
An Optimal Distributed Bridge-Finding Algorithm
David Pritchard, Department of Combinatorics and Optimization

University of Waterloo, Ontario, Canada

Overview and Problem Statement

We model a computer network by a graph, where the ver-
tices are computers and the edges are two-way communi-
cation links. It is a fundamental necessity that the graph be
connected if the network is to operate as a whole. A bridge
is an edge whose deletion causes the network to become
disconnected. The bridges are the edges that are critical
to network reliability. We give a simple, efficient distributed
algorithm to determine the bridges of a network. Let the
network be G = (V, E), and let Diam(G) be the largest dis-
tance between any pair of nodes in G. Our protocol

•Assumes the network is synchronous.

•Assumes the existence of a distinguished leader node.

•Uses messages that are O(log V ) bits long.

•Sends a total of O(E) messages.

•Completes in O(Diam(G)) time.

•Has optimal message and time complexity (within a con-
stant factor) on all graphs, under certain assumptions.

Background

Historically, algorithms for bridge-finding are linked to ones
for determining the cut points — those nodes whose dele-
tion disconnects the network — and blocks — maximal sub-
graphs having no cut vertices. The blocks partition E(G),
and from this partition, it is easy to determine the cut points
and bridges. Note, we consider only small-message proto-
cols since we could otherwise use a trivial Diam-time algo-
rithm. This also aids our algorithm’s practicality.

Table: A brief history of bridge-finding and block-finding algorithms.

When Who What Model Complexity
1972 Tarjan Blocks Sequential O(V + E) time
⋄ Based off of properties of depth-first search

1974 Tarjan Bridges Sequential O(V + E) time
⋄ Extends older ideas to use any spanning tree, not just DFS

1984 Tarjan-Vishkin Blocks Seq., Parallel O(V + E) time
⋄Works with any spanning tree. Blocks are connected components

of an auxiliary graph G′ with V (G′) = E(G)
1989 Huang Blocks Distributed O(V ) time, O(E) msg
⋄ Reformulation of Tarjan-Vishkin

1990 Hohberg Blocks Distributed O(E + V log V ) msg
⋄ Proved Ω(E + V log V ) msgs are necessary if no leader present

1997 Thurimella Blocks Distributed Õ(Diam +
√

V ) time
⋄ Improves Huang/T-V. Uses subgraph H ⊆ G and not auxiliary graph
⋄ Calls fast MST algorithm to get connected components of H

2006 [this poster] Bridges Distributed O(Diam) time, O(E) msg

Our Contribution

Thurimella’s block-finding algorithm seems also to be the
fastest known distributed bridge-finding algorithm. The main
point of this work is that, if we only want to compute the
bridges, then it is wasteful to compute the blocks. Specifi-
cally, Thurimella’s algorithm takes Θ(Diam+

√
V log∗ V ) time,

but ours takes only O(Diam) time to find the bridges, and
this seems to be optimal. Our algorithm uses the same key
ideas as Tarjan’s 1974 paper.

The author thanks the University of Waterloo Graduate
Studies Office for their financial support, and thanks the
poster referees for several helpful suggestions.

Bridge-Finding Technique

Step 1: Find a spanning tree. Our algorithm requires a
spanning tree T of the network. Any spanning tree will do,
but a BFS tree leads to the best running time. Since each
cycle of G containing edge {u, v} corresponds to a simple
u-v path in G\{{u, v}}, we have

An edge is a bridge of G if and only if

it is contained in no simple cycle of G.
(1)

It follows that every bridge is a tree edge. Let desc(v) denote
the descendants of v in T , including v itself. Let p(v) denote
the parent of v in T . From property (1) we can deduce that

Edge {p(v), v} ∈ T is a bridge if and only if no

other edge meets both desc(v) and V (G)\desc(v).
(2)

Step 2: Compute subtree sizes and preorder. We would
like to efficiently determine for each node v whether {p(v), v}
meets condition (2). We can accomplish this with a pre-
order , which is an order of discovery of a DFS on T . Im-
portant: hereafter we refer to all nodes by their pre-
order label. So for example p(v) < v for all non-root v.

Step 3: Compute low and high values. For a node v

we define its subtree-neighbourhood SN(v) to comprise of
the subtree rooted at v, along with any further nodes of G
reachable from the subtree by a single non-tree edge:

SN(v) := desc(v) ∪ {w | u ∈ desc(v), {w, u} ∈ E(G\T )}.

For each node v the values low(v) and high(v) denote the
minimum and maximum preorder label amongst its subtree-
neighbourhood:

low(v) := min SN(v) and high(v) := max SN(v).

Then from property (2), and since in preorder desc(v) =
{v, . . . , v + #desc(v)− 1}, we have

Edge {p(v), v} is a bridge if and only if

(low(v) ≥ v) and (high(v) < v + #desc(v)).
(3)

Our algorithm simply determines which v have property (3).

