Symmetric Network Computation

and the Finite-State Symmetric Graph Automaton (FSSGA)élod

David Pritchard, with Santosh Vempala

2006 ACM Symposium on Parallelism in Architectures and Aikipons

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 1/23

Overview

@ The “standard” message-passing model of distributed ithgos puts
only weak restrictions on the computational power of eaateno

@ Some modern networks are very large and quite faulty (tlesriet,
sensor networks).

@ Motivation: can anuch simplemodel automatically ensure
fault-tolerance? E.g., ‘smart dust’ networks with billgoaf identical
microscopic finite-state nodes, unbounded degree.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 2/23

Overview

@ The “standard” message-passing model of distributed ithgos puts
only weak restrictions on the computational power of eaateno

@ Some modern networks are very large and quite faulty (tlesriet,
sensor networks).

@ Motivation: can anuch simplemodel automatically ensure
fault-tolerance? E.g., ‘smart dust’ networks with billgoaf identical
microscopic finite-state nodes, unbounded degree.

@ Using some qualitative principles that are common to maait-falerant
algorithms, we propose a specific new model of finite-statemgdation,
Finite-State Symmetric Graph Automata (FSSGA).

o Extends web automata, cellular automata.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 2/23

Overview

@ The “standard” message-passing model of distributed ithgos puts
only weak restrictions on the computational power of eaateno

@ Some modern networks are very large and quite faulty (tlesriet,
sensor networks).

@ Motivation: can anuch simplemodel automatically ensure
fault-tolerance? E.g., ‘smart dust’ networks with billgoaf identical
microscopic finite-state nodes, unbounded degree.

@ Using some qualitative principles that are common to maait-falerant
algorithms, we propose a specific new model of finite-statemgdation,
Finite-State Symmetric Graph Automata (FSSGA).

o Extends web automata, cellular automata.

o We don't get what weeally wanted (automatic fault tolerance). E.g., ce
break symmetry and elect a leader.

@ Interesting features: multiple equivalent formulatiosispple
(simulatable by “most” models), interplay between pataled
sequential computing.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 2/23

Outline

@ Background and History

© Finite-State Symmetric Graph Automata

© Related Work / Future Work

David Pritchard (U Waterloo)

Symmetric Network Computation

Problem Statement — Computing the Network Size

@ Here’s a “toy problem” to introduce three different compqti
paradigms: tree-based, agent-based, and decentralized.

@ Problem.Given a network of unknown size and topology, compute the
number of nodes in the network. You may assume a leader exists

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 423

Problem Statement — Computing the Network Size

@ Here’s a “toy problem” to introduce three different compqti
paradigms: tree-based, agent-based, and decentralized.

@ Problem.Given a network of unknown size and topology, compute the
number of nodes in the network. You may assume a leader exists

@ Simple problem, but typical for sensor and ad-hoc netwohkso it
generalizes to other forms of aggregation such as sums amnagss.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 423

Trees and Agents

e In this talk,n := |V/|, the number of nodes.

David Pritchard (U Waterloo)

Symmetric Network Computation

Trees and Agents

e In this talk,n := |V/|, the number of nodes.

o First idea for computing network size: construct a spantiieg, and
each node reports its subtree size to its parent.

@ Easy enough to implement, but if any tree edge dies during the
algorithm, then it fails. And there can I6&n) tree edges.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 5/23

Trees and Agents

e In this talk,n := |V/|, the number of nodes.

o First idea for computing network size: construct a spantiieg, and
each node reports its subtree size to its parent.

o Easy enough to implement, but if any tree edge dies during the
algorithm, then it fails. And there can I6&n) tree edges.

@ Second idea: have ament traverse the network.

@ Each node stores a “visited” flag, and by this the agent casrméte the
number of unique nodes visited.

@ Using, for example, a greedy routing strategy, we can tsgvtre
network inO(nlog n) steps.

@ This improves the situation: even if some nodes/edges slierg as the
agent is not in the midst of a failure, and the graph remainsected,
the algorithm worksBut this one critical node remains, can we do
better?

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 5/23

Trees and Agents

In this talk,n := V|, the number of nodes.

First idea for computing network size: construct a spantieg, and
each node reports its subtree size to its parent.

Easy enough to implement, but if any tree edge dies during the
algorithm, then it fails. And there can I6&n) tree edges.

