From each village there are a number of outgoing expressways, and there
are signs that indicate the destination of each one.

We maintain our own map of the villages we’ve been to and the
destinations of all outgoing expressways. How can we visit all of the
cities efficiently?
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Preliminaries

A Greedy Approach

Here is a greedy strategy for exploring the island.
1 Initially our map contains the airport’s village and its outgoing

expressways.
2 Whenever we visit a previously unvisited village, add its outgoing

expressways to the map.
3 As long as there is some unvisited village, use the map to determine the

closest unvisited village, and go there by traversing a series of known
expressways.

Note: we might have to travel through villages that have already been
visited in order to get to an unvisited village.

We call a “step” the process of moving from one village, along an
outgoing expressway, to an adjacent village.

How many steps will the tourist take, in the worst case?

David Pritchard (Waterloo) The Greedy Tourist Graduate Student Seminar, 2006 4 / 29



Preliminaries

Modeling the Greedy Approach

Model the island by anunweightedgraphG = (V(G), E(G)).
villages↔ V, expressways↔ E, city with airport↔ v1 ∈ V.

In the tourist story, nodes becomeknownwhen we go to one of their
neighbours for the first time; the tourist greedily picks the closest known
unvisited vertex, repeatedly.

Claim: even if the whole graph had been known to the tourist in the first
place, the tourist would still produce the exact same behaviour. Follows
from a lemma on the next slide:
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Preliminaries

Lemma

At any point during the tourist’s trip, all nearest unvisited vertices are known.

Proof.

Suppose some nearest unvisited vertexv is unknown. Consider any shortest
path from the tourist’s current position tov. Sincev is unknown, the vertexw
precedingv on that path is unvisited. But thenw is unvisited and strictly
closer to the tourist’s current position thanv.

The greedy tourist algorithm may thus be described as follows.

1: Let pos:= v1; visited:= {v1}
2: while visited 6= V(G) do
3: Selectdest∈ (V(G)− visited) such thatdG(pos, dest) is minimum,

breaking ties arbitrarily . (nondeterministic step)
4: pos:= dest; visited:= visited∪ {dest}
5: end while
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Preliminaries

An Example on Ten Nodes

Below is an undirected, unweighted graph on 10 vertices.
The nodes are labeled in the order that they are visited. For example the
airport where we start is labeled “1.”

In total the tourist takes

1 + 1 + 1 + 1 + 1 + 2 + 3 + 4 + 6 = 20

steps.
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Preliminaries

Analysis of the Greedy Approach

Hereafter letn denote the total number of vertices.

We should never get stuck; thus we assume that the graph is strongly
connected.

To reiterate, the main question is:In the worst case, how many steps
might the tourist take, as a function ofn?

Here is a simple upper bound.

We need to visitn cities in total.

For any verticesv, v′ we must havedG(v, v′) ≤ n− 1.

Thus the total number of steps is less thann2.
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Preliminaries

Bad Performance in Directed Graphs

It turns out that then2 bound is essentially as good as can be proved if
we allow the graph to have directed edges.

Consider the following graph onn = 2k vertices. There arek + 1
verticesv1, . . . , vk+1 in the center region. The other vertices
vk+2, . . . , v2k form a path of lengthk− 2.

Starting fromv1, one must make at leastk
trips around the loop in order to visit all
of the vertices in the center.

Thus the tourist will take at least
k(k− 2 + 1 + 1) = k2 = Ω(n2) steps.

Therefore in directed graphs theO(n2)
upper bound is tight.
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Preliminaries

The Undirected Case: Connection to TSP
[Rosenkrantz, Stearns, and Lewis, 1977]

When the graph is undirected, the performance is much better thann2

steps, namelyO(n logn).
By using [RSL 77] this bound is easily proved.

That paper is concerned with approximate solutions to the Traveling
Salesman Problem on complete undirected graphs with edge weights that
satisfy the triangle inequality.

They show that the lengthL of the tour taken by the tourist satisfies

L ≤
(

1
2
dlog2 ne+

1
2

)
M INTSP,

where MINTSP is the minimum possible cost of a Hamilton circuit inG.
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Preliminaries

The Undirected Case: Connection to TSP, II
[Rosenkrantz, Stearns, and Lewis, 1977]

In our case the weight of the edge betweenu
andv is justdG(u, v).
Note thatdG satisfies the triangle inequality.

Let T be any spanning tree ofG.

Walking around the outside ofT takes
2(n− 1) steps.

By the triangle inequality, visiting nodes in
preorder gives a Hamilton circuit of cost
≤ 2(n− 1) in G.

