Uncrossing Partitions

Jochen Konemann and David Pritchard

June 4, 2007

Abstract

We extend a well knowmncrossingtechnique in linear programs (LPs) to work with partitions.
Using this technique, we tie together three previously lated papers on Steiner trees, by showing that
the following three values are equal: (1) the objective galfia subtour based LP by Polzin and Vahdati
Daneshmand; (2) the objective value of a partition basedy Rdmemann and Tan; (3) a “maximum
gainless tree” quantity used by Karpinski and Zelikovskige3e LPs are known to be stronger than the
bidirected cut relaxationwe conjecture that ipreprocessedraphs, these LPs are exactly as strong as
the bidirected cut relaxation, which would add a surprigmgth item to our list.

1 Introduction

The Steiner tree problem is a classical combinatorial dpéition problem. The input is a gragh= (V,E)
with positive costs, for all edges, and with the vertic&s divided into two sets: the terminaR and the
Steiner nodesl. A feasible solution is any connected subgrapksdhat connects all dR, and we want one
whose sum of edge costs is minimal. It is easy to see that ampalpsolution is a tree all of whose leaves
are terminals; these are call&teiner treesComputing a cheapest Steiner tree is NP-hard, and moreover
no (polynomial time)g—g-approximation algorithm exists unless P=NI. [Hence, there is much interest in
designing algorithms with good approximation factors.

Central to this work is théull component decompositiaf Steiner trees, which was originally used by
Zelikovsky [33] in the 1990s to get %-approximation algorithm. Given a Steiner trEegafull component
of T is a maximal subtree dF all of whose leaves are terminals and all of whose interndes@re Steiner
nodes. The edge set of any Steiner tree can be partitionedrigae way into full components by splitting
at internal terminals; see Figufiefor an example. Zelikovsky’s original algorithm (and basig all fol-
lowing improvements) go the other way: we compute the chatdplt components of a graph, and use that
information to reconstruct a cheap Steiner tree.

More specifically, for each subsétC R of the terminals, we would like to compute the cheapest i) an
full component with leaf seK. Then knowledge of the cheapest costs for each terminas seffficient to
reconstruct the cheapest Steiner tree. In this way thegmold transformed into a problem about minimum-
cost spanning sub-hypergraphs, which we now review. A lgrpeh (V,&) has verticed/, hyperedges
& C{E CV ||E| > 2} and in this case costs for eachE € &; a spanning sub-hypergraph (€, &)
with & C & such that, for every partition &f into two nonempty parts, some hyperedgesinintersects
both parts. The correspondence between Steiner instanddsypergraphs is as follows: for eakhC R,
we computeopt(K), the cheapest full component with leaf #gtand assign coSCy := c(opt(K)). Then
spanning sub-hypergraphs correspond to Steiner treeg ofigfinal problem.

Lif xis a vector ancBis a set, we use the convention thé®) = S s.sxs; similarly if H is a graph ther(H) is the total cost of
the graph’s edges.

R

Figure 1: Black nodes are terminals and white nodes areeSteagudes. Left: a Steiner tree for this instance.
Right: the Steiner tree’s edges are partitioned into futhponents; there are four full components.

There is a subtle point to this abstraction. The originair@tetree instance may have abolif 2ull
components in total (one for each nonempty non-singletdosetuofR) and so the usual approach is to
compute only those full components of size at mo6ivherek is a fixed parameter). We call thigepro-
cessing Preprocessing can be accomplished in polynomial time, (@sing dynamic programming]). If
k is too small, the preprocessing to a hypergraph will ina@eahe cost of a minimum-cost Steiner tree, as
we now illustrate. Consider Figuz There is only one feasible Steiner tree and it has a full corapt
on 5 vertices. But, say, fdt = 3 things are still not too bad; there are full components entérminal
sets{ry,ra,r3} and{rs,rs,rs} each of cost 3, which can (as hyperedges) be joined togeit@otuce a
spanning sub-hypergraph of cost 6. Viewed in the originalrét tree instance, the edgg is now used
twice; the preprocessing increased the optimal solutiat from 5 to 6. However, it is known that prepro-
cessing increases the cost by no more than a factorto®l1/logk) [2]. So by takingk — c we get an
approximation scheme where preprocessing has negligiske c

r
Iq . 4
s @ '
r .A"."'_"_';"_"_' r
n 3 _ ®'3
4 \
7
- \
r , ne \
2 o

Figure 2: Left: an instance of the Steiner tree problem with ferminals. All edges have cost 1. Right: if
we try to construct a feasible solution using full composeamt terminals of size less than 5, some edge must
be used twice. Two full components on 3 terminals are shogingudashed and dotted edges respectively.

In the rest of this section we describe some relevant relatell. In Section?2 we show an equivalence
betweenpartitions andsubtours In Section3 the partition uncrossing technique is described and we show
that items (1) and (2) of the abstract are equivalent. Ini@eétwe show equivalence with item (3) and give
other applications of our technique. Finally, Sectiotontains ideas for future work.

1.1 Linear Relaxations

To apply linear programming to a combinatorial optimizatgroblem, one typically assigns a continuous
0-1 variable to each possible element of a feasible solutth 1 meaning that element should be used and

0 meaning it should not, along with constraints amongsteivasiables (and possibly other auxiliary vari-
ables) to enforce that all integral solutions corresporfgasible objects for the combinatorial optimization
problem at hand. For NP-hard problems the linear programrapproach can be used to design approx-
imation algorithms (such as a 1.5-approximation algoriflamso-calledquasibipartite Steiner instances
[24, 25]) and also to implement exact integer programming algoréh{e.g., as applied to Steiner trees in
the theses of Warma{] and Polzin RO, 22)).

There is a great deal of literature on the study of Steiner lireear programs themselves, and of the
corresponding polyhedra (feasible regions of the LPs). WdgrEdmonds 9] and later Choprad] on the
spanning tree polytope led to a number of different lineagpms for the Steiner tree problem. Chopra and
Rao B, 7] and Goemansl[0] investigated these in quite a bit of detail. Goemans andidy[d2] showed
that LPs from several independent lines of work were all\ejant to thebidirected cut relaxation This
LP was the one used to obtain the 1.5-approximation algoritr quasibipartite graph24, 25 mentioned
above. There are some hopes that the strength of this rielaxaill lead to other algorithms, but none yet
have appeared for general graphs with constant approximgtctor better than 2.

In 1997, Warme 30, 31, 32] introduced a new linear program for the Steiner tree pmobldn fact,
this LP models the minimum-cost spanning sub-hypergrapblem, using the reduction outlined previ-
ously. Polzin et al. continued this line of work, showirii[23] that this program waésometimes strictly)
strongerthan the bidirected cut relaxation. Independently, extenavork of Chopra on spanning trees,
Konemann and Tarlp, 28] showed that a similar LP could be used to interpret the otyrdoest known
[26] approximation algorithm for Steiner trees as a primalt@lgorithm.

2 Partitions versus Subtours

The relaxation used by Konemann and Tan has different @nts than the one considered by Warme and
Polzin. In the next sections we will show that they are edaiva We define’z” := {E CV | |E| > 2} to be

the set of all possible hyperedges (i.e., terminal setsibfémponents). If there is no full component with
terminal se € %/, or if we have only computed the full components on at nkasrminals andK| > k,
then we se€x = «. For a selX, we define

o(X) = {o, if X = 0:

|X|—1, otherwise.

