
Uncrossing Partitions

Jochen Könemann and David Pritchard

June 4, 2007

Abstract
We extend a well knownuncrossingtechnique in linear programs (LPs) to work with partitions.

Using this technique, we tie together three previously unrelated papers on Steiner trees, by showing that
the following three values are equal: (1) the objective value of a subtour based LP by Polzin and Vahdati
Daneshmand; (2) the objective value of a partition based LP by Könemann and Tan; (3) a “maximum
gainless tree” quantity used by Karpinski and Zelikovsky. These LPs are known to be stronger than the
bidirected cut relaxation; we conjecture that inpreprocessedgraphs, these LPs are exactly as strong as
the bidirected cut relaxation, which would add a surprisingfourth item to our list.

1 Introduction

The Steiner tree problem is a classical combinatorial optimization problem. The input is a graphG = (V,E)
with positive costsce for all edges, and with the verticesV divided into two sets: the terminalsR and the
Steiner nodesN. A feasible solution is any connected subgraph ofG that connects all ofR, and we want one
whose sum of edge costs is minimal. It is easy to see that any optimal solution is a tree all of whose leaves
are terminals; these are calledSteiner trees.Computing a cheapest Steiner tree is NP-hard, and moreover
no (polynomial time)96

95-approximation algorithm exists unless P=NP [4]. Hence, there is much interest in
designing algorithms with good approximation factors.

Central to this work is thefull component decompositionof Steiner trees, which was originally used by
Zelikovsky [33] in the 1990s to get a11

6 -approximation algorithm. Given a Steiner treeT, a full component
of T is a maximal subtree ofT all of whose leaves are terminals and all of whose internal nodes are Steiner
nodes. The edge set of any Steiner tree can be partitioned in aunique way into full components by splitting
at internal terminals; see Figure1 for an example. Zelikovsky’s original algorithm (and basically all fol-
lowing improvements) go the other way: we compute the cheapest full components of a graph, and use that
information to reconstruct a cheap Steiner tree.

More specifically, for each subsetK ⊂Rof the terminals, we would like to compute the cheapest (if any)
full component with leaf setK. Then knowledge of the cheapest costs for each terminal set is sufficient to
reconstruct the cheapest Steiner tree. In this way the problem is transformed into a problem about minimum-
cost spanning sub-hypergraphs, which we now review. A hypergraph(V,E) has verticesV, hyperedges
E ⊆ {E ⊆ V | |E| ≥ 2} and in this case costsCE for eachE ∈ E ; a spanning sub-hypergraph is(V,E ′)
with E ′ ⊂ E such that, for every partition ofV into two nonempty parts, some hyperedge inE ′ intersects
both parts. The correspondence between Steiner instances and hypergraphs is as follows: for eachK ⊂ R,
we computeopt(K), the cheapest full component with leaf setK, and assign cost1 CK := c(opt(K)). Then
spanning sub-hypergraphs correspond to Steiner trees of the original problem.

1If x is a vector andS is a set, we use the convention thatx(S) = ∑s∈Sxs; similarly if H is a graph thenc(H) is the total cost of
the graph’s edges.

1

Figure 1: Black nodes are terminals and white nodes are Steiner nodes. Left: a Steiner tree for this instance.
Right: the Steiner tree’s edges are partitioned into full components; there are four full components.

There is a subtle point to this abstraction. The original Steiner tree instance may have about 2|R| full
components in total (one for each nonempty non-singleton subset ofR) and so the usual approach is to
compute only those full components of size at mostk (wherek is a fixed parameter). We call thisprepro-
cessing. Preprocessing can be accomplished in polynomial time (e.g., using dynamic programming [8]). If
k is too small, the preprocessing to a hypergraph will increase the cost of a minimum-cost Steiner tree, as
we now illustrate. Consider Figure2. There is only one feasible Steiner tree and it has a full component
on 5 vertices. But, say, fork = 3 things are still not too bad; there are full components on the terminal
sets{r1, r2, r3} and{r3, r4, r5} each of cost 3, which can (as hyperedges) be joined together to produce a
spanning sub-hypergraph of cost 6. Viewed in the original Steiner tree instance, the edger3n is now used
twice; the preprocessing increased the optimal solution cost from 5 to 6. However, it is known that prepro-
cessing increases the cost by no more than a factor of 1+ Θ(1/ logk) [2]. So by takingk → ∞ we get an
approximation scheme where preprocessing has negligible cost.

n

r1
r2

r3

r4
r5

n

r1

r2

r3

r4

r5

Figure 2: Left: an instance of the Steiner tree problem with five terminals. All edges have cost 1. Right: if
we try to construct a feasible solution using full components on terminals of size less than 5, some edge must
be used twice. Two full components on 3 terminals are shown, using dashed and dotted edges respectively.

In the rest of this section we describe some relevant relatedwork. In Section2 we show an equivalence
betweenpartitionsandsubtours. In Section3 the partition uncrossing technique is described and we show
that items (1) and (2) of the abstract are equivalent. In Section 4 we show equivalence with item (3) and give
other applications of our technique. Finally, Section5 contains ideas for future work.

1.1 Linear Relaxations

To apply linear programming to a combinatorial optimization problem, one typically assigns a continuous
0-1 variable to each possible element of a feasible solution, with 1 meaning that element should be used and

2

0 meaning it should not, along with constraints amongst these variables (and possibly other auxiliary vari-
ables) to enforce that all integral solutions correspond tofeasible objects for the combinatorial optimization
problem at hand. For NP-hard problems the linear programming approach can be used to design approx-
imation algorithms (such as a 1.5-approximation algorithmfor so-calledquasibipartiteSteiner instances
[24, 25]) and also to implement exact integer programming algorithms (e.g., as applied to Steiner trees in
the theses of Warme [31] and Polzin [20, 22]).

There is a great deal of literature on the study of Steiner tree linear programs themselves, and of the
corresponding polyhedra (feasible regions of the LPs). Work by Edmonds [9] and later Chopra [5] on the
spanning tree polytope led to a number of different linear programs for the Steiner tree problem. Chopra and
Rao [6, 7] and Goemans [10] investigated these in quite a bit of detail. Goemans and Myung [12] showed
that LPs from several independent lines of work were all equivalent to thebidirected cut relaxation. This
LP was the one used to obtain the 1.5-approximation algorithm for quasibipartite graphs [24, 25] mentioned
above. There are some hopes that the strength of this relaxation will lead to other algorithms, but none yet
have appeared for general graphs with constant approximation factor better than 2.

In 1997, Warme [30, 31, 32] introduced a new linear program for the Steiner tree problem. In fact,
this LP models the minimum-cost spanning sub-hypergraph problem, using the reduction outlined previ-
ously. Polzin et al. continued this line of work, showing [21, 23] that this program was(sometimes strictly)
stronger than the bidirected cut relaxation. Independently, extending work of Chopra on spanning trees,
Könemann and Tan [16, 28] showed that a similar LP could be used to interpret the currently best known
[26] approximation algorithm for Steiner trees as a primal-dual algorithm.

2 Partitions versus Subtours

The relaxation used by Könemann and Tan has different constraints than the one considered by Warme and
Polzin. In the next sections we will show that they are equivalent. We defineK := {E ⊆V | |E| ≥ 2} to be
the set of all possible hyperedges (i.e., terminal sets of full components). If there is no full component with
terminal setK ∈ K , or if we have only computed the full components on at mostk terminals and|K| > k,
then we setCK = ∞. For a setX, we define

ρ(X) :=

{

0, if X = /0;

|X|−1, otherwise.

This notion of “size” or “rank” turns out to be natural in our setting.
The hypergraph formulations use a relaxed indicator variable xK for each hyperedgeK ∈ K . First, we

present Warme’s formulation.2

minimize ∑
K∈K

CKxK (S ′)

x≥ 0 (1)

∑
K∈K

xKρ(K) = ρ(R) (2)

∀S⊆ R : ∑
K∈K

xKρ(K∩S) ≤ ρ(S) (3)

2We adopt the following convention from [12]: a prime (′) symbol in an LP denotes that the feasible region is bounded.