Second idea: have agent traverse the network.

Each node stores a “visited” flag, and by this the agent carméte the
number of unique nodes visited.

Using, for example, a greedy routing strategy, we can teavtre
network inO(nlog n) steps.

This improves the situation: even if some nodes/edges dileng as the
agent is not in the midst of a failure, and the graph remainsected,
the algorithm worksBut this one critical node remains, can we do
better?

Yes, if all we really need is aestimate of n.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 5/23

A Decentralized Census Algorithm
[Flajolet and Martin, 1985 / Shah and Mosk-Aoyama, PODC 2006

@ The agent algorithm still has one critical node whose failgrdisastrous.

@ Some algorithms completely avoid having any fragile strtgstwith no
node more important than any other. Often catiecentralized.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 6/23

A Decentralized Census Algorithm
[Flajolet and Martin, 1985 / Shah and Mosk-Aoyama, PODC 2006

@ The agent algorithm still has one critical node whose failgrdisastrous.

@ Some algorithms completely avoid having any fragile strtgstwith no
node more important than any other. Often catiecentralized.

@ Here’s an algorithm tapproximately count the number of nodes in a
faulty network.

@ Suppose each node has> log, log, n bits of memory, initially all O.

@ Each node assigns its memory a value by this distributionedch
0 < i < 2% set memory value tbwith probability 2-1-1.

@ All nodes repeatedly broadcast their value and replace meocomtents
with maximum known value. (Information propagation)

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 6/23

A Decentralized Census Algorithm
[Flajolet and Martin, 1985 / Shah and Mosk-Aoyama, PODC 2006

@ The agent algorithm still has one critical node whose failgrdisastrous.

@ Some algorithms completely avoid having any fragile strtgstwith no
node more important than any other. Often catiecentralized.

@ Here’s an algorithm tapproximately count the number of nodes in a
faulty network.

@ Suppose each node has> log, log, n bits of memory, initially all O.

@ Each node assigns its memory a value by this distributionedch
0 < i < 2% set memory value tbwith probability 2-1-1.

@ All nodes repeatedly broadcast their value and replace meocomtents
with maximum known value. (Information propagation)

@ Letvbe final value. With prob. 2/3, the numbétig a constant-factor
approximation to the network size. (Can improve somewhat.)

@ This algorithm can tolerate any “reasonable” failure patte

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 6/23

What Properties are Essential?

@ Rank by fault-tolerancetree-basedk agent-baseck decentralized(See
sensitivity in proceedings).

o Do the “best” decentralized algorithms have some simiéa® We
isolated three properties.

(P1) Global Symmetry: the computation proceeds via a single operation tha
is performed repeatedly by every node.

(P2) Local Symmetry: every node acts symmetrically on its neighbours.

(P3) Seady Sate Convergence: the network is brought to a steady state whe
all nodes perform their operation repeatedly.

o (Examples: Flajolet-Martin, preflow-push,synchronizer, harmonic
functions, self-stabilizing model)

o We'd like to construct a distributed model with these threspprties.

@ Let us review some older FSA-based models with these syrngmetr
principles in mind.Properties 1 and 2 motivate our model the most.

o FSA = finite-state automaton

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 7123

Cellular Automata, Lattices

o “Life” (Conway) is a highly popularized example of a cellular awton
in 2D. State spac® = {alive, dead}; all nodes compute synchronously,
with the same rule, based on own state and number of of lighbeurs.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 8/23

Cellular Automata, Lattices

o “Life” (Conway) is a highly popularized example of a cellular awton
in 2D. State spac® = {alive, dead}; all nodes compute synchronously,
with the same rule, based on own state and number of of lighbeurs.

o Cellularautomata: network topology is an arbitrary lattice. Usetates
space and a set of transition rules telling each node howdlveebased
on its neighbourhood.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 8/23

Regular and Bounded-Degree Symmetric Models

o Even if graph doesn’t have automorphisms, in the cask-oégular
graphs we can still make all nodes run identically and symoadly.

o LetQ be the set of states. Given an arbitrdxyregular graph, we may
think of the transition function as

f:QXQA—)Q

where we may insist thditis symmetric in its second argument.