This notion of “size” or “rank” turns out to be natural in owetsng.
The hypergraph formulations use a relaxed indicator virigbfor each hyperedgk € 7. First, we
present Warme’s formulatioh.

minimize Z Ck Xk (6]
Kex
x>0 (1)
K)=p(R 2
KEZ%XKP()=p(R) (2)
VSCR: z xxP(KNS) < p(9 (3)
Keoz

2We adopt the following convention fronif]: a prime () symbol in an LP denotes that the feasible region is bounded.

The letter.¥ is short for thesubtour elimination constraints), which are a key feature of Warme’s LP.

A cyclein a hypergraph is a sequence of distinct vertices and didiyperedges, c eg>viee 5w €
--- € & 3 Vo. A spanning hypergraph isspanning (hyper)tred it has no cycles. Ii is the characteristic
vector of (the edge set of) a hypergraph afidas a cycle (with notation as above), then it is easy to s¢e tha
x violates the subtour constrair)(for S= {vo,v1,..., v }. Intuitively, cycles are bad since the connectivity
they provide is redundant (and hence not optimal).

Warme showed that the feasible integral points @f) are exactly the incidence vectors of spanning hy-
pertrees. Informally, this correspondence holds beca&)gedvents cycles an@) ensures that all terminals
are connected.

A partition of Ris a collection of set$7s |i = 1,...,t} such that eachg is nonempty, and such that each
r € Roccurs in exactly ongg. The setgt are called theparts of 1. For a partitionr, its rank r(7) is the
number of parts oft, i.e.,r({r,...,7%}) =t. Given a partitionrt of Rand anyK € ¢, we define theank
contributionrcf to be the number of parts af spanned by, minus one. Equivalently;cy is the rank
drop incurred byt if we merge together all parts intersectiig Given the incidence vectorof a spanning
hypergraph and any partitiomof R, Kdnemann and Tan showed that the following inequalityaitcl

Z xkrcg >r(m —1. 4)
KeJ

Note that the special case of inequality) {n which r(m) = 2 follows immediately from the definition of

a spanning sub-hypergraph. Note also that whies the unique rank-one partitiofR}, both sides of4)
vanish. We will show that the subtour constrairisdre equivalent to partition constraints, but first we need
alemma.

Lemma 2.1. For a partition 1= {m, ..., 7%} of R, where = r (1), we have
t
p(K) =rcg + le(K NT).
i=

Proof. By definition, K N 75 # 0 for exactly 14- rcf values ofi. Also, p(KN5) = 0 for all otheri. Hence

t
_;p(Kﬂm) > (Knml-1)=| % \Kmﬂ>—(rcﬁ+1)- (5)

a iIKNT5A£0 (i:Kmn;;éﬂ)
Observe thaf.xnr .0 KN 75| = |[K| = p(K) + 1; using this fact together with EquatioB) (ve obtain
t
Zp(Km M= > [Knm|-(rek+1)=p(K)—1+ (reg+1).
i= i:KNT5£0
Rearranging, the proof of Lemn#alis complete. O

Definelg to be the family of all partitions oR. We are now in a position to show that the polytope

3The characteristic vector of a s&ts the vectory (S) such thai x(S))s = 1 forse Sand(x(S))s=0fors¢ S

defined by () is equal to the polytope defined by the followipgrtition basedinear program.

minimize z C Xk ()
Kex

x>0 @)

K)=p(R 2

KGZ%XKP()=p(R))

VmeNg: > xkreg >r(m-—1 (6)
Ket

In the rest of the paper, let us denote the feasible regiorinéar program X) by £s(X).
Theorem 2.2(Subtour/partition correspondencé)he polytopess(%?’) and£s(.”’) are equal.

Proof. Notice that the constraintd) and @) are common to both formulations. We will show that(.~”")
C £s(#’) and then thats(#?') C £s(.).

Consider the constraint) for any fixed partitionrt = {rq,..., 7t }, sot = r(mm). We claim that this
constraint can be written ag)(minus certain constraint8); sincerr was chosen arbitrarily, this will prove
thatfs(.’) C £s(2'). In particular, for each X i <t, subtract the constrain8 with S= r5. We obtain

X K)— KN > p(R)— . 7
3 (P =3 pKm) = p(R)- 3 p(m) (7)
From Lemma2.1, p(K) — Sip(KN 1) =rcf. We also have(R) — 3;p(m) = |R —1—(|R| —r(m)) =
r(m) — 1. Hence the inequality7 that we derived as valid fdts(.") is exactly 6).

Conversely, let us write3] for a fixed setS as a linear combination o2) minus an inequality of the
form (6). Note whenS= 0 that @) is vacuously true so we may assu®¢ 0. LetR\S= {ry,...,ry} and
takerr= {{r1},...,{ru},S}. Subtract §) for this 77 from (2), obtaining

> x(p(K) —rcg) = p(R)—r(m +1 (8)

KeJ
Using Lemma2.1 and the fact thap(K N {r;}) = 0 for any j, K, we getp(K) —rcf = p(KNS). Finally,
asp(R)—r(m+1=|R —1—([R\S +1)+1= p(S), Equation B) is the same as3]. Sofs(#’) C
fs(.). O

By observing that.¢”’) and (#?') have the same objective function, we obtain the following.
Corollary 2.3. The LPY.¥"’) and (') have the same objective value for any cost function C.

The technique behind the proof of Theor@rfiis fairly simple, and so it is not clear if it is new. However,
the authors are not aware of any prior usage. We simply natehb technique can also be used to describe
an existing subtour based formulation of the bidirectedrelatxation (seel2]) in terms of partitions.

3 Uncrossing Partitions

In this section we describe the new partition uncrossingriegie. First, we motivate the result. The linear
program (??’) that we wrote above is actually different from the one usgé&Kbnemann and Tan. In fact,
their formulation did not use the constrai@).(Note that ifx is the incidence vector of the full components
in a Steiner tree, ther satisfies constraint2j. However, there are some cases in which this constraint
changes the strength of the LP; here is an example.

5

Example 3.1. Let R= {1,2,3,4}. Define the costs g>3 = Ci124y =0, Cz4 =1, and let all other
costs be infinite. Then the optimal value(o?’) is 1, whereas removing constraifff) weakens the LP and
reduces the optimal value to 0. For example, the charadtengctor of{{1,2,3},{1,2,4}} meety1) and
(6) but not(2).

It could be said that Exampl&1is somewhat artificial. In our application (using hyperdrapo model
full components of Steiner trees) the costs specified in a1 are clearly impossible. If the full
component{1,2 3} has cost zero, and all edge costs are nonnegative, thenhatthé path from 1 to 2
in this full component is itself a full component on termirsat {1,2} with cost zero, which contradicts
C(1,2) = 1. More generally, we have the following.

Definition 3.2. Let C be a cost function fro?” to R,.. We call Cnhondecreasing Cs > Cr whenever
SOT.

Lemma 3.3. In a Steiner tree instance with nonnegative edge costs, iEG@he cheapest cost of any full
component with terminal set K, then C is nondecreasing.