3

The letterS is short for thesubtour elimination constraints(3), which are a key feature of Warme’s LP.
A cyclein a hypergraph is a sequence of distinct vertices and distinct hyperedgesv0 ∈ e0 ∋ v1 ∈ e1 ∋ v2 ∈

·· · ∈ et ∋ v0. A spanning hypergraph is aspanning (hyper)treeif it has no cycles. Ifx is the characteristic
vector3 of (the edge set of) a hypergraph andx has a cycle (with notation as above), then it is easy to see that
x violates the subtour constraint (3) for S= {v0,v1, . . . ,vt}. Intuitively, cycles are bad since the connectivity
they provide is redundant (and hence not optimal).

Warme showed that the feasible integral points of (S ′) are exactly the incidence vectors of spanning hy-
pertrees. Informally, this correspondence holds because (3) prevents cycles and (2) ensures that all terminals
are connected.

A partition of Ris a collection of sets{πi | i = 1, . . . , t} such that eachπi is nonempty, and such that each
r ∈ R occurs in exactly oneπi. The setsπi are called theparts of π. For a partitionπ, its rank r(π) is the
number of parts ofπ, i.e.,r({π1, . . . ,πt}) = t. Given a partitionπ of R and anyK ∈ K , we define therank
contributionrcπ

K to be the number of parts ofπ spanned byK, minus one. Equivalently,rcπ
K is the rank

drop incurred byπ if we merge together all parts intersectingK. Given the incidence vectorx of a spanning
hypergraph and any partitionπ of R, Könemann and Tan showed that the following inequality is valid:

∑
K∈K

xKrc
π
K ≥ r(π)−1. (4)

Note that the special case of inequality (4) in which r(π) = 2 follows immediately from the definition of
a spanning sub-hypergraph. Note also that whenπ is the unique rank-one partition{R}, both sides of (4)
vanish. We will show that the subtour constraints (3) are equivalent to partition constraints, but first we need
a lemma.

Lemma 2.1. For a partition π = {π1, . . . ,πt} of R, where t= r(π), we have

ρ(K) = rcπ
K +

t

∑
i=1

ρ(K∩πi).

Proof. By definition,K∩πi 6= /0 for exactly 1+rcπ
K values ofi. Also, ρ(K∩πi) = 0 for all otheri. Hence

t

∑
i=1

ρ(K∩πi) = ∑
i:K∩πi 6= /0

(|K ∩πi|−1) =

(

∑
i:K∩πi 6= /0

|K∩πi|

)

− (rcπ
K +1). (5)

Observe that∑i:K∩πi 6= /0 |K∩πi| = |K| = ρ(K)+1; using this fact together with Equation (5) we obtain

t

∑
i=1

ρ(K∩πi) =

(

∑
i:K∩πi 6= /0

|K ∩πi|

)

− (rcπ
K +1) = ρ(K)−1+(rcπ

K +1).

Rearranging, the proof of Lemma2.1 is complete.

DefineΠR to be the family of all partitions ofR. We are now in a position to show that the polytope

3The characteristic vector of a setS is the vectorχ(S) such that(χ(S))s = 1 for s∈ Sand(χ(S))s = 0 for s 6∈ S.

4

defined by (S ′) is equal to the polytope defined by the followingpartition basedlinear program.

minimize ∑
K∈K

CKxK (P ′)

x≥ 0 (1)

∑
K∈K

xKρ(K) = ρ(R) (2)

∀π ∈ ΠR : ∑
K∈K

xKrc
π
K ≥ r(π)−1 (6)

In the rest of the paper, let us denote the feasible region of alinear program (X) by fs(X).

Theorem 2.2(Subtour/partition correspondence). The polytopesfs(P ′) andfs(S ′) are equal.

Proof. Notice that the constraints (1) and (2) are common to both formulations. We will show thatfs(S ′)
⊆ fs(P ′) and then thatfs(P ′) ⊆ fs(S ′).

Consider the constraint (6) for any fixed partitionπ = {π1, . . . ,πt}, so t = r(π). We claim that this
constraint can be written as (2) minus certain constraints (3); sinceπ was chosen arbitrarily, this will prove
thatfs(S ′) ⊆ fs(P ′). In particular, for each 1≤ i ≤ t, subtract the constraint (3) with S= πi . We obtain

∑
K∈K

xK

(

ρ(K)−∑
i

ρ(K∩πi)
)

≥ ρ(R)−∑
i

ρ(πi). (7)

From Lemma2.1, ρ(K)−∑i ρ(K ∩ πi) = rcπ
K . We also haveρ(R)−∑i ρ(πi) = |R| − 1− (|R| − r(π)) =

r(π)−1. Hence the inequality (7) that we derived as valid forfs(S ′) is exactly (6).
Conversely, let us write (3) for a fixed setS as a linear combination of (2) minus an inequality of the

form (6). Note whenS= /0 that (3) is vacuously true so we may assumeS 6= /0. LetR\S= {r1, . . . , ru} and
takeπ = {{r1}, . . . ,{ru},S}. Subtract (6) for this π from (2), obtaining

∑
K∈K

xK(ρ(K)−rcπ
K) ≥ ρ(R)− r(π)+1. (8)

Using Lemma2.1 and the fact thatρ(K ∩{r j}) = 0 for any j, K, we getρ(K)−rcπ
K = ρ(K ∩S). Finally,

as ρ(R)− r(π) + 1 = |R| − 1− (|R\S|+ 1) + 1 = ρ(S), Equation (8) is the same as (3). So fs(P ′) ⊆
fs(S ′).

By observing that (S ′) and (P ′) have the same objective function, we obtain the following.

Corollary 2.3. The LPs(S ′) and (P ′) have the same objective value for any cost function C.

The technique behind the proof of Theorem2.2is fairly simple, and so it is not clear if it is new. However,
the authors are not aware of any prior usage. We simply note that the technique can also be used to describe
an existing subtour based formulation of the bidirected cutrelaxation (see [12]) in terms of partitions.

3 Uncrossing Partitions

In this section we describe the new partition uncrossing technique. First, we motivate the result. The linear
program (P ′) that we wrote above is actually different from the one used by Könemann and Tan. In fact,
their formulation did not use the constraint (2). Note that ifx is the incidence vector of the full components
in a Steiner tree, thenx satisfies constraint (2). However, there are some cases in which this constraint
changes the strength of the LP; here is an example.

5

Example 3.1. Let R= {1,2,3,4}. Define the costs C{1,2,3} = C{1,2,4} = 0, C{3,4} = 1, and let all other
costs be infinite. Then the optimal value of(P ′) is 1, whereas removing constraint(2) weakens the LP and
reduces the optimal value to 0. For example, the characteristic vector of{{1,2,3},{1,2,4}} meets(1) and
(6) but not(2).

It could be said that Example3.1 is somewhat artificial. In our application (using hypergraphs to model
full components of Steiner trees) the costs specified in Example 3.1 are clearly impossible. If the full
component{1,2,3} has cost zero, and all edge costs are nonnegative, then note that the path from 1 to 2
in this full component is itself a full component on terminalset{1,2} with cost zero, which contradicts
C{1,2} = 1. More generally, we have the following.

Definition 3.2. Let C· be a cost function fromK to R+. We call Cnondecreasingif CS ≥ CT whenever
S⊃ T.

Lemma 3.3. In a Steiner tree instance with nonnegative edge costs, if CK is the cheapest cost of any full
component with terminal set K, then C is nondecreasing.

Proof. Let T ⊂ Sbe any sets of terminals, and letopt(S) be a minimum-cost full component with leaf setS.
For each pair(u,v) of terminals inT, there is a unique path joining those terminals inopt(S); let H denote
the union of these paths over all choices ofu andv. Notice thatH is a subset ofopt(S); since all edges in the
original Steiner instance have nonnegative cost,c(H) ≤ c(opt(S)) = CS. Also, H is a full component with
leaf setT, so by definitionCT ≤ c(H). HenceCT ≤ c(H) ≤CS.

