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Overview
The “standard” message-passing model of distributed algorithms puts
only weak restrictions on the computational power of each node.
Some modern networks are very large and quite faulty (the internet,
sensor networks).
Motivation: can amuch simplermodel automatically ensure
fault-tolerance? E.g., ‘smart dust’ networks with billions of identical
microscopic finite-state nodes, unbounded degree.
Using some qualitative principles that are common to many fault-tolerant
algorithms, we propose a specific new model of finite-state computation,
Finite-State Symmetric Graph Automata (FSSGA).
Extends web automata, cellular automata.
We don’t get what wereally wanted (automatic fault tolerance). E.g., can
break symmetry and elect a leader.
Interesting features: multiple equivalent formulations,simple
(simulatable by “most” models), interplay between parallel and
sequential computing.
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1 Background and History

2 Finite-State Symmetric Graph Automata

2 Related Work / Future Work

David Pritchard (U Waterloo) Symmetric Network Computation SPAA 2006, Cambridge, MA 3 / 23



Problem Statement — Computing the Network Size

Here’s a “toy problem” to introduce three different computing
paradigms: tree-based, agent-based, and decentralized.

Problem.Given a network of unknown size and topology, compute the
number of nodes in the network. You may assume a leader exists.

Simple problem, but typical for sensor and ad-hoc networks.Also it
generalizes to other forms of aggregation such as sums and averages.
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Trees and Agents

In this talk,n := |V|, the number of nodes.

First idea for computing network size: construct a spanningtree, and
each node reports its subtree size to its parent.

Easy enough to implement, but if any tree edge dies during the
algorithm, then it fails. And there can beΘ(n) tree edges.

Second idea: have anagent traverse the network.

Each node stores a “visited” flag, and by this the agent can determine the
number of unique nodes visited.

Using, for example, a greedy routing strategy, we can traverse the
network inO(n logn) steps.

This improves the situation: even if some nodes/edges die, as long as the
agent is not in the midst of a failure, and the graph remains connected,
the algorithm works.But this one critical node remains, can we do
better?

Yes, if all we really need is anestimate of n.
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A Decentralized Census Algorithm
[Flajolet and Martin, 1985 / Shah and Mosk-Aoyama, PODC 2006]

The agent algorithm still has one critical node whose failure is disastrous.

Some algorithms completely avoid having any fragile structure, with no
node more important than any other. Often calleddecentralized.

Here’s an algorithm toapproximately count the number of nodes in a
faulty network.

Suppose each node hask ≥ log2 log2 n bits of memory, initially all 0.

Each node assigns its memory a value by this distribution: for each
0 ≤ i < 2k, set memory value toi with probability 2−1−i.

All nodes repeatedly broadcast their value and replace memory contents
with maximum known value. (Information propagation)

Let v be final value. With prob. 2/3, the number 2v is a constant-factor
approximation to the network size. (Can improve somewhat.)

This algorithm can tolerate any “reasonable” failure pattern.
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What Properties are Essential?

Rank by fault-tolerance:tree-based� agent-based� decentralized.(See
sensitivity in proceedings).

Do the “best” decentralized algorithms have some similarities? We
isolated three properties.

(P1) Global Symmetry: the computation proceeds via a single operation that
is performed repeatedly by every node.

(P2) Local Symmetry: every node acts symmetrically on its neighbours.

(P3) Steady State Convergence: the network is brought to a steady state when
all nodes perform their operation repeatedly.

(Examples: Flajolet-Martin, preflow-push,α synchronizer, harmonic
functions, self-stabilizing model)

We’d like to construct a distributed model with these three properties.

Let us review some older FSA-based models with these symmetry
principles in mind.Properties 1 and 2 motivate our model the most.

FSA = finite-state automaton
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Cellular Automata, Lattices

“Life” (Conway) is a highly popularized example of a cellular automaton
in 2D. State spaceQ = {alive, dead}; all nodes compute synchronously,
with the same rule, based on own state and number of of live neighbours.

Cellularautomata: network topology is an arbitrary lattice. Uses a state
space and a set of transition rules telling each node how to evolve based
on its neighbourhood.
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Regular and Bounded-Degree Symmetric Models

Even if graph doesn’t have automorphisms, in the case of∆-regular
graphs we can still make all nodes run identically and symmetrically.

Let Q be the set of states. Given an arbitrary∆-regular graph, we may
think of the transition function as

f : Q × Q∆ → Q

where we may insist thatf is symmetric in its second argument.