Proof. Let T C Sbe any sets of terminals, and tgbt(S) be a minimum-cost full component with leaf st

For each paifu, V) of terminals inT, there is a unique path joining those terminal® pi(S); let H denote

the union of these paths over all choicesi@ndv. Notice thatH is a subset obpt(S); since all edges in the
original Steiner instance have nonnegative codt,) < c(opt(S)) = Cs. Also, H is a full component with

leaf setT, so by definitionCy < c(H). HenceCr < c¢(H) <Cs. O

In this section we will show that i€ is nondecreasing, then removing constraif)tffom (2?') does not
change its optimal value. In other words, we can rewrite §ipelgraph-in-spanning-tree LP as follows:

minimize Z Ck Xk (22)
Kex
x>0 1)
VmenNg: > xkreg >r(m-—1 6)
KeJt

To be precise, Konemann and Tan interpreted the RobirikeXisky algorithm PR6] as an iterated primal-
dual algorithm, and4?) is the LP used in the first iteration. We will upartition uncrossingo show that
(2?) and (') are equivalent, and also equivalent to a “gainless treehfitation. Some other nice features
of this LP are:

e It is stronger than the bidirected cut relaxation.

e The optimum can be computed in polynomial time (e.g., Quayd31] gave a separation oracle for
")

e No extended variables are needed.
e There is essentially only one type of constraint A

Next, we introduce our new technique.

3.1 Definitions for Partitions

For any feasible poink of the program {?), we say that partitiont is tight for x if the constraint ©)
corresponding taris met with equality. Following notation introduced i8] let 7° denote the partition of
Rinto |R| singleton parts. Crucially, the constrai@) (s the same as saying thaf is tight for x; we want to
show thatr® is tight for some optimak of (2?). Let.7 (x) denote the family of all tight partitions for We
first show that the family of tight partitions has a specialictiure (forms a lattice). Second, we argue that
some optimal solution has a “large enough” tight family.

Given two partitionst and 7’ of R, we say thatt refinesm if each part ofr’ is contained in some part
of 1. See Figure3(a). To say thattr coarsengt is the same as saying thatrefinesr. It is easy to see that
if 7’ refinesr’ and 7' refinesm, thenm” refinesm. The sefl1r of all partitions ofR has an additional nice
property which is summarized in the following definition.

Definition 3.4 (Lattice operations) Let rr, 7 € Mg. Their join TV 1 is the most refined partition that
coarsens bothrand 7. TheirmeetrtA 17 is the coarsest partition that refines battand 7',

See Figure3 for an illustration. In the definition of join, when we say &hmost refined partition
coarsening botht and " we mean that, whenevem” coarsensgt and 17, then v 1’ refinesmn’. The
definition of meet is analogous. Definitidh4 hides something, because it does not immediately obvious
that such partitions exist; nonetheless the existencef gostandard, e.g., se@7]. (For reference, we
remark that in general, lattice is any partially ordered set where such meet and join operai® well-
defined.)

Here is an intuitive construction for joins and meets.

Fact 3.5. Let the parts oftbe ry, ..., 7% and let the parts oft be ..., 7@,. Then the parts of the meet
A 17 are the nonempty intersections of partgofvith parts of 77,

nAT ={mNm|1<i<t,1<j<uandmnNr#0}.

Given a graplG and a partitiorvr of V (G), we say that inducesrr if the parts ofrr are the connected
components of.

Fact 3.6. Let (R,E) be a graph that induces, and let(R E’) be a graph that induce®’. Then the graph
(R EUE') inducesmtv 7',

Analogously tor®, we definert* to be the coarsest partition & i.e., the partition with just one part.
The meet and join operations are each commutative due toifb@fi.4. We will later need the following
fact.

Fact 3.7. The meet and join operations are each associative.

3.1.1 Warmup: Graphs

Before diving in to our main uncrossing argument (for pamis in hypergraphs), we will prove an analogous
easier result for ordinary graphs. Lt denote the set of all edges Gfthat span two different parts af,

Er:= {uve E | uandvdo not lie in the same part af}.

(a): The dashed partition refines the solid one. (b): Two partitions; neither refines the other.

oo

(c): The meet of the partitions from (b). (d): The join of the partitions from (b).

®

O,
®

Figure 3: lllustrations of some partitions. The black datsthe terminal seR.

Chopra p] gave the following linear program for thminimum-cost spanning tré&ST) problem in ordi-
nary graphs.

minimize EECeXe (Z6)
x>0 9)
vmelg: X(Ex) >r(m)—1 (10)

The linear program %) is particularly nice in that there is always an integralimgtl solution (unless
somece < 0, in which case the program is unbounded). Notice that weviganthe hypergraph LP#) as
a generalization of Chopra’s LPAg), by settingCx = o for all componentX with |K| > 2 and allK ¢ E.
Similarly, (") generalizes a spanning tree LP originally due to Edmo@Hdi (£%s), just as in (), we
define partitiort to betight for x if the corresponding inequalityl () holds with equality.

Chopra showed ing] that (%%g) is exactly as strong as earlier MST formulations by Edmomad
Fulkerson. In proving the equivalence with Fulkerson’s CRppra also showed a result analogous to what
we want for hypegraphs: that adding the constrigt: xe = |R| — 1 to (#’c) does not affect the optimal

8

value (i.e., there is an optimal solution t¢7¢) for which ° is tight). In contrast to our hypergraph result,
where the cost function must be nondecreasing, Chopral#t reslds for all nonnegative cost functions. We
present a new proof of this result as a warmup to the hypengrape. First we need the following technical
lemma.

Lemma 3.8. For any T, 17’ € Mg,
r(mv) +r(mAm) >r(m+r (). (11)

Proof. ChooseFy so that(R,Fp) is a forest that induces A 7. SincerrA 1 refinesmtwe can pick a sef
of edges disjoint froni such thaf R,y UF) is a forest that induces. Similarly let(R,FoUF’) inducer’
andFyNF’ = 0. Using FacB.6, (R FlpUF UF’) inducesmtV 17’

Since (R, Fy) is a forest onR| vertices withr(1TA 1) connected componentsy| = |R| — r(rTA 7).
Similarly [FoUF| = |R|—r (), and|FRoUF’| = |R| —r(77), and agR, FoUF UF’) is not necessarily a forest
we havellpUF UF'| > |R| —r (Vv 1T'). Hence rearranging,

r(mv i) +r(nAm) > |R —|Fo|+|R — |RUFUF'| = |R — [RUF| + |R| — |RoUF’| +|FNF/|
2\R]—]FOUFH\R]—]FOUF’]:r(n)+r(n’). O

We say that partitionsrandr’ crossif T neither refines nor coarsens See Figuré(b) for an example.
The following lemma is trivially true ifrand ' do not cross. In this case one refines the other, w.l.o.g.
refinesr, and sorrv ' = mandmmA M = 1.

Lemma 3.9 (Meet/join closure of tight partitions in graphs)et x be feasible fof.%?c). If mand i’ are
both tight for x, thent\ i’ and A 1’ are both tight for x.

Proof. Let x(S) denote the characteristic vector® E. We can write the partition inequalities ofAs)
asx- X(Ep) >r(m) — 1.
Since the partition inequalitied Q) for rtv 7 andrA are valid for,

X- (X(Emarr) + X (Enyrr)) > 1(mAT) —1+r(mv) — 1. (12)

Using Fact3.5, Eqv = EfUE}, and using FacB.6, E v C ExNEy. The component-wise vector
inequality
X(En) + X(En) = X(ErUEx) + X(ExrNEx) > X (Eqar) + X (Envrr) (13)
then follows.
Now put everything together; in the first inequality we als®d to note that > 0.

X- (X (En)+ X (Ex)) > x- (X (Epnre) + X (Enyr)) =2 v (mAT) =141 (v i) =1 > r (1) — 141 (77) — 1.