In this section we will show that ifC is nondecreasing, then removing constraint (2) from (P ′) does not
change its optimal value. In other words, we can rewrite the hypergraph-in-spanning-tree LP as follows:

minimize ∑
K∈K

CKxK (P)

x≥ 0 (1)

∀π ∈ ΠR : ∑
K∈K

xKrc
π
K ≥ r(π)−1 (6)

To be precise, Könemann and Tan interpreted the Robins-Zelikovsky algorithm [26] as an iterated primal-
dual algorithm, and (P) is the LP used in the first iteration. We will usepartition uncrossingto show that
(P) and (S ′) are equivalent, and also equivalent to a “gainless tree” formulation. Some other nice features
of this LP are:

• It is stronger than the bidirected cut relaxation.

• The optimum can be computed in polynomial time (e.g., Queyranne [31] gave a separation oracle for
(S ′)).

• No extended variables are needed.

• There is essentially only one type of constraint in (P).

Next, we introduce our new technique.

6

3.1 Definitions for Partitions

For any feasible pointx of the program (P), we say that partitionπ is tight for x if the constraint (6)
corresponding toπ is met with equality. Following notation introduced in [3], let π0 denote the partition of
R into |R| singleton parts. Crucially, the constraint (2) is the same as saying thatπ0 is tight forx; we want to
show thatπ0 is tight for some optimalx of (P). Let T (x) denote the family of all tight partitions forx. We
first show that the family of tight partitions has a special structure (forms a lattice). Second, we argue that
some optimal solution has a “large enough” tight family.

Given two partitionsπ andπ ′ of R, we say thatπ ′ refinesπ if each part ofπ ′ is contained in some part
of π. See Figure3(a). To say thatπ coarsensπ ′ is the same as saying thatπ ′ refinesπ. It is easy to see that
if π ′′ refinesπ ′ andπ ′ refinesπ, thenπ ′′ refinesπ. The setΠR of all partitions ofR has an additional nice
property which is summarized in the following definition.

Definition 3.4 (Lattice operations). Let π,π ′ ∈ ΠR. Their join π ∨ π ′ is the most refined partition that
coarsens bothπ andπ ′. Their meetπ ∧π ′ is the coarsest partition that refines bothπ andπ ′.

See Figure3 for an illustration. In the definition of join, when we say “the most refined partition
coarsening bothπ and π ′” we mean that, wheneverπ ′′ coarsensπ and π ′, thenπ ∨ π ′ refinesπ ′′. The
definition of meet is analogous. Definition3.4 hides something, because it does not immediately obvious
that such partitions exist; nonetheless the existence proof is standard, e.g., see [27]. (For reference, we
remark that in general, alattice is any partially ordered set where such meet and join operators are well-
defined.)

Here is an intuitive construction for joins and meets.

Fact 3.5. Let the parts ofπ be π1, . . . ,πt and let the parts ofπ ′ be π ′
1, . . . ,π ′

u. Then the parts of the meet
π ∧π ′ are the nonempty intersections of parts ofπ with parts ofπ ′,

π ∧π ′ = {πi ∩π j | 1≤ i ≤ t,1≤ j ≤ u andπi ∩π j 6= /0}.

Given a graphG and a partitionπ of V(G), we say thatG inducesπ if the parts ofπ are the connected
components ofG.

Fact 3.6. Let (R,E) be a graph that inducesπ, and let(R,E′) be a graph that inducesπ ′. Then the graph
(R,E∪E′) inducesπ ∨π ′.

Analogously toπ0, we defineπ1 to be the coarsest partition ofR, i.e., the partition with just one part.
The meet and join operations are each commutative due to Definition 3.4. We will later need the following
fact.

Fact 3.7. The meet and join operations are each associative.

3.1.1 Warmup: Graphs

Before diving in to our main uncrossing argument (for partitions in hypergraphs), we will prove an analogous
easier result for ordinary graphs. LetEπ denote the set of all edges ofG that span two different parts ofπ,

Eπ := {uv∈ E | u andv do not lie in the same part ofπ}.

7

(a): The dashed partition refines the solid one. (b): Two partitions; neither refines the other.

(c): The meet of the partitions from (b). (d): The join of the partitions from (b).

Figure 3: Illustrations of some partitions. The black dots are the terminal setR.

Chopra [5] gave the following linear program for theminimum-cost spanning tree(MST) problem in ordi-
nary graphs.

minimize ∑
e∈E

cexe (PG)

x≥ 0 (9)

∀π ∈ ΠR : x(Eπ) ≥ r(π)−1 (10)

The linear program (PG) is particularly nice in that there is always an integral optimal solution (unless
somece < 0, in which case the program is unbounded). Notice that we canview the hypergraph LP (P) as
a generalization of Chopra’s LP (PG), by settingCK = ∞ for all componentsK with |K| > 2 and allK 6∈ E.
Similarly, (S ′) generalizes a spanning tree LP originally due to Edmonds [9]. In (PG), just as in (P), we
define partitionπ to betight for x if the corresponding inequality (10) holds with equality.

Chopra showed in [5] that (PG) is exactly as strong as earlier MST formulations by Edmondsand
Fulkerson. In proving the equivalence with Fulkerson’s LP,Chopra also showed a result analogous to what
we want for hypegraphs: that adding the constraint∑e∈E xe = |R|−1 to (PG) does not affect the optimal

8

value (i.e., there is an optimal solution to (PG) for which π0 is tight). In contrast to our hypergraph result,
where the cost function must be nondecreasing, Chopra’s result holds for all nonnegative cost functions. We
present a new proof of this result as a warmup to the hypergraph case. First we need the following technical
lemma.

Lemma 3.8. For anyπ,π ′ ∈ ΠR,

r(π ∨π ′)+ r(π ∧π ′) ≥ r(π)+ r(π ′). (11)

Proof. ChooseF0 so that(R,F0) is a forest that inducesπ ∧π ′. Sinceπ ∧π ′ refinesπ we can pick a setF
of edges disjoint fromF0 such that(R,F0∪F) is a forest that inducesπ. Similarly let (R,F0∪F ′) induceπ ′

andF0∩F ′ = /0. Using Fact3.6, (R,F0∪F ∪F ′) inducesπ ∨π ′.
Since(R,F0) is a forest on|R| vertices withr(π ∧ π ′) connected components,|F0| = |R| − r(π ∧ π ′).

Similarly |F0∪F| = |R|− r(π), and|F0∪F ′|= |R|− r(π ′), and as(R,F0∪F ∪F ′) is not necessarily a forest
we have|F0∪F ∪F ′| ≥ |R|− r(π ∨π ′). Hence rearranging,

r(π ∨π ′)+ r(π ∧π ′) ≥ |R|− |F0|+ |R|− |F0∪F ∪F ′| = |R|− |F0∪F|+ |R|− |F0∪F ′|+ |F ∩F ′|

≥ |R|− |F0∪F|+ |R|− |F0∪F ′| = r(π)+ r(π ′).

We say that partitionsπ andπ ′ crossif π neither refines nor coarsensπ ′. See Figure3(b) for an example.
The following lemma is trivially true ifπ andπ ′ do not cross. In this case one refines the other, w.l.o.g.π ′

refinesπ, and soπ ∨π ′ = π andπ ∧π ′ = π ′.

Lemma 3.9 (Meet/join closure of tight partitions in graphs). Let x be feasible for(PG). If π and π ′ are
both tight for x, thenπ ∨π ′ andπ ∧π ′ are both tight for x.

Proof. Let χ(S) denote the characteristic vector ofS⊆ E. We can write the partition inequalities of (PG)
asx·χ(Eπ) ≥ r(π)−1.

Since the partition inequalities (10) for π ∨π ′ andπ ∧π are valid forx,

x· (χ(Eπ∧π ′)+ χ(Eπ∨π ′)) ≥ r(π ∧π ′)−1+ r(π ∨π ′)−1. (12)

Using Fact3.5, Eπ∧π ′ = Eπ ∪E′
π , and using Fact3.6, Eπ∨π ′ ⊆ Eπ ∩Eπ ′ . The component-wise vector

inequality
χ(Eπ)+ χ(Eπ ′) = χ(Eπ ∪Eπ ′)+ χ(Eπ ∩Eπ ′) ≥ χ(Eπ∧π ′)+ χ(Eπ∨π ′) (13)

then follows.
Now put everything together; in the first inequality we also need to note thatx≥ 0.

x·(χ(Eπ)+χ(Eπ ′))≥(13) x·(χ(Eπ∧π ′)+χ(Eπ∨π ′))≥(12) r(π∧π ′)−1+r(π∨π ′)−1≥(11) r(π)−1+r(π ′)−1.