Thus MINTSP≤ 2(n− 1) in our case, and
consequentlyL = O(n logn) by [RSL 77].
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Preliminaries

What’s To Come

We will see a simpler proof of the upper bound using vertex partitions.

The authors of [RSL 77] give an explicit construction showing that the
greedy tourist may walk a total distance of

Ω(logn · M INTSP).

However, their construction uses weights and cannot be modified to work
for the unweighted case.

We will see an unweighted construction in which the tourist takes
Ω(n logn) steps, proving that our upper bound is tight.
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A Self-Contained Proof of the Upper BoundL = O(n log n)

Overview: Proof of theO(n logn) Upper Bound

A node isexploredwhen it is visited for the first time.

Henceforth, consider a specific execution of the greedy algorithm. Label
the nodes, in order of exploration,(v1, v2, . . . , vn).
For a given traversal, call the steps fromvi to vi+1 the ith legof the
traversal, and let̀i = dG(vi , vi+1) be the length of legi.

So we want to boundL =
∑n−1

i=1 `i .

First, we rephrase the desired bound in terms of counting long legs.

Next, we observe that, if the vertices can be partitioned into few graphs
of small diameter, then there aren’t many long legs.

Finally, we show how every graph has a vertex partition of this form.
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A Self-Contained Proof of the Upper BoundL = O(n log n)

Rephrasing the Problem

The total number of steps which the tourist takes isL =
∑n−1

i=1 `i .

Use an idea from partition theory: define aconjugatesequenceλj such
that

∑
`i =

∑
λj .

Specifically, we have that

n−1∑
i=1

`i =
n−1∑
i=1

`i∑
j=1

1

=
∑
j=1

∑
i:`i≥j

1

=
∑
j=1

#{i | `i ≥ j}.

Thus we defineλj = #{i | `i ≥ j} and will bound theλj ’s instead.
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A Self-Contained Proof of the Upper BoundL = O(n log n)

Bounding theλj with Vertex Partitions of Small Diameter

Lemma

Let{Pj}k
j=1 be a partition of V, and D= maxj Diam(G[Pj ]). ThenλD+1 ≤ k.

Proof.

Let vi be a node from the walker’s tour, andPj be the component containing
vi . Suppose thatvi is not the last node ofPj to be explored, sayi′ > i satisfies
vi′ ∈ Pj . Then after exploringvi , since the tourist is greedy andvi′ is not yet
visited, he will choose to explorevi+1 such that

`i = dG(vi , vi+1) ≤ dG(vi , vi′) ≤ Diam(G[Pj ]) ≤ D.

Thus, for each partPi , 1 ≤ i ≤ k, at most one leg from a vertex of that part
(namely, the last leg) has lengthD + 1 or more. Thus at mostk legs are of
lengthD + 1 or more. The result follows sinceλD+1 = #{i | `i ≥ D + 1}.
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A Self-Contained Proof of the Upper BoundL = O(n log n)

The Existence of Good Partitions

Lemma

Let t be a non-negative integer. There exists a partition of V(G) into at most
dn/te parts, such thatDiam(G[P]) ≤ 2t − 2 for each part P.

Proof. (Sketch).

Let T be any rooted spanning tree ofG.
As long asT has heightt or more, we cut off a subtree of heightt − 1 and
make its vertices into a part. Eventually the tree has height< t and we put all
remaining vertices into a part. A (sub)tree’s diameter is at most twice its
height, so each part induces a subgraph of diameter at most 2(t − 1) in T .
Since each part, except possibly the last one, contains at leastt vertices, we
have no more thandn/te parts in total.
But as replacing the nontree edges cannot increase the distance between two
nodes,Diam(G[P]) ≤ Diam(T [P]) ≤ 2(t − 1) for each partP.
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A Self-Contained Proof of the Upper BoundL = O(n log n)

Conclusion of the Upper Bound

From the second lemma, for eacht, there is a partition of the vertices
into dn/te parts with diameter at most 2t − 2.

Thus, by the first lemma,λ2t−1 ≤ dn/te.
Note thatλj is nonincreasing, soλ2t ≤ dn/te.
Also, λj = 0 for j > Diam(G).
It follows that the total number of steps is

n−1∑
i=1

`i =
dDiam(G)/2e∑

t=1

λ2t−1 + λ2t

≤
dDiam(G)/2e∑

t=1

2dn/te

= 2n ln(Diam(G)) + O(n).

(Or if G is weighted, modify 2nd lemma to get same bound as [RSL 77].)
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A Construction WhereL = Ω(n log n)
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A Construction WhereL = Ω(n log n)

Tightness of theO(n logn) Upper Bound

Now let’s actually find a family of graphs that can takeΩ(n logn) steps.