But sincerr and 17’ are tight, the leftmost and rightmost terms of the abovelunéty chain are equal. In
particular Equationi(2) holds with equality, which implies thatA 7’ and Vv 17’ are tight. O

Theorem 3.10([5]). Let ¢ be nonnegative. There is an optimal point x(6f) for which the equality
S et Xe = P(R) holds (i.e., for which® is tight).

Proof. Let x be a basic optimal solution tos). Hencex is an extreme point ofs(Zz). Let 7 be
shorthand for7 (x).

Claim 3.11. For each edge’ec E such that ¥ > 0, somerr € .7 exists with & € E.

Proof. Suppose otherwise, that every partitmnvith € € E; is not tight. Define the point’ by

o {xe, e#e

Xe—E, e=¢".

Now there is some& > 0 for which X is feasible. Notice that+ (x—X) > x and so, by the definition
of (Zc), x+ (x—X) is also feasible. Buk=x/2+ (x+ (x—x))/2, sox can be written as a convex
combination of two elements d@&(%s), contradicting the fact thatis an extreme point afs(#g). O

Let A .7 denote the common meet of all tight partitions fofwe use FacB.7 here). FacB.5implies
thatU. » Exr = Ep 7. Claim 3.11establishes that, for every edgeeitherxe = 0 ore € U, » Ex. Hence
X(E) =x(Ep 7). By Lemma3.9, A 7 is tight and so

X(E)=x(Epz)=r(\T)-1 (14)
On the other hand sinoesatisfies the inequalityl() corresponding tat°,
X(E) = X(Esp) > r(n°) — 1. (15)

Putting Equations(4) and (L5) together we seg(A.7) — 1> r(n®) — 1, and ag™® is the unique partition
of maximum possible rank) .7 = m°. Using Lemma3.9, we see thatt® is tight for x. O

3.1.2 Hypergraphs

Now we return to the hypergraph LP setting. Unfortunateg/ “tthvious” uncrossing by directly comparing
the four constraintsg) for T, 7, mVv ', A ' does not work. E.g., compare the following example with
Equation (.3).

Example 3.12. If K = {1,2,3,4}, m= {{1,2},{3,4}}, 77 = {{1,3},{2,4}} thenrcf +rcf < rc'™ +

TIATY
re .

We use a slightly more complicated set of constraints tdoéistawhat we want.

Definition 3.13. Let T € Mg be a partition and let - R. Define thenerged partitiomm(,S) to be the most
refined partition that coarsens and contains all of S in a single part.

See Figurel for an example. The notation introduced in Definitidri3allows us to restate an earlier
remark:
rcg = r(m) —r(m(m,K)). (16)

Here is our new uncrossing technique.

Lemma 3.14 (Partition uncrossing)Let 1,7 € Mg and let the parts oft be 14, ,.... The following
(in)equalities hold:

e rmfee] +feek] = [reR]S [rel] 0

r(m) [r() 1] +[r(m) -1 = [r(n/\n’)—l]+Zi[r(m(n’,ﬂi))—l] (18)

P

Figure 4: lllustration of merging. The left figure shows ali@opartition rTalong with a (dashed) sé&t The
right figure shows the merged partition(77,S).

The bracket$:] have no special meaning but only emphasize the paralleitataiof the equations; they

will soon be interpreted as adding and subtracting mulipliethe constraintq). Before we prove Lemma
3.14 let us show how its result is used.

Lemma 3.15. Let x be feasible fo(~?), and let the parts oftbemm, 75, If rand 7’ are both tight for x,
then for each Ke ¢ with x« > 0 we have

r(m) [rcg] + [rcﬂ = [rcg/\ﬂ} +r(_znl) [rc?g(n,’m}. (29)

Moreover,tA 17 and each rfwt', 13) are tight for x.

Proof. Let m={rm, 1, ... }. Using Lemma3.14, we have
r(m

r(m [ZXKICE ZXKICE] >(11 [ZXKICWV{ +i; ZXKrcr}?(nIm]

>0 [r(mAam) — +Zl —1]

+

=0 r(m) [r(r) — 1] +[r(m) — 1]

where ¢) holds since) is valid forx € £s(#?). Sincerrandr’ are tight, the first and last terms in the above
inequality chain are equal, so all inequalities are met wihality. The fact that«) is met with equality
implies that the partitionsr A ' andm(77, 15) for all i are tight; the fact thatl(?) is met with equality implies
that Equation 19) holds for eactK with xx > 0. O

Theorem 3.16(Meet/join closure of tight partitions)Let x be feasible fof~?). If mand 17 are both tight
for x, thenmv i and A 17 are both tight for x.

Proof. Repeatedly applying Lemnfal5 observen(---m(m(7', 1q),), --) = TV 17 is tight. O

11

So although the uncrossing operation for hypergraphs i rmomplicated than for graphs, Theorem
3.16allows us to proceed more or less as we showed in Se8tibd. We shall now prove the partition
uncrossing inequalities. For both proofs, we first modify lypergraph by contracting each partof 7.
Notice that in the contracted grapha w7 = 1°, i.e., |5 N njf| < 1 for each partg of mand each pamj of
. To justify this approach we must remark that the contractioes not affect(r),r(77),r (A 1) or any
r(m,).

Proof of Equation(18). Fix i. Since|rfN nj| < 1 for all j, the rank contributiorrcg is equal to|rg| — 1.
Then using Equatiornl@) we know that (m(77, 15)) = r (77') — | 75| + 1. Thus adding over ail the right-hand
side of Equation18) is equal to

r(m)
IRI—1+ _;(r(ﬁ)— I78]) = IRl =1+ r(mr () — R

and this is precisely the left-hand side of Equatib8)(O

LetK € ¢ be a hyperedge of the original graph, which may not necég$aria union of parts oftA 17’
DefineK’ to be the union of all parts af A ™ meetingK, i.e.,K’ is the part ofm(rrA 17, K) containingK.
Notice thatk andK’ have the same rank contribution with respecitta’, mA 7' and eachn(77, 75). Hence
contracting all parts oftA 17’ is justified in proving Equationi(7), as we can considé¢’ in the contracted
hypergraph instead df.

Proof of Equation(17). Fixi. Since|rfN nﬂ < 1forall j, we have

rcf — rCr}?(n’,rq) > p(rENK) (20)
because, when we merge the partstoitersectingrg, we makeK span at leasp (75 N K) fewer parts.
Adding the right-hand side of Equatiofid) over alli givesy; p(1NK), which by Lemma2.1is equal
to p(K) —rcf. Hence, we have

r(m r(m

v m(77,7%) T
rcg —rc > p(mrNK)=p(K)—rcg.
i:z (rek K) i:E () (K) K

Finally note thaip (K) = rcﬁm and the above equation, after rearranging, yields Equétion O

Next we explain what sort of tight partitions can be assunweelxist. The basic idea is that, for any
SC T C R, we can always decreage by a little bit and increasgs by the same amount without increasing
the overall cost; so eithetr = 0 or this “replacement” is prevented by a tight partition.

Lemma 3.17. Let C be nondecreasing. There is an optimal solutiotoX.2?) such that the following holds:
for any K with X > 0 and for any re K, there existsr e .7 (x*) such that the part ofr containing r contains
no other vertices of K.