But sinceπ andπ ′ are tight, the leftmost and rightmost terms of the above inequality chain are equal. In
particular Equation (12) holds with equality, which implies thatπ ∧π ′ andπ ∨π ′ are tight.

Theorem 3.10([5]). Let c be nonnegative. There is an optimal point x of(PG) for which the equality
∑e∈E xe = ρ(R) holds (i.e., for whichπ0 is tight).

Proof. Let x be a basic optimal solution to (PG). Hencex is an extreme point offs(PG). Let T be
shorthand forT (x).

9

Claim 3.11. For each edge e∗ ∈ E such that xe∗ > 0, someπ ∈ T exists with e∗ ∈ Eπ .

Proof. Suppose otherwise, that every partitionπ with e∗ ∈ Eπ is not tight. Define the pointx′ by

x′e :=

{

xe, e 6= e∗;

xe− ε , e= e∗.

Now there is someε > 0 for which x′ is feasible. Notice thatx+ (x− x′) ≥ x and so, by the definition
of (PG), x+ (x− x′) is also feasible. Butx = x′/2+ (x+ (x− x′))/2, sox can be written as a convex
combination of two elements offs(PG), contradicting the fact thatx is an extreme point offs(PG).

Let
∧

T denote the common meet of all tight partitions forx (we use Fact3.7 here). Fact3.5 implies
that

⋃

π∈T Eπ = E∧T . Claim 3.11establishes that, for every edgee, eitherxe = 0 or e∈
⋃

π∈T Eπ . Hence
x(E) = x(E∧T). By Lemma3.9,

∧

T is tight and so

x(E) = x(E∧T) = r(
∧

T)−1. (14)

On the other hand sincex satisfies the inequality (10) corresponding toπ0,

x(E) = x(Eπ0) ≥ r(π0)−1. (15)

Putting Equations (14) and (15) together we seer(
∧

T)−1≥ r(π0)−1, and asπ0 is the unique partition
of maximum possible rank,

∧

T = π0. Using Lemma3.9, we see thatπ0 is tight for x.

3.1.2 Hypergraphs

Now we return to the hypergraph LP setting. Unfortunately the “obvious” uncrossing by directly comparing
the four constraints (6) for π,π ′,π ∨ π ′,π ∧ π ′ does not work. E.g., compare the following example with
Equation (13).

Example 3.12. If K = {1,2,3,4},π = {{1,2},{3,4}},π ′ = {{1,3},{2,4}} thenrcπ
K + rcπ ′

K < rcπ∨π ′

K +
rcπ∧π ′

K .

We use a slightly more complicated set of constraints to establish what we want.

Definition 3.13. Letπ ∈ ΠR be a partition and let S⊂ R. Define themerged partitionm(π,S) to be the most
refined partition that coarsensπ and contains all of S in a single part.

See Figure4 for an example. The notation introduced in Definition3.13allows us to restate an earlier
remark:

rcπ
K = r(π)− r(m(π,K)). (16)

Here is our new uncrossing technique.

Lemma 3.14 (Partition uncrossing). Let π,π ′ ∈ ΠR and let the parts ofπ be π1,π2, The following
(in)equalities hold:

∀K ∈ K : r(π)
[

rcπ ′

K

]

+
[

rcπ
K

]

≥
[

rcπ∧π ′

K

]

+
r(π)

∑
i=1

[

rc
m(π ′,πi)
K

]

(17)

r(π)
[

r(π ′)−1
]

+[r(π)−1] =
[

r(π ∧π ′)−1
]

+
r(π)

∑
i=1

[

r(m(π ′,πi))−1
]

(18)

10

Figure 4: Illustration of merging. The left figure shows a (solid) partition π along with a (dashed) setS. The
right figure shows the merged partitionm(π,S).

The brackets[·] have no special meaning but only emphasize the parallel structure of the equations; they
will soon be interpreted as adding and subtracting multiples of the constraint (6). Before we prove Lemma
3.14, let us show how its result is used.

Lemma 3.15. Let x be feasible for(P), and let the parts ofπ beπ1,π2, If π andπ ′ are both tight for x,
then for each K∈ K with xK > 0 we have

r(π)
[

rcπ ′

K

]

+
[

rcπ
K

]

=
[

rcπ∧π ′

K

]

+
r(π)

∑
i=1

[

rc
m(π ′,πi)
K

]

. (19)

Moreover,π ∧π ′ and each m(π ′,πi) are tight for x.

Proof. Let π = {π1,π2, . . .}. Using Lemma3.14, we have

r(π)

[

∑
K

xKrc
π ′

K

]

+

[

∑
K

xKrc
π
K

]

≥(17)

[

∑
K

xKrc
π∧π ′

K

]

+
r(π)

∑
i=1

[

∑
K

xKrc
m(π ′,πi)
K

]

≥(∗)
[

r(π ∧π ′)−1
]

+
r(π)

∑
i=1

[

r(m(π ′,πi))−1
]

=(18) r(π)
[

r(π ′)−1
]

+[r(π)−1]

where (∗) holds since (6) is valid forx∈ fs(P). Sinceπ andπ ′ are tight, the first and last terms in the above
inequality chain are equal, so all inequalities are met withequality. The fact that (∗) is met with equality
implies that the partitionsπ ∧π ′ andm(π ′,πi) for all i are tight; the fact that (17) is met with equality implies
that Equation (19) holds for eachK with xK > 0.

Theorem 3.16(Meet/join closure of tight partitions). Let x be feasible for(P). If π andπ ′ are both tight
for x, thenπ ∨π ′ andπ ∧π ′ are both tight for x.

Proof. Repeatedly applying Lemma3.15, observem(· · ·m(m(π ′,π1),π2), · · ·) = π ∨π ′ is tight.

11

So although the uncrossing operation for hypergraphs is more complicated than for graphs, Theorem
3.16 allows us to proceed more or less as we showed in Section3.1.1. We shall now prove the partition
uncrossing inequalities. For both proofs, we first modify the hypergraph by contracting each part ofπ ∧π ′.
Notice that in the contracted graph,π ∧π ′ = π0, i.e., |πi ∩π ′

j | ≤ 1 for each partπi of π and each partπ ′
j of

π ′. To justify this approach we must remark that the contraction does not affectr(π), r(π ′), r(π ∧π ′) or any
r(π ′,πi).

Proof of Equation(18). Fix i. Since|πi ∩ π ′
j | ≤ 1 for all j, the rank contributionrcπ ′

πi
is equal to|πi | − 1.

Then using Equation (16) we know thatr(m(π ′,πi)) = r(π ′)−|πi|+1. Thus adding over alli, the right-hand
side of Equation (18) is equal to

|R|−1+
r(π)

∑
i=1

(r(π ′)−|πi|) = |R|−1+ r(π)r(π ′)−|R|

and this is precisely the left-hand side of Equation (18).

Let K ∈K be a hyperedge of the original graph, which may not necessarily be a union of parts ofπ ∧π ′.
DefineK′ to be the union of all parts ofπ ∧π ′ meetingK, i.e.,K′ is the part ofm(π ∧π ′,K) containingK.
Notice thatK andK′ have the same rank contribution with respect toπ,π ′,π ∧π ′ and eachm(π ′,πi). Hence
contracting all parts ofπ ∧π ′ is justified in proving Equation (17), as we can considerK′ in the contracted
hypergraph instead ofK.

Proof of Equation(17). Fix i. Since|πi ∩π ′
j | ≤ 1 for all j, we have

rcπ ′

K −rc
m(π ′,πi)
K ≥ ρ(πi ∩K) (20)

because, when we merge the parts ofπ ′ intersectingπi, we makeK span at leastρ(πi ∩K) fewer parts.
Adding the right-hand side of Equation (20) over all i gives∑i ρ(πi ∩K), which by Lemma2.1 is equal

to ρ(K)−rcπ
K . Hence, we have

r(π)

∑
i=1

(rcπ ′

K −rc
m(π ′,πi)
K) ≥

r(π)

∑
i=1

ρ(πi ∩K) = ρ(K)−rcπ
K .