What about very simple graphs?

The densest graphKn is always traversed inn− 1 steps.

The sparsest graphs — trees — take at most 2n− 3 steps. (The greedy
tourist performs a depth-first search.)

From the upper bound ofO(n logDiam(G)), the graphs cannot have very
small diameter.
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A Construction WhereL = Ω(n log n)

The Layered Ring Construction, Phase 1

We show thelayered ringconstruction for the lower bound.

The basic idea is to start with a long path, and then augment it using very
few nodes so that the whole length of the path can be traversed many
times.

We picture these graphs with their nodes labeled according to the order
of exploration.

The graph is built in phases, starting with a path of 2m + 1 nodes. Here is
the first phase form = 4 :

A sequence of 2m steps is called alap. Each phase will add one more lap.
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A Construction WhereL = Ω(n log n)

The Layered Ring Construction, Phase 2

In the second phase, add a “layer” ofm+ 2 nodes that permit the tourist
to take a second lap:

⇓

The nodes are spaced out in a binary geometric progression.
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A Construction WhereL = Ω(n log n)

The Layered Ring Construction, Phase 3

In the third phase, we “splice” in another layer, giving three laps.

⇓

For each leg of length 2k added in the previous phase, we addk + 1 legs
of respective lengths 1, 1, 2, 4, . . . , 2k−1.

The tourist traverses the original (black) nodes 1–17 first, then the new
(blue) nodes 18–29, then finally we traverse the (red) nodes that have
been renamed 30–35.
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A Construction WhereL = Ω(n log n)

The Layered Ring Construction, Phases 3, 4,. . .

Since the nodes are spaced in a binary geometric progression, the tourist
has enough “momentum” to pick up the layers one at a time.
For example, here is the third phase of the layered ring:

After exploring node 27, the closest unvisited nodes are at distance 2, so
the tourist can go to node 28; then the closest unvisited nodes are at
distance 4, so the tourist can go to node 29.
The fourth and later phases are just like the third. Splice in a new layer.
Each leg of length 2k from the previous phase gives rise tok + 1 legs of
length 1, 1, 2, 4, . . . , 2k−1 in the new phase. This adds one more lap.
First the original 2m + 1 nodes are explored, then the new layer, then the
second-newest, . . . . The sparsest layer, ofm+ 2 nodes, is explored last.
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A Construction WhereL = Ω(n log n)

Analysis of the Construction

The fact that a leg of length 2k decomposes into legs of length
1, 1, 2, 4, . . . , 2k−1 permits a simple recurrence relation for the number of
nodes added in each layer. The details are omitted here.

After ` = m/3 phases, we can show that the total number of nodes is

n = 2m(1 + o(1)),

which also impliesm = Θ(logn).
Thus, taking̀ = m/3, the total number of steps is̀laps, or

` · 2m =
m
3

2m = Θ(n logn).
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Further Ideas

Application to Distributed Networks

Suppose that we have a network of computers, modeled by a graph.
It may be desirable to have anagentvisit every node of the network.
This can be used to conduct a census, compute aggregates in the
network, assign unique IDs to each node, etc.
If the network is reliable then DFS is essentially optimal, taking less than
2n steps.
If the edges of the network are not 100% reliable, then DFS may fail (for
example, if the agent can’t backtrack fromv to parent(v)). We may
instead use the greedy tourist strategy to traverse the entire network.
In order to distributively implement the shortest-path algorithm, each
nodev records the distanced(v) to the nearest unvisited node.
At each time step each node recomputes

d(v) =

{
0, if v has not been visited;

minw∈Γ(v) 1 + d(w), otherwise.
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Further Ideas

Randomized Version of the Greedy Tourist

We have only shown that on layered rings, for a very particular
exploration sequence, the greedy tourist can takeΩ(n logn) steps.

It is possible that a particular tie-breaking rule (to determine which of the
closest unvisited nodes should be explored next) could give better
performance.

What if ties are broken randomly? Two reasonable versions of this rule.

Centralized version: after visiting a new node, of the closest unvisited
nodes, pick one uniformly at random and move to it.

Distributed version: at each step, of all outgoing edges from your current
position which lie on the shortest paths to the closest unvisited nodes,
pick one uniformly at random and move along it.

What is theexpectednumber of steps taken?

Hopefully, if theΩ(n logn) lower bound holds, some family of random
graphs will exhibit this performance, simplifying analysis.
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Further Ideas

Questions?

Thank you for listening!
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