Proof. Let x be any optimal solutionxc > 0, andr € K as described. Suppose that iee .7 (X) exists
as specified in the statement Lem@a7. Let ex denote the unit basis vector for compon&nt For the
moment assumg| > 2. LetK’ = K\{r} and defineX = x—tex +tex: wheret > 0 is a parameter. Since
C is nondecreasing has objective value no more than In order forx to be feasible for £?), we need
t <xk and

ZI‘CEXK—F(I'CE/—I‘CE)tZI'(T[)—l, Ve MR

12

Notice thatrc), —rcff is —1 when the part oft containingr contains no other vertices if, and 0 otherwise.
By hypothesis (i.e., our choices afandK) all partitionst with rcg, — rcf = —1 are not tight, so we can
take

t =min{xx, min ZchxK —r(m+1}>0.

Trey, #rey

The resulting< no longer violates the conclusion of this theoremKoandr. Finally, if |K| = 2 then the
same approach works except that we simply defirex —tex.

We iterate the replacement operation described in the qursyparagraph until no sudf andr exist;
after each iteration redefine= x'. We will complete the proof by showing that only finitely maitarations
can occur. Notice that/ (X') O 7 (x). Hence, the number7 (x)| of tight partitions is nondecreasing.
Furthermore, notice that in each iterationt # xx then|.7 (x)| increases, and otherwise the quantity

S (21)

Sc. % xs#0
decreases. Since the quantiii) and|.7 (x)| are integral, nonnegative, and bounded, only a finite number
of iterations can occur. We defixé to be the finak, and the proof is complete. O
With these tools, we can complete the main proof of this eacti

Theorem 3.18. Let C be nondecreasing. Then of all optimal feasible poifitéZ8), there is one for which
(2) is valid (i.e., for whichrg is tight).

Proof. Letx* be an optimal solution as specified by Lem#a7. Let 7 be shorthand for7 (x*).
For any hyperedgK such thatg > 0, and for any{u,v} C K, the conclusion of Lemma 17guarantees
that {u,v} € E; for someme .7. Notice furthermore theE) 7 = Upc 7Er. It follows that any hyperedge

K such thatrc/K\y < |K| — 1 must satisfyc; = 0. Sincex* meets inequality®) with m= 1,
r(ml)—1< ZXMK' —1) = ZX*Krc/K\g.
But A 7 is tight and so the right-hand side of the above equation eae\ritten
r(m)—1< Zx*Kchf’ =r(\7)-1
It follows that A .7 = i°. By Theorem3.16 1 is tight for x*, i.e., @) is valid for x*. O

Corollary 3.19. For any Steiner tree problem instance, the optimal valugs:6f), (#?') and (%) are equal.
Proof. This follows immediately from Theorer.2, Lemma3.3and Theorens.18 O

3.1.3 Polyhedral Results

Analogously to the bounded LP relaxationg() and () of the spanning hypertree problem, the following
LP is a bounded LP relaxation for the spanning tree probleardmary graphs.

minimize EEcexe (2L)
x>0 (22)

> e~ IRI-1 (23)

Ve lg: Z Xe >r(m) —1. (24)

13

As we proved, both programsAs) and (#7;) have the same optimal value for nonnegative cost func-
tions. However, as soon as any edge has negative cost, prdgra) is clearly unbounded. With a little
more work we can obtain a proof of the following fact. Td@minantof a setSis the sefy| Ix€ S:y > x}.

Fact 3.20([5]). The dominant of () is £s(Zc).
In contrastfs(#?) is notthe dominant of s(#?’); we obtain an example by re-examining Examplé

Example 3.21.Let R= {1,2,3,4}. Then the point x= €153, + €124 € £s(#’). However, in order for x
to be in the dominant afs(#”'), there needs to be a point of the form=yae; 53, + Be1 24y in (7).
The partition inequalitieg6) require a, 8 > 1 but the equality(2) requiresa + 3 = 1. So no such y exists.

Other more complicated generalizations of Faé0do hold, however.

4 Applications of Partition Uncrossing

Uncrossing has played a critical role in recent work in treaaof network design, e.gl171, 14, 17,18, 19].

In that setting one uncrossestsin an LP withsubtour elimination constraintsather than partitions as we
have done hefe In this section we prove a property of the polyhedfei.#?) in the spirit of these results.
A set of partitions is called ehainif no two of the partitions are crossing; equivalently, aiset chain iff it
can be written in the formirt¥ ..., ri!!} wherertll! refinesri) for all t > j > i > 1. Thesupportof a vector
is the collection of indices where it is nonzero:

supp(x) = {i | xi # 0}.

Using a span argument, we will establish that every extreaiet pf £s(.2?) is defined by its support and
a chain of tight partitionsin the sense that it is the unique solution to those comitraiThe common
analogous result in the subtour setting uses a so-citathar family of subtours in place of the chain of
partitions. We have chosen to ussganbased argument; the original span argument, due to I4jnHas
been repeated in several places (e, 18, 29]) and so we hope that the general idea is already familiar.

We need to rephrase the result of the previous section solesduitable for the span argument. Given
two partitionsrt= {1, 7®, ... } and 7, define thecrossing partsp,, () to be the set

epp (M) = {5 € | m(7T, %) # 7).
Fact 4.1. We have thattrefinesr if and only ifcp,, (1) = 0.

Corollary 4.2. Suppose x is feasible f¢r?) and thatrrand 17 are tight for x. Then for each K withoce> 0,

rcf +[cpp (M| ek =xcf "+ S)
TiEcpy (1)
Proof. Apply Lemma3.15and subtractr (1) — |cp, (1)|)rcg from both sides of Equatiorip). O

4The general idea is that 8 S are tight crossing subtour sets, then so®ieS andSN'S. Whenr? is tight, one can show
this is equivalent to the meet/join closure of tight paotis (Theoren3.16) modulo the subtour/partition correspondence (Theorem
2.2). Whenr® is not tight however, we have not found a way to apply previmrsossing results to our setting.

14

In the following, X* is a feasible point of ¢?). Without loss of generality (by deleting items frop’)
we assume tha§; > 0 for allK € .#. Let sparir) denote the vector

spar(m) := (rcg)kex s

i.e., the vector of coefficients in the constraifi}.(For aset.” of partitions let spafi”) denote the vector
space spanned by the vectdspar(s) | s€ .7'}.

Lemma 4.3(Span lemma) Let X be feasible fo.%?). Let% be any inclusion-maximal chain if (x*).
Thenspar{¢’) = spar{.7 (x)).

Proof. Again let 7 := 7 (x*). Suppose for the sake of contradiction theis a tight partition such that
spar{m) ¢ spar{¢’). Pick such a counterexampiehaving minimal rank.

Now % must contain some partitio that crossest, since% is a maximal chain inZ, and if no such
partition existed, we could addto . ChooseC to be the most refined partition i# that crossest. The
following intermediate claim will be needed later. We s#strictly refinesrif 1 refinesrandmn’ # m.

Claim 4.4. If C' € ¢ and C strictly refines C, then Qefinesrr.
Proof. By our choice ofC, note thatC’ and T don’t cross. So eithe€’ refinesm or vice-versa. But ifit

refinesC’ then (sinceC’ refinesC) then also refine<C, which contradicts the fact th&@ andr cross. So
C/ refinesr. O

Let the parts o€ beC4,Cy,..., as usual. Sincec > 0 for all K, Corollary4.2 can be restated as saying
that
spar(C) + [cp,(C)|-spar{m) = spaimAC)+ 5 spaim(m,Ci))
Ciccp,(C)

and that the partitionst A C,m(1t,C;) are all tight. By Factd.1, cp,(C) is nonempty. Since spéD)
spar{%’) and spafr) ¢ spar(%), it follows that either spafitAC) ¢ spar{%’) or spanim(7,Ci)) & span%)
for someC; € cp,(C).