Implementation and Example

Step 1: We use a well-known greedy algorithm for distribu-
tively computing a BFS tree. That algorithm has time com-
plexity O(Diam) and uses O(E) messages.

We repeatedly use two tree-based parallel communication
techniques. In a downcast, messages are sent down each
tree edge, starting at the root, and ending at the leaves.
A convergecast is like a bottom-up acknowledgement for
a downcast: node v waits for reports from each child, and
then v reports to its parent.

Step 2: Using a downcast, a request is sent that all nodes
compute their subtree size #desc. Then there corresponds
a convergecast: each leaf node v immediately determines
that #desc(v) = 1 and reports this value to its parent; each
non-leaf node v, upon learning the #desc values of its chil-
dren c1, . . . , ck, computes #desc(v) = 1+

∑k
i=1 #desc(ci), and

reports this value to its parent. See Figure 1.

Figure 1: In this convergecast, each node v computes its subtree size
#desc(v). Tree edges are red, with the root at the top.

1 1 1 1

5
1

7
1

1

1 1 1

4

6

15

⇑

Preordering is accomplished with a downcast. The root
sets its preorder label to 1. Whenever a node v sets its
preorder label to ℓ, it orders its children in T arbitrarily as
c1, c2, . . .. Then v sends the message “Set your preorder
label to ℓi” to each ci, where v computes ℓi according to the
formula ℓi = ℓ + 1 +

∑

j<i #desc(cj). See Figure 2.

Figure 2: Using a downcast, each node computes its preorder label.

4 5 6 7

3
8

2
9

11

13 14 15

12

10

1

⇓

Step 3: Each node v initializes low(v)← v and high(v)←
v. Then, each node announces its preorder label to all of
its neighbours except its parent and children. When node
v hears such an announcement from u it sets low(v) ←
min(low(v), u) and high(v) ← max(high(v), u). Using a con-
vergecast, each node computes

low(v)← min
(

{low(v)} ∪ {low(u) | u a child of v}
)

,

high(v)← max
(

{high(v)} ∪ {high(u) | u a child of v}
)

.

See Figure 3. Finally, one additional message along each
tree edge allows us to determine where property (3) holds.

Figure 3: With another convergecast, each node v computes low(v)
and high(v). The bridges are shown in yellow.

4,5 4,5 6,7 6,7

3,7
8,9

2,9
8,9

11,11

13,14 13,15 14,15

12,15

10,15

1,15

⇑

We further note: if all nodes begin simultaneously, we can
derive a near time-optimal local algorithm with implicit ter-
mination by using Elkin’s neighbourhood cover protocol.

Complexity Analysis

Let h be the height of T . Each downcast and convergecast
takes h time and uses V − 1 messages. Since h is a BFS
tree, Diam

2 ≤ h ≤ Diam. The remaining operations — tree
construction, announcement, and bridge identification —
together take O(Diam) time and O(E) messages. Thus our
algorithm’s total complexity is O(Diam) time and O(E) mes-
sages. Each message has a single datum between 1 and
V, and so can be encoded using O(log V ) bits. Note, in an
asynchronous environment, downcasts and convergecasts
still take h time and V − 1 messages, but the complexity-
dominating BFS tree construction step is more costly.

Universal Optimality

Our distributed algorithm is deterministic, event-driven, has
a single initiator, and assumes neighbour identities are ini-
tially unknown (no local knowledge). Under these assump-
tions, any correct bridge-finding algorithm sends at least E

messages and takes at least Diam

2 time on all graphs.

Suppose that a bridge-finding protocol running on a graph
G doesn’t ever send a message on some edge, say {u, v}.
Obtain graph G1 from G by subdividing {u, v} with a new
node w and attaching some cycles and bridges to w, as
shown in the figure below. When we run the protocol on G1,

u v
⇒ G1 :=

u w v

G\{{u, v}}G\{{u, v}}

the same messages are sent; as no messages are sent on
{u, w} or {w, v}, and because the algorithm is event-driven,
no messages reach the new parts of the graph. Hence the
new edges cannot possibly be classified correctly. Thus in a
correct protocol, every edge carries at least one message,
and the E message lower bound follows.

The time lower bound has essentially the same proof. If a
bridge-finding algorithm terminates in less than Diam(G)

2 time
on some graph G, then some node receives no messages;
we would attach new cycles and bridges to that node. So,
no algorithm of the described form can beat ours by more
than a constant factor on any graph. Other “optimal” algo-
rithms are, in contrast, optimal only on some graphs.

Open Questions

Is bridge-finding strictly easier than finding blocks? Peleg
and Rubinovich proved a Ω̃(

√
n + Diam) time lower bound

for the minimum spanning tree problem. We may be able
to adapt this proof to a lower bound on block-finding.

There are sequential algorithms for strong components,
triconnected components and planarity testing in O(V + E)
time which are based on properties of DFS. In fact, if a
spanning directed DFS tree is given, then our algorithm es-
sentially computes the strong components. Do these prob-
lems admit (o(n) + O(Diam))-time distributed solutions?