o Generalizes td\-bounded degree graphs; add a special “deficient”
symbole and have

f:Qx (Qu{eh* —Q
and symmetric as before. [Martin; Rémila; Rosenstiehlsé&likHolliger]

@ But the restriction to bounded degrees seems artificial. Afe wur new
model to be simple, and to work in graphs of unbounded degree.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 9/23

Outline

© Finite-State Symmetric Graph Automata

David Pritchard (U Waterloo)

Symmetric Network Computation

Building Block: Symmetric Multi-Input Automata

@ We want each node to act symmetrically on its neighbourslloc
symmetry). We also want all nodes to be the same (global syrme
regardless of differing degree. Further, we’d like to beedblprocess
arbitrarily many neighbours using only finite space.

@ The transition function operates as

QxQ —Q

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 11/23

Building Block: Symmetric Multi-Input Automata

@ We want each node to act symmetrically on its neighbourslloc
symmetry). We also want all nodes to be the same (global syrme
regardless of differing degree. Further, we’d like to beedblprocess
arbitrarily many neighbours using only finite space.

@ The transition function operates as

QxQ —Q

o For now focus on functions
Q" — Q.

Our distributed model will be: with each staj@ssociate a symmetric
functionf|[g] : Q* — Q; when a node in statgactivates, its state is
replaced by the output ¢fg] using its neighbours’ states as input.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 11/23

Building Block: Symmetric Multi-Input Automata

@ We want each node to act symmetrically on its neighbourslloc
symmetry). We also want all nodes to be the same (global syrme
regardless of differing degree. Further, we’d like to beedblprocess
arbitrarily many neighbours using only finite space.

@ The transition function operates as

QxQ —Q

@ For now focus on functions
Q" —Q.
Our distributed model will be: with each staj@ssociate a symmetric
functionf|[g] : Q* — Q; when a node in statgactivates, its state is
replaced by the output ¢fg] using its neighbours’ states as input.
@ We came up with two reasonable FSA-based models with these
properties:sequential andparallel symmetric multi-input automata

@ “Low” level of model: symmetric multi-input automatéa-igh” level:
connect many identical automata together as a graph.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 11/23

Sequential Multi-Input Automata

o |dea behind the sequential multi-input automaton: whende raxctivates,
it should read each of its neighbours in one-at-a-time; eaoghbour
causes a state transition of a “working state” visible onlyhiat node.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 12/23

Sequential Multi-Input Automata

o |dea behind the sequential multi-input automaton: whende raxctivates,
it should read each of its neighbours in one-at-a-time; eaoghbour
causes a state transition of a “working state” visible onlyhiat node.

o Formal definition, take

» A finite setW of (inner) “working states”
[disjoint from (outer) node stat&g)]
» An initial working statewg
» A processing functiop: W x Q — W
[current working statex neighbour’s input— new working state]
» An output functions : W — R (R = output set)
[Rwill be the same a® when we glue these automata together]
If for all g € Q*, where|q| = k, for all 7 € &, the expression

BPP- - P(P(Wo, Or(1)), Ar(2))s > Or(k)))

is independent of, then(W, wp, p, 5) defines a sequential multi-input
automaton. We callwW, wp, p, 3) asequential program, mapsQ* — R.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 12/23

Sequential Multi-Input Automata

o |dea behind the sequential multi-input automaton: whende raxctivates,
it should read each of its neighbours in one-at-a-time; eaoghbour
causes a state transition of a “working state” visible onlyhiat node.

o Formal definition, take

» A finite setW of (inner) “working states”
[disjoint from (outer) node stat&g)]
» An initial working statewg
» A processing functiop: W x Q — W
[current working statex neighbour’s input— new working state]
» An output functions : W — R (R = output set)
[Rwill be the same a® when we glue these automata together]
If for all g € Q*, where|q| = k, for all 7 € &, the expression

Bp(P- - P(P(Wo, Gr(1))s Gr(2))s*** » Or(k)))
is independent of, then(W, wp, p, 5) defines a sequential multi-input
automaton. We callwW, wp, p, 3) asequential program, mapsQ* — R.
@ Computational power is precisely the following: can digtiish between
a finite number of symmetric regular languages.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 12/ 23

Parallel Multi-Input Automata

@ We thought of another reasonable model by which a symmetric
multi-input function could be realizegharallelinstead of sequential.

