
Uncrossing Partitions
Jochen K önemann and David Pritchard

Department of Combinatorics and Optimization, U Waterloo

Motivation: Steiner Trees

The Steiner tree problem is a classical combinatorial opti-
mization problem where the goal is to cheaply connect cer-
tain nodes in a graph. The input graph G = (V,E) has
edge costs ce > 0 ∀e ∈ E and its node set V is divided
into two disjoint sets: terminals (denoted R) and Steiner
nodes. A Steiner tree is a tree that connects all termi-
nals and has no Steiner leaves (see Fig. 1(a)). Finding a
minimum-cost Steiner tree is NP-hard, even to within 1%
[Chlebı́k & Chlebı́ková 02], so we seek good polynomial-
time approximation algorithms.

Background on Linear Programs (LPs)

Linear programming is a fruitful and intensely-studied tech-
nique in combinatorial optimization. One typically assigns
a variable to each possible element of a feasible solution
(e.g., one variable xe for each usable edge e in a network
design problem). The characteristic vector of S assigns 1
to each element in S and 0 to each element not in S. The
usual goal is to design an LP so that the 0-1 integral fea-
sible solutions of the LP are the characteristic vectors of
feasible objects for the combinatorial optimization problem
at hand. For NP-hard problems the linear programming ap-
proach can be used to design approximation algorithms or
to implement exact solvers via integer programming.

Reduction to Spanning Hypergraphs

A full component of a Steiner tree is an inclusion-maximal
subtree with all its leaves terminals and all its internal nodes
Steiner. A Steiner tree’s edges can be partitioned uniquely
into full components, e.g. by splitting at internal terminals
(see Fig. 1(b)). All nontrivial approximation algorithms for
the Steiner tree problem work in the other direction: com-
pute the cheapest full components of a graph, and use that
information to build a cheap Steiner tree.

(a) (b)

Figure 1: Black nodes are terminals and white nodes are Steiner nodes.
(a): a Steiner tree. Note that some Steiner nodes are unused. (b): the
edges of the tree are partitioned into full components; there are four.

We rephrase the problem. A hypergraph (V, E) has node
set V , hyperedge set E ⊆ {E ⊆ V | |E| ≥ 2} and costs
CE for each E ∈ E . It is spanning if for every partition of V
into two nonempty parts, some hyperedge in E meets both
parts. Let K denote all sets of terminals of size at least 2,

K := {K ⊆ R | |K| ≥ 2},

and for a subhypergraph (R, E) of (R,K) (i.e., E ⊂ K) its
cost is defined to be

∑
K∈E CK.

Proposition 1. Given a Steiner tree instance, define CK to
be the cheapest cost of any full component on leaf set K.
The cheapest Steiner tree has the same cost as the cheap-
est spanning subhypergraph of (R,K).

Preprocessing

Rather than all ∼ 2|R| full components, one usually com-
putes only those on at most k terminals, for a fixed k. This
k-preprocessing can be done in polynomial time [Dreyfus &
Wagner 72] and may increase the optimum cost (e.g., see
Fig. 2), but only by a factor of 1 + O(1/ log k) [Du, Zhang &
Feng 91]. So for k → ∞ preprocessing has negligible cost.

n

r1 r2

r3

r4r5

n

r1
r2

r4
r5

r3

Figure 2: Left: an instance of the Steiner tree problem with five termi-
nals; all edges have cost 1. Any solution using full components on less
than 5 terminals must use some edge(s) twice. Right: a solution under
3-preprocessing is shown; the optimal cost has gone up from 5 to 6.

A Spanning Hypergraph LP Using Partitions

A partition (of R) is a collection of nonempty sets (parts)
{π1, π2, . . . , πt} such that each r ∈ R occurs in exactly one
πi; its rank , denoted r(π), is the number of parts it has
(here t). Given a partition π of R and any K ∈ K, we de-
fine the rank contribution rc

π
K to be the number of parts of

π spanned by K, minus one. Equivalently, rcπ
K is the de-

crease in rank incurred by π if we merge together all parts
intersecting K. E.g., see Fig. 3.

Figure 3: The black dots are the terminal set R. In red is a partition π
of R, and in green is a hyperedge K. Here rc

π
K = 2.

The following LP, which generalizes a graph spanning tree
LP due to [Chopra 89], is central to our study.

minimize
∑

K∈K

CKxK (P)

∀K ∈ K : xK ≥ 0 (1)
∀ partitions π of R :

∑

K∈K

xKrc
π
K ≥ r(π) − 1 (2)

Theorem 2 (Könemann & Tan 06). Let x be 0-1 integral.
Then x is feasible for (P) iff x is the characteristic vector of
the hyperedge set of a spanning subhypergraph of (R,K).

What Does Uncrossing Mean?