Case 1: spaniiitAC) ¢ spar{%’). We claim in fact thattAC can be added to the chéifi, contradicting the
maximality of”. We need to establish that\ C crosses no partitiof’ € 4. There are two subcases:

e CrefinesC’, in which caser A C refinesC'.
e C/ strictly refinesC. Then using Claimt.4, we know thatC’ refinesm, soC' refinesmAC.

Indeed, in either caseA C andC’ do not cross.
Case 2: spanim(11,C;)) & span(%’). Notem(11,C;) is tight. SinceC; € cp,(C), m(1,Ci) has smaller rank

thanm. This contradicts our choice af. O

4.1 Extreme Points

The main consequence of Lemm& is that extreme points dfs(#?) are zero in most of their coordinates.

Theorem 4.5. Let X be an extreme point dfs(#”) and let% be an inclusion-maximal chain i (x*).
Then X has at mos}#’| nonzero coordinates.

15

Proof. Consider the family of {”)’s constraints that hold for* with equality. We have assumed thét> 0
for all K € 2, so all of these constraints correspond to tight partitieag a well known fact in polyhedral
theory that, since* is extreme, the span of these constraints is full-dimemgjare., span7 (x*)) = R
Using Lemma4.3, spari%’) = spar{.7 (x*)) = R*". However, the dimension of spg#i) is at most%’| and
hence|l7'| <|%). O

Corollary 4.6. Each extreme point dfs(2”) has at mostR| — 1 nonzero coordinates.

Proof. Any chain inlg has at mosfR| members, since whenevat strictly refinesrrwe haver (1) > r(m).
Without loss of generality we can remove the vacuously trestaint corresponding ta* and then the
longest possible chain h&R| — 1 members. O

Note that any (graph) spanning tree meets this bound. @oyall6is reminiscent of results in a recent
paper by Goemansl]] dealing with minimum-degree-plus-two spanning treeskeLéGoemans, we can
establish a “local sparseness” result for the extreme paihts(<?). We also obtain an iterated rounding
proof of the following well known result; a similar proof isvgn in [18] for the subtour formulation.

Corollary 4.7 ([9]). Every basic solution of 27G) is the characteristic vector of a spanning tree.

Proof. Consider a basic solutiox and the support grapH := (V,supfx)). Corollary 4.6 applies since
(Z) is a special case of®), and so there must be some vertex V with degree one iid. To meet the
partition inequality for{{v},V\{v}}, the single edge of H incident onv must haves. > 1; and ifxe > 1 it

is easy to see the solution is not basicxse- 1. Now deleter ande and consider the remaining graph. The
projection of the old basic solution on the new edge set i€ @gain basic. Finally, the result of Corollary
4.7 follows by induction. O

Using Corollary4.6 we have computed all extreme pointsfaf{.2?) for small values ofR|. We say two
extreme points oR areisomorphicif they are the same under some relabelingRot.e., e(1 2 3) + €34} IS
isomorphic toe; 3 4, +€(23- The number of nonisomorphic extreme pointse() is 6 for |R| = 4, 27
for |R| =5, and 407 fofR| = 6. These computational results have informed our study efeh Ps. For
example, we noticed and subsequently proved thRigasws, some extreme points exhibit bad fractionality;
hence an iterated rounding approach ad # (infortunately looks impossible.

4.2 Gainless Tree Formulation

Given an ordinary spanning trdeof R and any hyperedgk C R, we define thegain of K in T to be the
cost decrease whdis included in the spanning tree,

gainr (K) :=¢(T) —mst(T/K) — Cx,

wheremst(T /K) is the minimum cost of any spanning tree in the gréifter the terminalK are contracted
into a single pseudonode. So to say tKahas positive gain means that a cheaper spanning hypertree is
possible wherK is included. We say that a trdeis gainlessif gainr (K) <0 forallK € 7.

Definition 4.8. The quantityf is the maximum cost of any gainless tree T with nonnegatige eeights.
The quantity ¥ is the maximum cost of any gainless tree T with arbitrary edggghts.

These definitions essentially come from Karpinksi and Zefdky [15]. They used full components and
gain to devise a novel approximation algorithm for the Stetree problem, which had the best approxima-
tion factor known at the time. To be precise, they defined glsiquantityt® without specifying whether or
not the edge weights could be negative. Using partitionassing, we will prove the following theorems.

16

Theorem 4.9. The quantity t is equal to the optimum value ¢7').
Theorem 4.10.The quantityf is equal to the optimum value ¢f?).

Karpinski and Zelikovsky applied preprocessing to theaprs, hence the full component cost function
C is nondecreasing in their setting. Hence, using Theofe®n Corollary 3.19 and Theorem?t.10 we
discover an interesting fad from [15] has the same value whether or not negative tree edges anedll
Also of note is the fact that‘ was used in 5] as an upper bound in one place and as a lower bound
in another; this resembles an LP optimal value already,esthe optimal value in (say) a minimization
program is a lower (resp. upper) bound on the objective valaay feasible primal (resp. dual) solution.
The LP dual of ¢#'), which we will need, has a variablg" for each partitionrt € Mr. Notice that
the equality constraint?] is just the same as saying)(holds with equality for the partitiom®, soy”o is
unconstrained while each othgf should be nonnegative. Hence the LP dual@f)is

maximize Zl (r(m —1)-y" (2")
Tel Ir
ve NR\{r} : y'>0 (25)
VK € X : y'rcf < Ck (26)
TelIr

For anyy € R™®, definec(y) to denote the objective value pin (27(,). Call a (not necessarily feasible)
solutiony of (?’") chain-supportedf supp(y) is a chain.

Our proof of Theoremt.Qworks in three steps, which we now sketch. First, by givingial éhterpreta-
tion of partition uncrossing (Lemnia14), we show that.¢?’) has an optimum that is chain-supported. Sec-
ond, we define a surjective functi®i$TDual; it maps each spanning trédeof Rto a chain-supportegdsuch
that satisfies45), and such that(y) = ¢(T). Third, we show for eacK that 6) holds fory = MSTDual(T)
if and only if gainy (K) < 0. Hence using these properties,

opt(2") = max{c(y) | y is chain-supported 26) holds, and for alK € .#" (26) holds}

=M max{c(T) | for all K € #",gainr (K) <0}
7

We elaborate on (1) and discuss TheorefDafter proving the supporting claims, which now follow.
Lemma 4.11(Dual uncrossing) (#?’") always has an optimum, guch that y is chain-supported.

Proof. Suppose is any feasible solution tof’’*) such that two crossing partitiorrs 77 havey™,y™ + 0.
Note thatrtt does not cross any other partition, so we may assume/fhgf > 0. Lete” denote the unit
basis vector for partitiomr. Define

r(m
y i=y—t-(r(me” +e7) +t (e’“” + Zlem(”m)
i=
wheret > 0 is a parameter. We would like to increasentil one of the termg’™ or;/’f becomes zero, i.e.,

we claim that putting
oyt
t =min m,y

SFurthermore, the analysis ia9] is correct under either interpretation.