@ Basic idea: each neighbour contributes a single datum aaydatte
reduced pairwise.

result =48(p(-,-))
p('v)

a(ds) () (0s) () (0a)

o A paralld symmetric multi-automaton is uses a “combining” rule but it
must be the case thtte same result occurs regardless of the specific
way in which the inputs are combined.

o Formalized in proceedings.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 13/23

Sequential Can Simulate Parallel
Lemma

Each sequential symmetric multi-input automaton can be simulated by a
parallel one.

o ldea: if we can divide and conquer, then conquer just onetiapa time.

result=p(-, -)

a(G) a(q1)

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 14 /23

Sequential-Parallel Equivalence

@ Main technical contribution: we show the sequential andibgirmodels
are equivalent. Proof uses thed-thresh model, defined as follows:

o Denote byu;(d) the multiplicity of statd in g.
o Atoms are logical statements in the unqualified variatple

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 15/ 23

Sequential-Parallel Equivalence

@ Main technical contribution: we show the sequential andibgirmodels
are equivalent. Proof uses thed-thresh model, defined as follows:
o Denote byu;(d) the multiplicity of statd in g.
o Atoms are logical statements in the unqualified variatple
» mod atom: “yu;(g)=r (modm)”
» thresh atom: “1i(g)< t”

o Afunctionf(q) : Q* — Ris mod-thresh if it can be expressed using
these atomsnd, or ,not ,i f-t hen-el se.

o E.g., “if there are an even number of A inputs and at least 4pBti)
then return 1, else return 2.”

@ A mod-thresh function is automatically symmetric, sincddpends on
the inputg only via the symmetric multiplicity functiong;.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 15/ 23

Sequential-Parallel Equivalence

)

Main technical contribution: we show the sequential anélglrmodels
are equivalent. Proof uses thed-thresh model, defined as follows:
Denote by (d) the multiplicity of state in g.
Atoms are logical statements in the unqualified variathle

» mod atom: “i(d)=r (modm)”

» thresh atom: “1i(g)< t”
A functionf (@) : Q* — Ris mod-thresh if it can be expressed using
these atomsnd, or ,not ,i f-t hen-el se.
E.qg., “if there are an even number of A inputs and at least 4pBti
then return 1, else return 2.”
A mod-thresh function is automatically symmetric, sinceégpends on
the inputg only via the symmetric multiplicity functiong;.
In proceedings we show that SequentiaMod-ThreshC ParallelC
Sequential, essentially via simulation arguments.
Recent work (on website, not in paper): a Sequential automedn be
simulated by a Parallel oneithout increasing the memory requirements.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 15/ 23

Joining Multi-Input Automata Together
(Up to the “high” level)

@ Let anFSM function (finite-state, symmetric, multi-input) mean a
sequential/parallel/mod-thresh function.

o Definition of FSSGA (finite-state symmetric graph automatayel: let
Q be a finite set of states and for eaghk Qletf[g] : Q* — Qbe an
FSM function.

@ When a node activates, lgte its state and l€f be a list of its
neighbours’ states; that node’s new statEdg(q).

o Giveslocalandglobalsymmetry as desired without need to bound
degree.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 16/ 23

Joining Multi-Input Automata Together
(Up to the “high” level)

@ Let anFSM function (finite-state, symmetric, multi-input) mean a
sequential/parallel/mod-thresh function.

o Definition of FSSGA (finite-state symmetric graph automatayel: let
Q be a finite set of states and for eaghk Qletf[g] : Q* — Qbe an
FSM function.

@ When a node activates, lgte its state and l€f be a list of its
neighbours’ states; that node’s new statEdg(q).

o Giveslocalandglobalsymmetry as desired without need to bound
degree.

@ We can define both a synchronous model and an asynchronous.mod

@ Note, message complexity is not meaningful for our modelasye
neighbouring pair of nodes exchange information (theiesjeevery
round.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 16/ 23

Simple Example FSSGA Algorithm: 2-Coloring

o TakeQ = {BLANK,RED, BLUE, FATLED}. Either 2-color a graph
if possible, or reportF AZLED at every node if impossible.

o Initially, one node is in stat®ED, all others are in statBLAN K. Each
f[q] is as follows:

if =(urazcep(d) < 1) then return FAZLED

dseif ~(jren (@) < 1) A ~(uscue(d) < 1) then retum FATLED
dseif =(urep(d) < 1) then returnBLUE

dseif = (upcus(d) < 1) then returnRED

else return BLANK

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 17/ 23

Random Walk

@ In proceedings: straightforward probabilistic extensidthe FSSGA
model.