Finally note thatρ(K) = rcπ∧π ′

K and the above equation, after rearranging, yields Equation(17).

Next we explain what sort of tight partitions can be assumed to exist. The basic idea is that, for any
S(T ⊂ R, we can always decreasexT by a little bit and increasexS by the same amount without increasing
the overall cost; so eitherxT = 0 or this “replacement” is prevented by a tight partition.

Lemma 3.17.Let C be nondecreasing. There is an optimal solution x∗ to (P) such that the following holds:
for any K with x∗K > 0 and for any r∈K, there existsπ ∈T (x∗) such that the part ofπ containing r contains
no other vertices of K.

Proof. Let x be any optimal solution,xK > 0, andr ∈ K as described. Suppose that noπ ∈ T (x) exists
as specified in the statement Lemma3.17. Let eK denote the unit basis vector for componentK. For the
moment assume|K| > 2. Let K′ = K\{r} and definex′ = x− teK + teK′ wheret ≥ 0 is a parameter. Since
C is nondecreasing,x′ has objective value no more thanx. In order forx′ to be feasible for (P), we need
t ≤ xK and

∑
K

rcπ
KxK +(rcπ

K′ −rcπ
K)t ≥ r(π)−1, ∀π ∈ ΠR

12

Notice thatrcπ
K′−rcπ

K is−1 when the part ofπ containingr contains no other vertices ofK, and 0 otherwise.
By hypothesis (i.e., our choices ofπ andK) all partitionsπ with rcπ

K′ −rcπ
K = −1 are not tight, so we can

take
t = min{xK , min

π:rcπ
K′ 6=rc

π
K
∑
K

rcπ
KxK − r(π)+1} > 0.

The resultingx′ no longer violates the conclusion of this theorem forK andr. Finally, if |K| = 2 then the
same approach works except that we simply definex′ = x− teK .

We iterate the replacement operation described in the previous paragraph until no suchK andr exist;
after each iteration redefinex := x′. We will complete the proof by showing that only finitely manyiterations
can occur. Notice thatT (x′) ⊇ T (x). Hence, the number|T (x)| of tight partitions is nondecreasing.
Furthermore, notice that in each iteration, ift 6= xK then|T (x)| increases, and otherwise the quantity

∑
S∈K :xS6=0

|S| (21)

decreases. Since the quantity (21) and|T (x)| are integral, nonnegative, and bounded, only a finite number
of iterations can occur. We definex∗ to be the finalx, and the proof is complete.

With these tools, we can complete the main proof of this section.

Theorem 3.18.Let C be nondecreasing. Then of all optimal feasible points of (P), there is one for which
(2) is valid (i.e., for whichπ0 is tight).

Proof. Let x∗ be an optimal solution as specified by Lemma3.17. Let T be shorthand forT (x∗).
For any hyperedgeK such thatx∗K > 0, and for any{u,v} ⊂K, the conclusion of Lemma3.17guarantees

that{u,v} ∈ Eπ for someπ ∈ T . Notice furthermore thatE∧T = ∪π∈T Eπ . It follows that any hyperedge

K such thatrc
∧

T

K < |K|−1 must satisfyx∗K = 0. Sincex∗ meets inequality (6) with π = π0,

r(π0)−1≤ ∑
K

x∗K(|K|−1) = ∑
K

x∗Krc
∧

T

K .

But
∧

T is tight and so the right-hand side of the above equation can be rewritten

r(π0)−1≤∑
K

x∗Krc
∧

T

K = r(
∧

T)−1.

It follows that
∧

T = π0. By Theorem3.16π0 is tight for x∗, i.e., (2) is valid for x∗.

Corollary 3.19. For any Steiner tree problem instance, the optimal values of(S ′), (P ′) and(P) are equal.

Proof. This follows immediately from Theorem2.2, Lemma3.3and Theorem3.18.

3.1.3 Polyhedral Results

Analogously to the bounded LP relaxations (P ′) and (S ′) of the spanning hypertree problem, the following
LP is a bounded LP relaxation for the spanning tree problem inordinary graphs.

minimize ∑
e∈E

cexe (P ′
G)

x≥ 0 (22)

∑
e∈E

xe = |R|−1 (23)

∀π ∈ ΠR : ∑
e∈Eπ

xe ≥ r(π)−1. (24)

13

As we proved, both programs (PG) and (P ′
G) have the same optimal value for nonnegative cost func-

tions. However, as soon as any edge has negative cost, program (PG) is clearly unbounded. With a little
more work we can obtain a proof of the following fact. Thedominantof a setSis the set{y | ∃x∈ S: y≥ x}.

Fact 3.20([5]). The dominant offs(P ′
G) is fs(PG).

In contrast,fs(P) is not the dominant offs(P ′); we obtain an example by re-examining Example3.1.

Example 3.21.Let R= {1,2,3,4}. Then the point x:= e{1,2,3} +e{1,2,4} ∈ fs(P). However, in order for x
to be in the dominant offs(P ′), there needs to be a point of the form y:= αe{1,2,3} + βe{1,2,4} in fs(P ′).
The partition inequalities(6) requireα ,β ≥ 1 but the equality(2) requiresα + β = 1. So no such y exists.

Other more complicated generalizations of Fact3.20do hold, however.

4 Applications of Partition Uncrossing

Uncrossing has played a critical role in recent work in the area of network design, e.g., [11, 14, 17, 18, 19].
In that setting one uncrossessetsin an LP withsubtour elimination constraints, rather than partitions as we
have done here4. In this section we prove a property of the polyhedronfs(P) in the spirit of these results.
A set of partitions is called achain if no two of the partitions are crossing; equivalently, a setis a chain iff it
can be written in the form{π [1], . . . ,π [t]} whereπ [j] refinesπ [i] for all t ≥ j ≥ i ≥ 1. Thesupportof a vector
is the collection of indices where it is nonzero:

supp(x) = {i | xi 6= 0}.

Using a span argument, we will establish that every extreme point of fs(P) is defined by its support and
a chain of tight partitions, in the sense that it is the unique solution to those constraints. The common
analogous result in the subtour setting uses a so-calledlaminar family of subtours in place of the chain of
partitions. We have chosen to use aspan-based argument; the original span argument, due to Jain [14], has
been repeated in several places (e.g., [11, 18, 29]) and so we hope that the general idea is already familiar.

We need to rephrase the result of the previous section so as tobe suitable for the span argument. Given
two partitionsπ = {π1,π2, . . .} andπ ′, define thecrossing partscpπ ′(π) to be the set

cpπ ′(π) := {πi ∈ π | m(π ′,πi) 6= π ′}.

Fact 4.1. We have thatπ refinesπ ′ if and only ifcpπ ′(π) = /0.

Corollary 4.2. Suppose x is feasible for(P) and thatπ andπ ′ are tight for x. Then for each K with xK > 0,

rcπ
K + |cpπ ′(π)| ·rcπ ′

K = rcπ∧π ′

K + ∑
πi∈cpπ′ (π)

rc
m(π ′,πi)
K .

Proof. Apply Lemma3.15and subtract(r(π)−|cpπ ′(π)|)rcπ ′

K from both sides of Equation (19).

4The general idea is that ifS,S′ are tight crossing subtour sets, then so areS∪S′ andS∩S′. Whenπ0 is tight, one can show
this is equivalent to the meet/join closure of tight partitions (Theorem3.16) modulo the subtour/partition correspondence (Theorem
2.2). Whenπ0 is not tight however, we have not found a way to apply previousuncrossing results to our setting.

14

In the following,x∗ is a feasible point of (P). Without loss of generality (by deleting items fromK)
we assume thatx∗K > 0 for all K ∈ K . Let span(π) denote the vector

span(π) := (rcπ
K)K∈K ,

i.e., the vector of coefficients in the constraint (6). For asetS of partitions let span(S) denote the vector
space spanned by the vectors{span(s) | s∈ S }.

Lemma 4.3 (Span lemma). Let x∗ be feasible for(P). Let C be any inclusion-maximal chain inT (x∗).
Thenspan(C) = span(T (x∗)).

