UW Math Circle Problems for October 3 \& 10 ’07

Some Problems on Fibonacci Numbers

We define the first two Fibonacci numbers by $F_{1}=1$ and $F_{2}=1$. For $k \geq 3$, we define the k th Fibonacci number by $F_{k}=F_{k-1}+F_{k-2}$.

- Show that $F_{k-1} \times F_{k+1}=F_{k}^{2}+(-1)^{k-1}$ for all $k>1$.
- Find a simple formula for $F_{1}^{2}+F_{2}^{2}+\cdots+F_{k}^{2}$ and prove your answer. (Hint: try subtracting $F_{2 k-1}$; or you can try subtracting $F_{2 k}$.)
- (harder) Show that F_{k} divides F_{m} whenever k divides m.
- Show that F_{k-1} and F_{k} have no common divisors other than +1 and -1 (easy if you know the Euclidean algorithm for finding GCDs).

We define the first two Lucas numbers by $F_{1}=2$ and $F_{2}=1$. For $k \geq 3$, we define the k th Lucas number by $F_{k}=F_{k-1}+F_{k-2}$.

- Define $Q_{k}^{\prime}=L_{k+1} / L_{k}$ for all $k \geq 1$. What can you say about Q_{k}^{\prime} compared to Q_{k} (recall $Q_{k}=$ $\left.F_{k+1} / F_{k}\right)$?

We also talked about packing dominoes and small squares into rectangles ("puzzles"). Although this doesn't have to do with Fibonacci numbers, can you figure out a recurrence relation to count the number of ways to fill a $2 \times n$ rectangle with 2×1 squares (dominoes) and 1×1 squares?

Sequence Problems

- Let $f(n)$ denote the sum of the first n terms of the sequence $0,1,1,2,2,3,3,4,4, \ldots$. Show that when s and t are positive integers and $s>t$, that $f(s+t)-f(s-t)=s \times t$.
- Can you find a formula for $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots+n \cdot(n+1) \cdot(n+2)$?
- Can you find a formula for $1^{2}+3^{2}+\cdots+(2 n+1)^{2}$?
- Can you find a formula for $1 /(1 \cdot 2 \cdot 3)+1 /(2 \cdot 3 \cdot 4)+\cdots+1 /(n \cdot(n+1) \cdot(n+2))$?
- Let $a_{1}=2$ and $a_{k}=a_{k-1}^{2}-a_{k-1}+1$ for $k \geq 2$. Show that all of the numbers a_{k} are relatively prime to each other. (The first few terms are $2,3,7,43,1807, \ldots$)

Polynomial Problems

- Let r_{1}, r_{2}, r_{3} denote the roots of $x^{3}-2 x^{2}=(x+3)^{2}$. What is $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}$?
- Let $f(x)=x^{4}+x^{3}+x^{2}+x+1$. What is the remainder when $f\left(x^{5}\right)$ is divided by $f(x)$?
- Let $g(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ where $a_{0}, a_{1}, \ldots, a_{n}$ are integers and $a_{0} \neq 0$. Suppose that distinct integers a, b, c, d exist so that $g(a)=g(b)=g(c)=g(d)=5$. Show that $g(8) \neq 8$.
- Let $p(x)$ be some polynomial of degree n so that $P(k)=1 / k$ for $k=1, \ldots, n+1$. Determine $P(n+2)$.
- (hard if you haven't seen it) Factor $x^{4}+4=0$.
- (USAMO 1984, hard) Suppose that $Q(x)$ is a polynomial of degree $3 n$ so that

$$
\begin{gathered}
P(0)=P(3)=\cdots=P(3 n)=2 \\
P(1)=P(4)=\cdots=P(3 n-2)=1 \\
P(2)=P(5)=\cdots=P(3 n-1)=0 .
\end{gathered}
$$

If $P(3 n+1)=730$, find n.