17

produces a feasiblg with the same objective value gs From Equation 17) we deduce that thiy is
feasible for (#'*); from Equation {8) we deduce thay has the same objective valueyasBy uncrossing
mand 7 we mean the map+— Y.

With the uncrossing operation formally defined, we can catepthe proof. Note that®’) is feasible
and bounded, whenceX'") is too. For a feasible solutiopof (22'") define

ranksum(y) = z y".

Tr(m)=i

Let y, be a optimal solution 4?’") that is maximal with respect to lexicographic ordering ba tector
(ranksum(y.),ranksum_1(ys),...); to see that suchw exists, note that it can be computed by solving a
series of linear programs. Now if the supportypfwere not a chain, then it contains two crossed partitions
mand7r. By uncrossing them iy, we increasg’™ " . But whenmrandt cross, it is not hard to see that

r(mA 1) > max{r(m),r(m)}

and it is easy to see that
max{r (7),r ()} > r(m(rt, 7))

for alli. Hence by uncrossingandr? iny., the lexicographic value dfanksum(y.), ranksum_1(ys),...)
strictly increases. This contradicts the maximalityypf Hence no suchr, 7' exist, andy, is a chain-
supported optimum tog’"). O

4.2.1 MST Duals

The polytopefs(275) is commonly called thepanning tree polytopbecause it is the convex hull of the
incidence vectors of all spanning trees@fWe will need its LP dual, which follows.

maximize Zl (r(m—1)-y" (2'5)
Ve Mr\{r°} : y'>0 (29)
Yuv e E(G) : z y" < Cuy (27)

TLTT Separates fromv

Note that the objective value inf’;) is c(y), the same objective from®’"). Additionally, in (#') and
in (£) the variable)/’Tl is vacuous, i.e. it can have any value without affecting #eesibility or optimality
of the solution. So from now on we asswgdé = 0 for convenience.

Chopra p] used the LPs{’};) and (#';) to give a primal-dual interpretation of Krusal's MST algbm
(see also6]). WhenGis a tree, althouglis(#) is just a single pointfs(#”’) is useful for our purposes.
We summarize Chopra’s result (specialized to the caseziimt tree) in the procedudSTDual.

Theorem 4.12([5]). For any tree T, the dual solution returned MgTDual(T) is feasible and optimal for
(2'%), and chain-supported.

Proof. The proof of feasibility and optimality is standard (sBgl[6]) and is therefore omitted, although here
we are also allowing for negative-weight edges. The fadtyths chain-supported follows by construction,

sinceny] refinesri” forall j > 1. O

18

Algorithm 1 The algorithmMSTDual(T).

1: LetW = {c(e) | ec T} be the set of distinct edge costs®n
2: SortW into the increasing sequenéé= (Wi, ..., W)

3: Fori =1tot let 7' be the partition oR induced by the graptR {e€ T | c(e) <wi})
4: Returny, 1= wiet 4 St (wi— Wi_l)e”y] (xNote 7tY = 79%)

Corollary 4.13. For any tree T on vertex set R, we hay& g= c(MSTDual(T)).

Proof. Apply strong LP duality to the result of Theorefril2, and use the fact that the characteristic vector
of T is an optimal solution to4?'1). O

We also need to show th#8TDual is surjective. The exact technical requirement is encapsdlin the
following lemma.

Lemma 4.14. Suppose Y satisfi€@5) and y is chain-supported. Then there exists a tree T on vedeR
for which y=MSTDual(T).

Proof. Denote the chain supp) U {m°} by !, ii?, ... mt) wheren refinesm'+¥ for 1 <i <t. For
convenience leti' ™Y denotert!, the coarsest partition. Denote thé-coordinate ofy by ylil.

We now define a seEl! of edges for each ¥ i <t. We claim such sets can be chosen so that
(R,uijzlE[”) inducesm!! for each 0<i <t. The base case= 0 clearly holds. Then in the induction
step, sincet! refinesriitY, such a seEll can be chosen — informall§ll is a spanning forest of the parts
of 'tY whenmt! is contracted.

Now let T = U_,E, where we assign cogt|_;y!!l to each edge ifEll. WhenMsTDua1(T) runs,

i = 7l for all i, wy =y, andwi —w;_; =yl for all i. Hence the output. is equal toy. O
The following lemma is the final technical ingredient.

Lemma 4.15(Dual interpretation of gain)Let T be a tree on vertex set R. Let=yMSTDual(T). Full
component K has positive gain in T if and only if y violatesitteguality (26) for K.

Proof. The key fact is that
ms{(T) —ms{T /K) = 3 y"rei. (28)
T

Once we establish Equatio8), Lemmad4.15follows since then, by the definition of gain,

gainr (K) = mst(T) —ms{(T /K) —Cx = 3 y"rcg —Ck (29)
T
and the right-most term of Equatiof9) is positive iffy violates ¢6) for K.

We need to determine the cost of a minimum spanning trégin Recall that Kruskal's MST algorithm
operates by examining all edges in increasing order of vigigtd constructing a solution of each edge that
does not create a cycle with the partial solution up to thaitpo

Now, the effect of contracting(is that, at the start of the algorithri is connected, and we need to
connect the vertices df to the rest ofR. As we run Kruskal's algorithm on the graghy/K, there will
be exactly|K| — 1 edges that form cycles with the partial solution; call thesigesey,...,e;. Then the

19

minimum spanning tree of /K is justT\{ey,...,eq}. Nowms{(T) — ms{T/K) = 5 ; c(&), but we also

claim that ;

> cla) = ¥ yref (30)
i= T

which in turn establishes Equatiogd). A proof of Equation 80) (which is not difficult, but requires more
notation than we wish to develop here) appears as patitpf pmma 5]. O

Proof of Theorem.9. The step needing elaboration is the equality (1) in the sl@giten earlier. By Lemma
4.14

max{c(y) | y is chain-supported 26) holds, and for alK € ¢ (26) holds}
=max{c(MSTDual(T)) | for all K € .#" (26) holds aty = MSTDual(T)}

Then applying the dual interpretation of gain (Lem#ab) and the fact that(T) = c(MSTDual(T)),

max{c(MSTDual(T)) | for all K € ¢ (26) holds aty = MSTDual(T)}
=max{c(T) | forall K € #",gainr (K) <0 }. O

We can obtain essentially the same result when working vkighdual of the unbounded formulation
(), which we denote by4?*). Notice that the only difference betweeg?() and (#'") is that in (&7*),
y"0 has to be nonnegative. The analogous components that dentpée proof of Theoremd.10 are as
follows.

° tj{/ and the optimum value of®) both are well-defined if€ > 0.

e Dual uncrossing as defined in Lemmd.1can only increasgz"o, and so is applicable ta®*) .

e The construction$!STDual and Lemmad.14 are unchanged. We need only to note M§t2 0
implies that all edge costs df are positive, and vice versa.

5 Future Work

The bidirected cut formulatioris one of the most well-known and deeply-studied LP relaxetiof the
Steiner tree problem. There are several equivalent (corngeended) formulations, but the “natural space
of the LP consists of a relaxed indicator variakidor eache € E. See [L2] for a comprehensive survey of
results in this formulation. The following result is due tolBn and Vahdati Daneshman@d).

Theorem 5.1. The LP(.’) is (sometimes strictly) stronger than the bidirected clexation.