Proof. Again let T := T (x∗). Suppose for the sake of contradiction thatπ is a tight partition such that
span(π) 6∈ span(C). Pick such a counterexampleπ having minimal rank.

Now C must contain some partitionC that crossesπ, sinceC is a maximal chain inT , and if no such
partition existed, we could addπ to C . ChooseC to be the most refined partition inC that crossesπ. The
following intermediate claim will be needed later. We sayπ ′ strictly refinesπ if π ′ refinesπ andπ ′ 6= π.

Claim 4.4. If C′ ∈ C and C′ strictly refines C, then C′ refinesπ.

Proof. By our choice ofC, note thatC′ andπ don’t cross. So eitherC′ refinesπ or vice-versa. But ifπ
refinesC′ then (sinceC′ refinesC) thenπ also refinesC, which contradicts the fact thatC andπ cross. So
C′ refinesπ.

Let the parts ofC beC1,C2, . . . , as usual. SincexK > 0 for all K, Corollary4.2can be restated as saying
that

span(C)+ |cpπ(C)| ·span(π) = span(π ∧C)+ ∑
Ci∈cpπ(C)

span(m(π,Ci))

and that the partitionsπ ∧C,m(π,Ci) are all tight. By Fact4.1, cpπ(C) is nonempty. Since span(C) ∈
span(C) and span(π) 6∈ span(C), it follows that either span(π ∧C) 6∈ span(C) or span(m(π,Ci)) 6∈ span(C)
for someCi ∈ cpπ(C).

Case 1: span(π ∧C) 6∈ span(C). We claim in fact thatπ ∧C can be added to the chainC , contradicting the
maximality ofC . We need to establish thatπ ∧C crosses no partitionC′ ∈C . There are two subcases:

• C refinesC′, in which caseπ ∧C refinesC′.

• C′ strictly refinesC. Then using Claim4.4, we know thatC′ refinesπ, soC′ refinesπ ∧C.

Indeed, in either caseπ ∧C andC′ do not cross.

Case 2: span(m(π,Ci)) 6∈ span(C). Notem(π,Ci) is tight. SinceCi ∈ cpπ(C), m(π,Ci) has smaller rank
thanπ. This contradicts our choice ofπ.

4.1 Extreme Points

The main consequence of Lemma4.3 is that extreme points offs(P) are zero in most of their coordinates.

Theorem 4.5. Let x∗ be an extreme point offs(P) and letC be an inclusion-maximal chain inT (x∗).
Then x∗ has at most|C | nonzero coordinates.

15

Proof. Consider the family of (P)’s constraints that hold forx∗ with equality. We have assumed thatx∗K > 0
for all K ∈K , so all of these constraints correspond to tight partitions. Is it a well known fact in polyhedral
theory that, sincex∗ is extreme, the span of these constraints is full-dimensional, i.e., span(T (x∗)) = RK .
Using Lemma4.3, span(C) = span(T (x∗)) = RK . However, the dimension of span(C) is at most|C | and
hence|K | ≤ |C |.

Corollary 4.6. Each extreme point offs(P) has at most|R|−1 nonzero coordinates.

Proof. Any chain inΠR has at most|R| members, since wheneverπ ′ strictly refinesπ we haver(π ′) > r(π).
Without loss of generality we can remove the vacuously true constraint corresponding toπ1 and then the
longest possible chain has|R|−1 members.

Note that any (graph) spanning tree meets this bound. Corollary 4.6 is reminiscent of results in a recent
paper by Goemans [11] dealing with minimum-degree-plus-two spanning trees. Like Goemans, we can
establish a “local sparseness” result for the extreme points of fs(P). We also obtain an iterated rounding
proof of the following well known result; a similar proof is given in [18] for the subtour formulation.

Corollary 4.7 ([9]). Every basic solution of(PG) is the characteristic vector of a spanning tree.

Proof. Consider a basic solutionx and the support graphH := (V,supp(x)). Corollary 4.6 applies since
(PG) is a special case of (P), and so there must be some vertexv∈V with degree one inH. To meet the
partition inequality for{{v},V\{v}}, the single edgeeof H incident onv must havexe ≥ 1; and ifxe > 1 it
is easy to see the solution is not basic, soxe = 1. Now deletev andeand consider the remaining graph. The
projection of the old basic solution on the new edge set is once again basic. Finally, the result of Corollary
4.7follows by induction.

Using Corollary4.6we have computed all extreme points offs(P) for small values of|R|. We say two
extreme points ofR areisomorphicif they are the same under some relabeling ofR, i.e.,e{1,2,3} + e{3,4} is
isomorphic toe{1,3,4} +e{2,3}. The number of nonisomorphic extreme points offs(P) is 6 for |R| = 4, 27
for |R| = 5, and 407 for|R| = 6. These computational results have informed our study of these LPs. For
example, we noticed and subsequently proved that asRgrows, some extreme points exhibit bad fractionality;
hence an iterated rounding approach as in [14] unfortunately looks impossible.

4.2 Gainless Tree Formulation

Given an ordinary spanning treeT of R and any hyperedgeK ⊂ R, we define thegain of K in T to be the
cost decrease whenK is included in the spanning tree,

gainT(K) := c(T)−mst(T/K)−CK ,

wheremst(T/K) is the minimum cost of any spanning tree in the graphT after the terminalsK are contracted
into a single pseudonode. So to say thatK has positive gain means that a cheaper spanning hypertree is
possible whenK is included. We say that a treeT is gainlessif gainT(K) ≤ 0 for all K ∈ K .

Definition 4.8. The quantity tK+ is the maximum cost of any gainless tree T with nonnegative edge weights.
The quantity tK is the maximum cost of any gainless tree T with arbitrary edgeweights.

These definitions essentially come from Karpinksi and Zelikovsky [15]. They used full components and
gain to devise a novel approximation algorithm for the Steiner tree problem, which had the best approxima-
tion factor known at the time. To be precise, they defined a single quantitytk without specifying whether or
not the edge weights could be negative. Using partition uncrossing, we will prove the following theorems.

16

Theorem 4.9. The quantity tK is equal to the optimum value of(P ′).

Theorem 4.10.The quantity tK+ is equal to the optimum value of(P).

Karpinski and Zelikovsky applied preprocessing to their graphs, hence the full component cost function
C is nondecreasing in their setting. Hence, using Theorem4.9, Corollary 3.19, and Theorem4.10 we
discover an interesting fact:tk from [15] has the same value whether or not negative tree edges are allowed.5

Also of note is the fact thattk was used in [15] as an upper bound in one place and as a lower bound
in another; this resembles an LP optimal value already, since the optimal value in (say) a minimization
program is a lower (resp. upper) bound on the objective valueof any feasible primal (resp. dual) solution.

The LP dual of (P ′), which we will need, has a variableyπ for each partitionπ ∈ ΠR. Notice that
the equality constraint (2) is just the same as saying (6) holds with equality for the partitionπ0, soyπ0

is
unconstrained while each otheryπ should be nonnegative. Hence the LP dual of (P ′) is

maximize ∑
π∈ΠR

(r(π)−1) ·yπ (P ′∗)

∀π ∈ ΠR\{π0} : yπ ≥ 0 (25)

∀K ∈ K : ∑
π∈ΠR

yπrcπ
K ≤CK (26)

For anyy∈RΠR, definec(y) to denote the objective value ofy in (P ′∗
G). Call a (not necessarily feasible)

solutiony of (P ′∗) chain-supportedif supp(y) is a chain.
Our proof of Theorem4.9works in three steps, which we now sketch. First, by giving a dual interpreta-

tion of partition uncrossing (Lemma3.14), we show that (P ′) has an optimum that is chain-supported. Sec-
ond, we define a surjective functionMSTDual; it maps each spanning treeT of R to a chain-supportedy such
that satisfies (25), and such thatc(y) = c(T). Third, we show for eachK that (26) holds fory= MSTDual(T)
if and only if gainT(K) ≤ 0. Hence using these properties,

opt(P ′) = max{c(y) | y is chain-supported, (25) holds, and for allK ∈ K (26) holds}

=(†) max{c(T) | for all K ∈ K ,gainT (K) ≤ 0 }

= tK .