Uncrossing has played a critical role in recent work in the
area of network design, e.g., [Goemans 06, Jain 98, Lau et

al 07, Lau & Singh 07, Melkonian & Tardos 04]. In that set-
ting one uncrosses sets in an LP with subtour elimination
constraints, rather than partitions as we do here.
In concrete terms, uncrossing is applied to a feasible solu-

tion of a linear program (e.g., (P)). The goal is to transform
an arbitrary solution into an uncrossed one without worsen-
ing the objective value. If this can be done then in particular
there is some optimal uncrossed solution. The idea is that
uncrossed solutions have special useful properties.
Under the extra constraint

∑
K xK(|K| − 1) = |R| − 1 our

partition uncrossing is in fact equivalent to known subtour
uncrossing techniques. In general, however, it seems that
a more delicate uncrossing operation is required.

Refinement, Crossing, Chains

Given two partitions π and π′ of R, we say that π′ refines π
if each part of π′ is contained in some part of π. If neither
π nor π′ refines the other, we say that π and π′ cross. It
is easy to see that if π′′ refines π′ and π′ refines π, then π′′

refines π. A chain is a sequence (π[1], . . . , π[t]) where π[j]

refines π[i] for all t ≥ j > i ≥ 1; equivalently, a chain is a set
of partitions of which no two cross. See Figure 4.

Figure 4: Left: two partitions that cross. Right: a chain of size 3; the
blue partition refines the green one which in turn refines the red one.

Main Technical Result

For any feasible point x of the program (P), we say that par-
tition π is tight for x if the constraint (2) corresponding to π
holds with equality. The following proposition is a straight-
forward consequence of the general theory of polyhedra.

Proposition 3. Every basic solution x of (P) is character-
ized by a family τ of partitions and a set E ⊂ K (its support),
with |τ | = |E|. Namely, x is the unique point such that

•xE > 0 if and only if E ∈ E

•all partitions τ are tight for x.

Our “uncrossing technique” effectively allows us to replace
crossed pairs of tight partitions with non-crossed ones. We
obtain the following.

Theorem 4. In Proposition 3, we may also assume

• the family τ of tight partitions is a chain.

Consequences

Notice that in a chain (π[1], . . . , π[t]), we have 1 ≤ r(π[1]) <
r(π[2]) < · · · < r(π[t]) ≤ |R|. Hence t, the cardinality of the
chain, is at most |R| and so Theorem 4 gives the following.

Corollary 5. Each basic solution of (P) has at most |R|
nonzero coordinates (out of Θ(|R|k) coordinates in total).

The original motivation for this work was a comparison of
two full component-based LPs for the Steiner tree problem.
The uncrossing argument allows us to prove the following.

Theorem 6. In hypergraphs derived from Steiner tree in-
stances, the objective value of (P) is equal to the objective
value of a subtour-based LP due to [Warme 98].

Like our LP, Warme’s LP models Steiner trees via hyper-
graphs. Theorem 6 does not hold for arbitrary hypergraphs;
the key feature of Steiner-derived instances is that when
S ⊃ T, CS ≥ CT (the costs are non-decreasing).
LP duality, together with uncrossing, gives another (sur-

prising) result. Let T be a (non-hyper) tree on node set R.
Let T/K denote the graph obtained from T by contracting
the node set K and let mst(T/K) denote the minimum cost
of any spanning tree of T/K. Define the gain of K in T to
be the spanning tree cost decrease when K is used,

gainT (K) := cost(T ) − mst(T/K) − CK,

and define tK to be the maximum cost of any tree T such
that for all K in K, gainT (K) ≤ 0 (a gainless tree).

Theorem 7. tK is equal to the optimum value of (P).

This quantity tK was used in [Karpinski & Zelikovsky 97] to
analyze a then-best 1.64-approximation algorithm for the
Steiner tree problem. In fact, tK was used as an upper
bound in one place and as a lower bound in another; this
resembles an LP optimal value already since the optimal
value of a minimization LP is a lower (resp. upper) bound
on the cost of any feasible primal (resp. dual) solution.

Future Work

The bidirected cut relaxation is a well-known Steiner tree
LP with many equivalent formulations [Goemans & Myung
93]. It is no stronger than (P), using Theorem 6 and [Polzin
& Vahdati Daneshmand 03]. In a preprocessed graph all
original edges are deleted and then a clone of each full
component in K is added; clones meet only at terminals.

Conjecture 8. In a preprocessed graph, the bidirected cut
relaxation is exactly as strong as (P).

Using Conjecture 8 one might bound the integrality gap of
the bidirected cut relaxation (it is currently known only to be
lie between 8/7 and 2, see [Agarwal & Charikar 04]).
Another possible application of our results would be to use

(P) to design a primal-dual Steiner approximation algorithm
with better approximation ratio than 1.55, the best that is
currently known [Robins & Zelikovsky 00].

The full details of the results in this poster are
available in a C&O Research Report (#CORR
2007-11) of the same name. The report is also
available online.