Generalizes to∆-bounded degree graphs; add a special “deficient”
symbolǫ and have

f : Q × (Q ∪ {ǫ})∆ → Q

and symmetric as before. [Martin; Rémila; Rosenstiehl, Fiksel, Holliger]

But the restriction to bounded degrees seems artificial. We want our new
model to be simple, and to work in graphs of unbounded degree.
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Building Block: Symmetric Multi-Input Automata
We want each node to act symmetrically on its neighbours (local
symmetry). We also want all nodes to be the same (global symmetry),
regardless of differing degree. Further, we’d like to be able to process
arbitrarily many neighbours using only finite space.
The transition function operates as

Q × Q∗ → Q.
For now focus on functions

Q∗ → Q.

Our distributed model will be: with each stateq associate a symmetric
function f [q] : Q∗ → Q; when a node in stateq activates, its state is
replaced by the output off [q] using its neighbours’ states as input.
We came up with two reasonable FSA-based models with these
properties:sequential andparallel symmetric multi-input automata.
“Low” level of model: symmetric multi-input automata.“High” level:
connect many identical automata together as a graph.
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Sequential Multi-Input Automata
Idea behind the sequential multi-input automaton: when a node activates,
it should read each of its neighbours in one-at-a-time; eachneighbour
causes a state transition of a “working state” visible only to that node.
Formal definition, take

◮ A finite setW of (inner) “working states”
[disjoint from (outer) node statesQ]

◮ An initial working statew0
◮ A processing functionp : W × Q → W

[current working state× neighbour’s input7→ new working state]
◮ An output functionβ : W → R (R = output set)

[R will be the same asQ when we glue these automata together]
If for all ~q ∈ Q∗, where|~q| = k, for all π ∈ Sk, the expression

β(p(p · · · p(p(w0, q
π(1)), q

π(2)), · · · , q
π(k)))

is independent ofπ, then(W, w0, p, β) defines a sequential multi-input
automaton. We call(W, w0, p, β) a sequential program, mapsQ∗ → R.

Computational power is precisely the following: can distinguish between
a finite number of symmetric regular languages.
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Parallel Multi-Input Automata

We thought of another reasonable model by which a symmetric
multi-input function could be realized:parallelinstead of sequential.

Basic idea: each neighbour contributes a single datum and they are
reduced pairwise.

α(q3) α(q2) α(q5) α(q1) α(q4)

p(·, ·) p(·, ·)

p(·, ·)

result =β(p(·, ·))

A parallel symmetric multi-automaton is uses a “combining” rule but it
must be the case thatthe same result occurs regardless of the specific
way in which the inputs are combined.

Formalized in proceedings.
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Sequential Can Simulate Parallel

Lemma

Each sequential symmetric multi-input automaton can be simulated by a
parallel one.

Idea: if we can divide and conquer, then conquer just one input at a time.

α(q5)

α(q4)

α(q3)

α(q2) α(q1)

result= p(·, ·)

p(·, ·)

p(·, ·)

p(·, ·)
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Sequential-Parallel Equivalence
Main technical contribution: we show the sequential and parallel models
are equivalent. Proof uses themod-thresh model, defined as follows:

Denote byµi(~q) the multiplicity of statei in ~q.

Atoms are logical statements in the unqualified variable~q.
◮ mod atom: “µi(~q)≡ r (mod m)”
◮ thresh atom: “µi(~q)< t”

A function f (~q) : Q∗ → R is mod-thresh if it can be expressed using
these atoms,and, or, not, if-then-else.

E.g., “if there are an even number of A inputs and at least 4 B inputs,
then return 1, else return 2.”

A mod-thresh function is automatically symmetric, since itdepends on
the input~q only via the symmetric multiplicity functionsµi.

In proceedings we show that Sequential⊆ Mod-Thresh⊆ Parallel⊆
Sequential, essentially via simulation arguments.

Recent work (on website, not in paper): a Sequential automaton can be
simulated by a Parallel onewithout increasing the memory requirements.
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Joining Multi-Input Automata Together
(Up to the “high” level)

Let anFSM function (finite-state, symmetric, multi-input) mean a
sequential/parallel/mod-thresh function.

Definition of FSSGA (finite-state symmetric graph automata)model: let
Q be a finite set of states and for eachq ∈ Q let f [q] : Q∗ → Q be an
FSM function.

When a node activates, letq be its state and let~q be a list of its
neighbours’ states; that node’s new state isf [q](~q).