We elaborate on (†) and discuss Theorem4.10after proving the supporting claims, which now follow.

Lemma 4.11(Dual uncrossing). (P ′∗) always has an optimum y∗ such that y∗ is chain-supported.

Proof. Supposey is any feasible solution to (P ′∗) such that two crossing partitionsπ,π ′ haveyπ ,yπ ′
6= 0.

Note thatπ1 does not cross any other partition, so we may assume thatyπ ,yπ ′
> 0. Let eπ denote the unit

basis vector for partitionπ. Define

y′ := y− t · (r(π)eπ ′
+eπ)+ t

(

eπ∧π ′
+

r(π)

∑
i=1

em(π ′,πi)

)

wheret ≥ 0 is a parameter. We would like to increaset until one of the termsy′π or y′π
′

becomes zero, i.e.,
we claim that putting

t = min

{

yπ ′

r(π)
,yπ

}

5Furthermore, the analysis in [15] is correct under either interpretation.

17

produces a feasibley′ with the same objective value asy. From Equation (17) we deduce that thisy′ is
feasible for (P ′∗); from Equation (18) we deduce thaty′ has the same objective value asy. By uncrossing
π andπ ′ we mean the mapy 7→ y′.

With the uncrossing operation formally defined, we can complete the proof. Note that (P ′) is feasible
and bounded, whence (P ′∗) is too. For a feasible solutiony of (P ′∗) define

ranksumi(y) = ∑
π:r(π)=i

yπ .

Let y∗ be a optimal solution (P ′∗) that is maximal with respect to lexicographic ordering on the vector
(ranksumn(y∗), ranksumn−1(y∗), . . .); to see that such ay∗ exists, note that it can be computed by solving a
series of linear programs. Now if the support ofy∗ were not a chain, then it contains two crossed partitions
π andπ ′. By uncrossing them iny∗, we increaseyπ∧π ′

∗ . But whenπ andπ ′ cross, it is not hard to see that

r(π ∧π ′) > max{r(π), r(π ′)}

and it is easy to see that
max{r(π), r(π ′)} ≥ r(m(π ′,πi))

for all i. Hence by uncrossingπ andπ ′ in y∗, the lexicographic value of(ranksumn(y∗), ranksumn−1(y∗), . . .)
strictly increases. This contradicts the maximality ofy∗. Hence no suchπ,π ′ exist, andy∗ is a chain-
supported optimum to (P ′∗).

4.2.1 MST Duals

The polytopefs(P ′
G) is commonly called thespanning tree polytopebecause it is the convex hull of the

incidence vectors of all spanning trees ofG. We will need its LP dual, which follows.

maximize ∑
π∈ΠR

(r(π)−1) ·yπ (P ′∗
G)

∀π ∈ ΠR\{π0} : yπ ≥ 0 (25)

∀uv∈ E(G) : ∑
π:π separatesu from v

yπ ≤ cuv (27)

Note that the objective value in (P ′∗
G) is c(y), the same objective from (P ′∗). Additionally, in (P ′∗

G) and
in (P ′∗) the variableyπ1

is vacuous, i.e. it can have any value without affecting the feasibility or optimality
of the solution. So from now on we assumeyπ1

= 0 for convenience.
Chopra [5] used the LPs (P ′

G) and (P ′∗
G) to give a primal-dual interpretation of Krusal’s MST algorithm

(see also [16]). WhenG is a tree, althoughfs(P ′
G) is just a single point,fs(P ′∗

G) is useful for our purposes.
We summarize Chopra’s result (specialized to the case thatG is a tree) in the procedureMSTDual.

Theorem 4.12([5]). For any tree T , the dual solution returned byMSTDual(T) is feasible and optimal for
(P ′∗

T), and chain-supported.

Proof. The proof of feasibility and optimality is standard (see [5, 16]) and is therefore omitted, although here
we are also allowing for negative-weight edges. The fact that y is chain-supported follows by construction,
sinceπ [i]

∗ refinesπ [j]
∗ for all j ≥ i.

18

Algorithm 1 The algorithmMSTDual(T).

1: LetW := {c(e) | e∈ T} be the set of distinct edge costs onT
2: SortW into the increasing sequenceW = (w1, . . . ,wt)

3: For i = 1 to t let π [i]
∗ be the partition ofR induced by the graph(R,{e∈ T | c(e) < wi})

4: Returny∗ := w1eπ [1]
∗ + ∑t

i=2(wi −wi−1)eπ [i]
∗ (*Noteπ [1]

∗ = π0*)

Corollary 4.13. For any tree T on vertex set R, we have c(T) = c(MSTDual(T)).

Proof. Apply strong LP duality to the result of Theorem4.12, and use the fact that the characteristic vector
of T is an optimal solution to (P ′

T).

We also need to show thatMSTDual is surjective. The exact technical requirement is encapsulated in the
following lemma.

Lemma 4.14. Suppose y satisfies(25) and y is chain-supported. Then there exists a tree T on vertexset R
for which y= MSTDual(T).

Proof. Denote the chain supp(y)∪ {π0} by π [1],π [2], . . . ,π [t] whereπ [i] refinesπ [i+1] for 1 ≤ i < t. For
convenience letπ [t+1] denoteπ1, the coarsest partition. Denote theπ [i]-coordinate ofy by y[i].

We now define a setE[i] of edges for each 1≤ i ≤ t. We claim such sets can be chosen so that
(R,∪i

j=1E[j]) inducesπ [i] for each 0≤ i ≤ t. The base casei = 0 clearly holds. Then in the induction

step, sinceπ [i] refinesπ [i+1], such a setE[i] can be chosen — informally,E[i] is a spanning forest of the parts
of π [i+1] whenπ [i] is contracted.

Now let T = ∪i
j=1E

[j], where we assign cost∑i
j=1y[j] to each edge inE[i]. WhenMSTDual(T) runs,

π [i]
∗ = π [i] for all i, w1 = yπ0

, andwi −wi−1 = y[i] for all i. Hence the outputy∗ is equal toy.

The following lemma is the final technical ingredient.

Lemma 4.15(Dual interpretation of gain). Let T be a tree on vertex set R. Let y:= MSTDual(T). Full
component K has positive gain in T if and only if y violates theinequality(26) for K.

Proof. The key fact is that
mst(T)−mst(T/K) = ∑

π
yπrcπ

K . (28)

Once we establish Equation (28), Lemma4.15follows since then, by the definition of gain,

gainT(K) = mst(T)−mst(T/K)−CK = ∑
π

yπrcπ
K −CK (29)

and the right-most term of Equation (29) is positive iffy violates (26) for K.
We need to determine the cost of a minimum spanning tree inT/K. Recall that Kruskal’s MST algorithm

operates by examining all edges in increasing order of weight, and constructing a solution of each edge that
does not create a cycle with the partial solution up to that point.

Now, the effect of contractingK is that, at the start of the algorithm,K is connected, and we need to
connect the vertices ofK to the rest ofR. As we run Kruskal’s algorithm on the graphT/K, there will
be exactly|K| − 1 edges that form cycles with the partial solution; call these edgese1, . . . ,eq. Then the

19

minimum spanning tree ofT/K is justT\{e1, . . . ,eq}. Now mst(T)−mst(T/K) = ∑q
i=1c(ei), but we also

claim that
q

∑
i=1

c(ei) = ∑
π

yπrcπ
K (30)

which in turn establishes Equation (28). A proof of Equation (30) (which is not difficult, but requires more
notation than we wish to develop here) appears as part of [16, Lemma 5].

Proof of Theorem4.9. The step needing elaboration is the equality (†) in the sketch given earlier. By Lemma
4.14,

max{c(y) | y is chain-supported, (25) holds, and for allK ∈ K (26) holds}

=max{c(MSTDual(T)) | for all K ∈ K (26) holds aty = MSTDual(T)}

Then applying the dual interpretation of gain (Lemma4.15) and the fact thatc(T) = c(MSTDual(T)),

max{c(MSTDual(T)) | for all K ∈ K (26) holds aty = MSTDual(T)}

=max{c(T) | for all K ∈ K ,gainT (K) ≤ 0 }.