The preprocessing we described in the first section can heedi@s a transformation that produces
another graph, rather than a hypergraph. Initially let the graphG’ consist of vertex seR and no edges.
Then, for each full componeit € %, compute the cheapest full componemt(K) with leaf setK, and
add a newcloneof that full component intd3'. In the resultingG’, every Steiner node belongs to exactly
one (cloned) full component. By standard metricity assuomgt(see, e.g.,1B]) we can assume that every
Steiner node has degree at least 3. We call tipieprocessedjraph.

Let (#") denote the bidirected cut relaxation for a preprocessguhgsirengthened with the constraint
that in each (cloned) full component, all edge values araledthe following result can be proved using
techniques fromZ43].

20

Theorem 5.2. The formulationg %) and (') are equally strong.

In fact, the result can be framed as a polyhedral equivaldncprojecting each full component’s (equal)
edge values onto a single variable.

We furthermore conjecture even without the strengtherthmy| Ps are equal in a certain natural setting.
The set” of all full components islown-closedf wheneverK € 7, J C K and|J| > 2, thenJ € .7".

Conjecture 5.3. Suppose G is a preprocessed graph, a#rdis down-closed. Then the bidirected cut
formulation has the same optimal value(ag’).

We ultimately hope that the results of this study have apptios beyond connecting between existing
papers. One possibility is to use the LPs to get a new and wedrprimal-dual approximation algorithm
for the Steiner problem. If Conjectute3is true, then it might be possible to use the L#'] to bound

the integrality gap of the bidirected cut formulation in sesituations — at the moment the best lower and
upper bounds1] are 87 and 2.

References

[1] A. Agarwal and M. Charikar. On the advantage of networlling for improving network throughput.
In Proceedings, IEEE Information Theory Worksh2p04.

[2] A. Borchers and D.-Z. Du. Th&-Steiner ratio in graphs. 1ACM Symp. on Theory of Computjng
pages 641-649, 1995.

[3] E. R. Canfield. Meet and join within the lattice of set jit@whs. Electr. J. Comh.8(1), 2001.

[4] M. Chlebik and J. Chlebikova. Approximation hardsed the Steiner tree problem on graphs. In
Proceedings, Scandinavian Workshop on Algorithm Themages 170-179, 2002.

[5] S. Chopra. On the spanning tree polyhedr@perations Research Lettei&25-29, 1989.

[6] S. Chopra and M. R. Rao. The Steiner tree problem 1: Fatimuls, compositions, and extension of
facets.Mathematical Programmings4:209-229, 1994.

[7] S. Chopra and M. R. Rao. The Steiner tree problem 2: Ptigseand classes of facetslathematical
Programming 64:231-246, 1994.

[8] S. E. Dreyfus and R. A. Wagner. The Steiner problem in bsapletworks 1:195-207, 1972.
[9] J. Edmonds. Matroids and the greedy algorithvtath. Programming1:127-136, 1971.

[10] M. X. Goemans. The Steiner tree polytope and relategihmalra. Math. Program, 63(2):157-182,
1994.

[11] M. X. Goemans. Minimum bounded degree spanning treelSOICS pages 273—-282. IEEE Computer
Society, 2006.

[12] M. X. Goemans and Y. Myung. A catalog of Steiner tree folations. Networks 23:19-28, 1993.

21

[13] C. Gropl, S. Hougardy, T. Nierhoff, and H. J. Promelppkoximation algorithms for the Steiner tree
problem in graphs. In X. Cheng and D. Du, edit@giner trees in industriepages 235-279. Kluwer
Academic Publishers, Norvell, Massachusetts, 2001.

[14] K. Jain. A factor 2 approximation algorithm for the geslezed Steiner network problen€ombina-
torica, 21(1):39-60, 2001. Preliminary version appeared at FOI&B.1

[15] M. Karpinski and A. Zelikovsky. New approximation alggthms for the Steiner tree problemg.
Combinatorial Optimization1(1):47-65, 1997.

[16] J. Kbnemann and K. Tan. A fresh look at Steiner treese@y vs primal-dual algorithms. Technical
report, University of Waterloo, 2006.

[17] L. C. Lau, J. Naor, M. Salavatipour, and M. Singh. Sualile network design with degree or order
constraints. IISTOC 2007. To appear.

[18] L. C. Lau and M. Singh. Approximating minimum boundedycee spanning trees to within one of
optimal. InSTOGC 2007. To appear.

[19] V. Melkonian andE. Tardos. Algorithms for a network design problem with sing supermodular
demandsNetworks 43(4):256-265, 2004.

[20] T. Polzin. Algorithms for the Steiner Problem in NetworkBhD thesis, Universitat des Saarlandes,
February 2003.

[21] T. Polzin and S. Vahdati Daneshmand. A comparison oin8tdree relaxations.Discrete Applied
Mathematics112(1-3):241-261, 2001. Preliminary version appearédiGH 1998.

[22] T. Polzin and S. Vahdati Daneshmand. Improved algorgHor the Steiner problem in networks.
Discrete Applied Mathematic412(1-3):263-300, 2001.

[23] T. Polzin and S. Vahdati Daneshmand. On Steiner tredsranimum spanning trees in hypergraphs.
Oper. Res. Lett31(1):12-20, 2003.

[24] S. Rajagopalan and V. V. Vazirani. On the bidirectedreldaxation for the metric Steiner tree problem.
In Proceedings, ACM-SIAM Symposium on Discrete Algoriflpages 742—751, 1999.

[25] R. Rizzi. On Rajagopalan and Vazirani'sZapproximation bound for the Iterated 1-Steiner heuwristi
Information Processing Letter86(6):335-338, 2003.

[26] G. Robins and A. Zelikovsky. Tighter bounds for grapkiSeér tree approximatiorSIAM J. Discrete
Math, 19(1):122-134, 2005. Preliminary version appeared aprined Steiner tree approximation
in graphs” at SODA 2000.

[27] R. P. StanleyEnumerative Combinatoricsolume 1. Wadsworth & Brooks/Cole, 1986.

[28] K. Tan. On the role of partition inequalities in clasdi@lgorithms for Steiner problems in graphs.
Master’s thesis, University of Waterloo, 2006.

[29] V. V. Vazirani. Approximation AlgorithmsSpringer, 2001.

22

[30] D. Warme. A new exact algorithm for rectilinear Steiieres. In P. Pardalos and D.-Z. Du, editors,
Network Design: Connectivity and Facilities Location: DN@S Workshop April 28-30, 199pages
357-395. American Mathematical Society, 1997. Prelinyinarsion appeared at ISMP 1997.

[31] D. Warme.Spanning Trees in Hypergraphs with Applications to Steifrees PhD thesis, University
of Virginia, 1998.

[32] D. Warme, P. Winter, and M. Zachariasen. Exact Algonighfor Plane Steiner Tree Problems: A
Computational Study. In D.-Z. Du, J. M. Smith, and J. H. Rgh#n, editorsAdvances in Steiner
Trees pages 81-116. Kluwer Academic Publishers, 2000.

[33] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problefgorithmica
9:463-470, 1993.

23

	1 Introduction
	1.1 Linear Relaxations

	2 Partitions versus Subtours
	3 Uncrossing Partitions
	3.1 Definitions for Partitions
	3.1.1 Warmup: Graphs
	3.1.2 Hypergraphs
	3.1.3 Polyhedral Results

	4 Applications of Partition Uncrossing
	4.1 Extreme Points
	4.2 Gainless Tree Formulation
	4.2.1 MST Duals

	5 Future Work