Giveslocal andglobalsymmetry as desired without need to bound
degree.

We can define both a synchronous model and an asynchronous model.

Note, message complexity is not meaningful for our model as every
neighbouring pair of nodes exchange information (their states) every
round.
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Simple Example FSSGA Algorithm: 2-Coloring

TakeQ = {BLANK,RED,BLUE,FAILED}. Either 2-color a graph
if possible, or reportFAILED at every node if impossible.

Initially, one node is in stateRED, all others are in stateBLANK. Each
f [q] is as follows:

if ¬(µFAILED(~q) < 1) then returnFAILED
else if ¬(µRED(~q) < 1) ∧ ¬(µBLUE(~q) < 1) then returnFAILED
else if ¬(µRED(~q) < 1) then returnBLUE
else if ¬(µBLUE(~q) < 1) then returnRED
else returnBLANK
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Random Walk

In proceedings: straightforward probabilistic extensionof the FSSGA
model.

“Random walk” a useful local symmetry-breaking primitive (e.g., in
leader election).

Usual random walk description, “send the agent to a random neighbour,”
does not apply since a node can’t directly affect its neighbours’ states,
nor can it pick from an arbitrarily large set at random.

Instead, we run a local election. To decide next location, agent asks
neighbours to flip coins. Tails remain eligible, heads are eliminated.

Keep running coin flip rounds until agent determines that exactly one
neighbour remains. (If everyone’s eliminated in a given round then you
re-run the previous round).

With high probability, takesΘ(logdegree(v)) rounds to move agent
away from nodev.
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More Algorithms

We can also implement:

α synchronizer.Neighbours keep clocks at most within±1 of each other.
Implement with mod-3 clocks.

Breadth-first search.We use mod-3 distance labels (like the mod-3
clocks of the synchronizer).

Network traversal.A very nice (but sadly obscure) algorithm by
[Milgram, 1975] allows an agent to traverse a scan-first-search tree of the
network (DFS-BFS hybrid). [Note; we actually can’t explicitly store any
tree in the network, due to the symmetry and finiteness-of-state. In fact,
not only is it impossible for node to identify a “parent” neighbour, a node
can’t count how many neighbours it has.]

Greedy graph traversal(more fault-tolerant than Milgram’s, but slower).

Leader election.Uses a handful of known techniques,O(n logn) running
time, probably can doO(Diam logn).

Java demo!
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Passive Mobility (“Birds”) Model

Angluin, Aspnes, Diamadi, Fischer, and Peralta have a modelof
“passively mobile” sensors.

Idea: the network is composed ofn entities that interact pairwise.

Repeatedly select a pair of entities, say with states[q1, q2], and replace
their states by[p1(q1, q2), p2(q1, q2)].

This models sensors attached to a “flock of birds:” there is a lot of
interaction but the order of operations is largely unpredictable.

Similarities to “low model:” exact power was recently characterized in
PODC 2006 (semilinear vs. our mod-thresh).

Similarities to “high model:” motivated by unpredictable networks,
symmetry.
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Open Algorithmic Problems

Firing Squad: every node in a synchronous network must “fire” exactly
once in the future, and all at the same time.

To avoid trivial solutions, we demand that if there is no “admiral” present
in the network at the beginning, then nobody should fire at all.

Long history of solutions in path/grid graphs, but in general graphs,
seemingly all solutions work by embedding a spanning path inthe graph.

Cannot embed a path in FSSGA model (impossible to identify any one
neighbour). Is there any firing squad algorithm?

Self-stabilizing Leader Election: an algorithm is self-stabilizing if it is
eventually correct despite any finite number of initial failures.

Self-stabilizing leader election would allow other FSSGA algorithms to
be made self-stabilizing, but no existing algorithms seem to be adaptable
to this situation.
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Non-Finite State Models
(Back to the “low” level)

What if we allow the node states and working states to be binary tapes
and not just elements of a finite state space?

Sequential model bears resemblance toonlineandstreamingalgorithms.
Parallelism: could have a network where multiple “synopses” circulate
and combine.

We have shown in finite-state: if we want to compute a functionof an
arbitrary number of inputs, thenprovided only that our desired function
is symmetric,parallelism is just as powerful as the sequential model.

Could this possibly extend to non-finite state models? Seemsthat general
Turing machines are much harder to work with than FSAs. But wecan’t
seem to find a counterexample yet.

Thanks for listening!
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