@ “Random walk” a useful local symmetry-breaking primitived., in
leader election).
@ Usual random walk description, “send the agent to a randdghheur,”

does not apply since a node can't directly affect its neigingicstates,
nor can it pick from an arbitrarily large set at random.

@ Instead, we run a local election. To decide next locatioenagsks
neighbours to flip coins. Tails remain eligible, heads aimiahted.

o Keep running coin flip rounds until agent determines thattyane
neighbour remains. (If everyone’s eliminated in a givemebthen you
re-run the previous round).

@ With high probability, take® (log degree(v)) rounds to move agent
away from nodev.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 18/ 23

More Algorithms

@ We can also implement:

David Pritchard (U Waterloo)

Symmetric Network Computation

More Algorithms

@ We can also implement:

@ « synchronizerNeighbours keep clocks at most withiril of each other.
Implement with mod-3 clocks.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 19/ 23

More Algorithms

@ We can also implement:

@ « synchronizerNeighbours keep clocks at most withiril of each other.
Implement with mod-3 clocks.

@ Breadth-first searchiVe use mod-3 distance labels (like the mod-3
clocks of the synchronizer).

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 19/ 23

More Algorithms

@ We can also implement:

@ « synchronizerNeighbours keep clocks at most withiril of each other.
Implement with mod-3 clocks.

@ Breadth-first searchiVe use mod-3 distance labels (like the mod-3
clocks of the synchronizer).

o Network traversalA very nice (but sadly obscure) algorithm by
[Milgram, 1975] allows an agent to traverse a scan-firstetearee of the
network (DFS-BFS hybrid). [Note; we actually can’t expligistore any
tree in the network, due to the symmetry and finitenessaiéstn fact,
not only is it impossible for node to identify a “parent” nelgpur, a node
can’t count how many neighbours it has.]

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 19/ 23

More Algorithms

@ We can also implement:

@ « synchronizerNeighbours keep clocks at most withiril of each other.
Implement with mod-3 clocks.

@ Breadth-first searchiVe use mod-3 distance labels (like the mod-3
clocks of the synchronizer).

o Network traversalA very nice (but sadly obscure) algorithm by
[Milgram, 1975] allows an agent to traverse a scan-firstetearee of the
network (DFS-BFS hybrid). [Note; we actually can’t expligistore any
tree in the network, due to the symmetry and finitenessaiéstn fact,
not only is it impossible for node to identify a “parent” nelgpur, a node
can’t count how many neighbours it has.]

@ Greedy graph traverséinore fault-tolerant than Milgram’s, but slower).

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 19/ 23

More Algorithms

@ We can also implement:

@ « synchronizerNeighbours keep clocks at most withiril of each other.
Implement with mod-3 clocks.

@ Breadth-first searchiVe use mod-3 distance labels (like the mod-3
clocks of the synchronizer).

o Network traversalA very nice (but sadly obscure) algorithm by
[Milgram, 1975] allows an agent to traverse a scan-firstetearee of the
network (DFS-BFS hybrid). [Note; we actually can’t expligistore any
tree in the network, due to the symmetry and finitenessaiéstn fact,
not only is it impossible for node to identify a “parent” nelgpur, a node
can’t count how many neighbours it has.]

@ Greedy graph traverséinore fault-tolerant than Milgram’s, but slower).

o Leader electionUses a handful of known techniqu&3(nlogn) running
time, probably can d®(Diamlogn).

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 19/ 23

More Algorithms

@ We can also implement:

@ « synchronizerNeighbours keep clocks at most withiril of each other.
Implement with mod-3 clocks.

@ Breadth-first searchiVe use mod-3 distance labels (like the mod-3
clocks of the synchronizer).

o Network traversalA very nice (but sadly obscure) algorithm by
[Milgram, 1975] allows an agent to traverse a scan-firstetearee of the
network (DFS-BFS hybrid). [Note; we actually can’t expligistore any
tree in the network, due to the symmetry and finitenessaiéstn fact,
not only is it impossible for node to identify a “parent” nelgpur, a node
can’t count how many neighbours it has.]