We can obtain essentially the same result when working with the dual of the unbounded formulation
(P), which we denote by (P∗). Notice that the only difference between (P∗) and (P ′∗) is that in (P∗),
yπ0

has to be nonnegative. The analogous components that complete the proof of Theorem4.10 are as
follows.

• tK+ and the optimum value of (P) both are well-defined iffC ≥ 0.

• Dual uncrossing as defined in Lemma4.11can only increaseyπ0
, and so is applicable to (P∗) .

• The constructionsMSTDual and Lemma4.14 are unchanged. We need only to note thatyπ0
≥ 0

implies that all edge costs ofT are positive, and vice versa.

5 Future Work

The bidirected cut formulationis one of the most well-known and deeply-studied LP relaxations of the
Steiner tree problem. There are several equivalent (compact, extended) formulations, but the “natural space”
of the LP consists of a relaxed indicator variablexe for eache∈ E. See [12] for a comprehensive survey of
results in this formulation. The following result is due to Polzin and Vahdati Daneshmand [23].

Theorem 5.1. The LP(S ′) is (sometimes strictly) stronger than the bidirected cut relaxation.

The preprocessing we described in the first section can be viewed as a transformation that produces
another graph, rather than a hypergraph. Initially let the new graphG′ consist of vertex setR and no edges.
Then, for each full componentK ∈ K , compute the cheapest full componentopt(K) with leaf setK, and
add a newcloneof that full component intoG′. In the resultingG′, every Steiner node belongs to exactly
one (cloned) full component. By standard metricity assumptions (see, e.g., [13]) we can assume that every
Steiner node has degree at least 3. We call this apreprocessedgraph.

Let (B+) denote the bidirected cut relaxation for a preprocessed graph, strengthened with the constraint
that in each (cloned) full component, all edge values are equal. The following result can be proved using
techniques from [23].

20

Theorem 5.2. The formulations(B+) and (P ′) are equally strong.

In fact, the result can be framed as a polyhedral equivalence, by projecting each full component’s (equal)
edge values onto a single variable.

We furthermore conjecture even without the strengthening,the LPs are equal in a certain natural setting.
The setK of all full components isdown-closedif wheneverK ∈ K , J ⊆ K and|J| ≥ 2, thenJ ∈ K .

Conjecture 5.3. Suppose G is a preprocessed graph, andK is down-closed. Then the bidirected cut
formulation has the same optimal value as(P ′).

We ultimately hope that the results of this study have applications beyond connecting between existing
papers. One possibility is to use the LPs to get a new and improved primal-dual approximation algorithm
for the Steiner problem. If Conjecture5.3 is true, then it might be possible to use the LP (P ′) to bound
the integrality gap of the bidirected cut formulation in some situations — at the moment the best lower and
upper bounds [1] are 8/7 and 2.

References

[1] A. Agarwal and M. Charikar. On the advantage of network coding for improving network throughput.
In Proceedings, IEEE Information Theory Workshop, 2004.

[2] A. Borchers and D.-Z. Du. Thek-Steiner ratio in graphs. InACM Symp. on Theory of Computing,
pages 641–649, 1995.

[3] E. R. Canfield. Meet and join within the lattice of set partitions. Electr. J. Comb., 8(1), 2001.

[4] M. Chlebı́k and J. Chlebı́ková. Approximation hardness of the Steiner tree problem on graphs. In
Proceedings, Scandinavian Workshop on Algorithm Theory, pages 170–179, 2002.

[5] S. Chopra. On the spanning tree polyhedron.Operations Research Letters, 8:25–29, 1989.

[6] S. Chopra and M. R. Rao. The Steiner tree problem 1: Formulations, compositions, and extension of
facets.Mathematical Programming, 64:209–229, 1994.

[7] S. Chopra and M. R. Rao. The Steiner tree problem 2: Properties and classes of facets.Mathematical
Programming, 64:231–246, 1994.

[8] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195–207, 1972.

[9] J. Edmonds. Matroids and the greedy algorithm.Math. Programming, 1:127–136, 1971.

[10] M. X. Goemans. The Steiner tree polytope and related polyhedra. Math. Program., 63(2):157–182,
1994.

[11] M. X. Goemans. Minimum bounded degree spanning trees. In FOCS, pages 273–282. IEEE Computer
Society, 2006.

[12] M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations.Networks, 23:19–28, 1993.

21

[13] C. Gröpl, S. Hougardy, T. Nierhoff, and H. J. Prömel. Approximation algorithms for the Steiner tree
problem in graphs. In X. Cheng and D. Du, editors,Steiner trees in industries, pages 235–279. Kluwer
Academic Publishers, Norvell, Massachusetts, 2001.

[14] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.Combina-
torica, 21(1):39–60, 2001. Preliminary version appeared at FOCS 1998.

[15] M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problems.J.
Combinatorial Optimization, 1(1):47–65, 1997.

[16] J. Könemann and K. Tan. A fresh look at Steiner trees: Greedy vs primal-dual algorithms. Technical
report, University of Waterloo, 2006.

[17] L. C. Lau, J. Naor, M. Salavatipour, and M. Singh. Survivable network design with degree or order
constraints. InSTOC, 2007. To appear.

[18] L. C. Lau and M. Singh. Approximating minimum bounded degree spanning trees to within one of
optimal. InSTOC, 2007. To appear.

[19] V. Melkonian andÉ. Tardos. Algorithms for a network design problem with crossing supermodular
demands.Networks, 43(4):256–265, 2004.

[20] T. Polzin. Algorithms for the Steiner Problem in Networks. PhD thesis, Universität des Saarlandes,
February 2003.

[21] T. Polzin and S. Vahdati Daneshmand. A comparison of Steiner tree relaxations.Discrete Applied
Mathematics, 112(1-3):241–261, 2001. Preliminary version appeared atCOS 1998.

[22] T. Polzin and S. Vahdati Daneshmand. Improved algorithms for the Steiner problem in networks.
Discrete Applied Mathematics, 112(1-3):263–300, 2001.

[23] T. Polzin and S. Vahdati Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs.
Oper. Res. Lett., 31(1):12–20, 2003.

[24] S. Rajagopalan and V. V. Vazirani. On the bidirected cutrelaxation for the metric Steiner tree problem.
In Proceedings, ACM-SIAM Symposium on Discrete Algorithms, pages 742–751, 1999.

[25] R. Rizzi. On Rajagopalan and Vazirani’s 3/2-approximation bound for the Iterated 1-Steiner heuristic.
Information Processing Letters, 86(6):335–338, 2003.

[26] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation.SIAM J. Discrete
Math., 19(1):122–134, 2005. Preliminary version appeared as “Improved Steiner tree approximation
in graphs” at SODA 2000.

[27] R. P. Stanley.Enumerative Combinatorics, volume 1. Wadsworth & Brooks/Cole, 1986.

[28] K. Tan. On the role of partition inequalities in classical algorithms for Steiner problems in graphs.
Master’s thesis, University of Waterloo, 2006.

[29] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

22

[30] D. Warme. A new exact algorithm for rectilinear Steinertrees. In P. Pardalos and D.-Z. Du, editors,
Network Design: Connectivity and Facilities Location: DIMACS Workshop April 28-30, 1997, pages
357–395. American Mathematical Society, 1997. Preliminary version appeared at ISMP 1997.

[31] D. Warme.Spanning Trees in Hypergraphs with Applications to SteinerTrees. PhD thesis, University
of Virginia, 1998.

[32] D. Warme, P. Winter, and M. Zachariasen. Exact Algorithms for Plane Steiner Tree Problems: A
Computational Study. In D.-Z. Du, J. M. Smith, and J. H. Rubinstein, editors,Advances in Steiner
Trees, pages 81–116. Kluwer Academic Publishers, 2000.

[33] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica,
9:463–470, 1993.

23

	1 Introduction
	1.1 Linear Relaxations

	2 Partitions versus Subtours
	3 Uncrossing Partitions
	3.1 Definitions for Partitions
	3.1.1 Warmup: Graphs
	3.1.2 Hypergraphs
	3.1.3 Polyhedral Results

	4 Applications of Partition Uncrossing
	4.1 Extreme Points
	4.2 Gainless Tree Formulation
	4.2.1 MST Duals

	5 Future Work

