UW Math Circle Problems for October 31 \& November 7 '07

Periodicity and Remainders

The last digits of the Fibonacci numbers are $1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5$, $3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,1,1,2,3, \ldots$

- Show that this sequence is periodic.

The ideas mentioned here relate this to a problem that we saw earlier: "show that F_{k} divides F_{n} whenever k divides n."

When x, y, m are integers and $m>0$, we say that " x is equivalent to y modulo m ", or " $x \equiv y(\bmod m)$ ", if the integer $x-y$ is divisible by m.

- If $a \equiv b(\bmod m)$ show that $b \equiv a(\bmod m)$; if n is a factor of m show that $a \equiv b(\bmod n)$.
- If $a \equiv b(\bmod m)$ and $a \equiv c(\bmod m)$, show that $b \equiv c(\bmod m)$.
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, show that $a+c \equiv b+d(\bmod m)$ and $a c=b d(\bmod m)$.

Do you see why modular arithmetic relates to looking at the last digit? the last k digits? More generally than what we had before, we can show the following:

- The Fibonacci numbers and Lucas numbers are each periodic modulo m, for any positive integer m. Can you show that one of the first 10^{8} Fibonacci numbers ends in four zeroes?
- What happens to the last digits of the sequence $1,2,4,8,16, \ldots$?

A similar but much harder problem is to investigate Pascal's triangle (of binomial coefficients) modulo m. Try writing out the $m=2$ case by hand.

Here are some other typical (and not-so-typical) problems that can be solved using modular arithmetic and/or periodicity.

- Prove that $2 x+3 y$ is divisible by 17 if and only if $9 x+5 y$ is divisible by 17 .
- (i) Prove that if a, b, c are odd integers then $a x^{2}+b x+c$ does not have rational roots. (ii) If m and n are positive integers, show that $4 m n-m-n$ cannot be a perfect square. (iii) If $a^{2}+b^{2}=c^{2}$, show $3 \mid a b$. (iv) Show that the sum of m consecutive squares cannot be a square for the cases $m=3,4,5,6$. (iv) Find 11 consecutive squares whose sum is a square.
- Prove that if a, b, c, d, m are integers such that 5 does not divide d and 5 does divide $a m^{3}+b m^{2}+c m+d$, then there exists an integer n so that 5 divides $d n^{3}+c n^{2}+b n+a$.
- Prove that $2^{n}+1$ is never divisible by 7 , that $2^{2 n}+24 n-10$ is always divisible by 18 , and that $23^{2 n+2}+13^{6 n+2}$ is always divisible by 120 .
- Show that if x, y, z are integers and $x^{3}+3 y^{3}+9 z^{3}=9 x y z$ then $x=y=z=0$. What if they are rational numbers?
Two numbers x and y are relatively prime (in symbols, $a \perp b$) if they have no common factors other than 1 (and -1).
- If $a r \equiv b r(\bmod m)$ and $r \perp m$, show $a \equiv b(\bmod m)$. Is there a counterexample if $r \not \perp m$?
- Fermat's Little Theorem: If p is a prime number and p does not divide a, then $a^{p-1} \equiv 1(\bmod p)$.
- Euler's Theorem: If $q \geq 2$ and $q \perp a$, show $a^{\phi(q)} \equiv 1(\bmod q)$; here $\phi(q)$ counts how many integers between 1 and q are relatively prime to q.
- Show that Fermat's little theorem is a special case of Euler's theorem. Prove one or both of them.
- Show that if x and y are relatively prime integers, that $\phi(x y)=\phi(x) \phi(y)$.
- Using Fermat's little theorem, if p is a prime that divides $4 x^{2}+1$ for some integer x, show $p \equiv 1$ $(\bmod 4)$.
- Using the previous question, show there are infinitely many primes that are equivalent to 1 modulo 4. Challenge problem from last weeks' topics: determine all rational numbers a, b, c for which the roots of $x^{3}+a x^{2}+b x+c=0$ are a, b, c.