@ Greedy graph traverséinore fault-tolerant than Milgram’s, but slower).

o Leader electionUses a handful of known techniqu&3(nlogn) running
time, probably can d®(Diamlogn).

@ Java demo!

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 19/ 23

Outline

© Related Work / Future Work

David Pritchard (U Waterloo)

Symmetric Network Computation

Passive Mobility (“Birds”) Model

@ Angluin, Aspnes, Diamadi, Fischer, and Peralta have a mufdel
“passively mobile” sensors.

o Idea: the network is composed mEntities that interact pairwise.
o Repeatedly select a pair of entities, say with stédesy,|, and replace
their states byp: (a1, d2), P2(d1, G2)].-

@ This models sensors attached to a “flock of birds:” there & afl
interaction but the order of operations is largely unpretite.

o Similarities to “low model:” exact power was recently chaeized in
PODC 2006 (semilinear vs. our mod-thresh).

@ Similarities to “high model:” motivated by unpredictabletworks,
symmetry.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 21/ 23

Open Algorithmic Problems

@ Firing Squad: every node in a synchronous network must “fire” exactly
once in the future, and all at the same time.

@ To avoid trivial solutions, we demand that if there is no “ali present
in the network at the beginning, then nobody should fire at all

@ Long history of solutions in path/grid graphs, but in gehgraphs,
seemingly all solutions work by embedding a spanning pathergraph.

@ Cannot embed a path in FSSGA model (impossible to identifycse
neighbour). Is there any firing squad algorithm?

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 2223

Open Algorithmic Problems

@ Firing Squad: every node in a synchronous network must “fire” exactly
once in the future, and all at the same time.

@ To avoid trivial solutions, we demand that if there is no “ali present
in the network at the beginning, then nobody should fire at all

@ Long history of solutions in path/grid graphs, but in gehgraphs,
seemingly all solutions work by embedding a spanning pathergraph.

@ Cannot embed a path in FSSGA model (impossible to identifycse
neighbour). Is there any firing squad algorithm?

o Sdf-stabilizing Leader Election: an algorithm is self-stabilizing if it is
eventually correct despite any finite number of initial diadls.

o Self-stabilizing leader election would allow other FSSQgoaithms to
be made self-stabilizing, but no existing algorithms seeimet adaptable
to this situation.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 22/ 23

Non-Finite State Models

(Back to the “low” level)

@ What if we allow the node states and working states to be Yitzgres
and not just elements of a finite state space?

@ Sequential model bears resemblanceritine andstreamingalgorithms.
Parallelism: could have a network where multiple “synopsé@sulate
and combine.

@ We have shown in finite-state: if we want to compute a functiban
arbitrary number of inputs, thgmrovided only that our desired function
is symmetric parallelism is just as powerful as the sequential model.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 23/ 23

Non-Finite State Models

(Back to the “low” level)

@ What if we allow the node states and working states to be Yitzgres
and not just elements of a finite state space?

@ Sequential model bears resemblanceritine andstreamingalgorithms.
Parallelism: could have a network where multiple “synopsé@sulate
and combine.

@ We have shown in finite-state: if we want to compute a functiban
arbitrary number of inputs, thgmrovided only that our desired function
is symmetricparallelism is just as powerful as the sequential model.

@ Could this possibly extend to non-finite state models? Sdbatgeneral
Turing machines are much harder to work with than FSAs. Butavet
seem to find a counterexample yet.

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 23/ 23

Non-Finite State Models

(Back to the “low” level)

@ What if we allow the node states and working states to be Yitzgres
and not just elements of a finite state space?

@ Sequential model bears resemblanceritine andstreamingalgorithms.
Parallelism: could have a network where multiple “synopsé@sulate
and combine.

@ We have shown in finite-state: if we want to compute a functiban
arbitrary number of inputs, thgmrovided only that our desired function
is symmetricparallelism is just as powerful as the sequential model.

@ Could this possibly extend to non-finite state models? Sdbatgeneral
Turing machines are much harder to work with than FSAs. Butavet
seem to find a counterexample yet.

@ Thanksfor listening!

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 23/ 23

	Background and History
	Finite-State Symmetric Graph Automata
	Related Work / Future Work

