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Abstract

The Steiner tree problem is a classical NP-hard optimingtimblem with a wide range of practical
applications. In an instance of this problem, we are giveruadirected graptG = (V,E), a set of
terminals RC V, and non-negative costs for all edgese € E. Any tree that contains all terminals is
called aSteiner treethe goal is to find a minimum-cost Steiner tree. The verti€eR are calledSteiner
vertices

The best approximation algorithm known for the Steiner prasblem is agreedyalgorithm due to
Robins and Zelikovsky (SIAM J. Discrete Math, 2005); it aslés a performance guarantee of 1

'“73 ~ 1.55. The best knowtinear programming(LP)-based algorithm, on the other hand, is due to

Goemans and Bertsimas (Math. Programming, 1993) and ash@vapproximation ratio of22/|R|.
In this paper we establish a link between greedy and LP-bagpbaches by showing that Robins and
Zelikovsky's algorithm can be viewed as an iterated priohadd algorithm with respect to a novel LP
relaxation. The LP used in the first iteration is strongentthee well-knowrbidirected cut relaxation

An instance ish-quasi-bipartiteif each connected component G R has at mosb vertices. We
show that Robins’ and Zelikovsky’s algorithm has an appration ratio better than + '”73 for such

instances, and we prove that the integrality gap of our Ll%iwbeng and%*ll.

1 Introduction

The Steiner tree problem is a classical problem in combiiatoptimization which owes its practical impor-
tance to a host of applications in areas as diverse as VL&rdaad computational biology. The problem is
NP-hard [24], and Chlebik and Chlebikova show in [7] th& NP-hard even tapproximatethe minimum-
cost Steiner tree within any ratio better tr@] They also show that it is NP-hard to obtain an approximation
ratio better thar{% in quasi-bipartiteinstances of the Steiner tree problem. These are instamgdsich no
two Steiner vertices are adjacent in the underlying gi@ph

1.1 Greedy algorithms andr-Steiner trees

One of the first approximation algorithms for the Steinee fpeoblem is the well-knowminimum-spanning
tree heuristicwhich is widely attributed to Moore [16]. Moore’s algorithinas a performance ratio of 2 for
the Steiner tree problem and this remained the best knowirthmt1990s, when Zelikovsky [48] suggested
computing Steiner trees with a special structure, so cal8tkiner trees Nearly all of the Steiner tree
algorithms developed since then us8teiner trees. We now provide a formal definition.

A full Steiner componer(or full componenfor short) is a tree whose internal vertices are Steiner ver-
tices, and whose leaves are terminals. The edge set of angiStee can be partitioned into full components
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Figure 1: The figure shows a Steiner tree in (i) and its decaitipa into full components in (ii). Square and
round vertices correspond to Steiner and terminal vertiespectively. This particular tree is 5-restricted.

by splitting the tree at terminals: see Figure 1 for an examfhr-(restricted)-Steiner treés defined to be
a Steiner tree all of whose full components have at méstminals.

An r-restricted Steiner tree does not always exist; for exanifpl@ is a star with a Steiner vertex at its
center and more thanterminals at its tips. To avoid this problem, wne each Steiner vertex many
times and connect these clones to allVgfneighbours in the graph. Copies of an edge have the sarnhe cos
as the corresponding original edge@ This cloning does not affect the cost of the optimal Stetnes
but ensures a relatively cheagbteiner tree exists, as follows. Lept andopt, be the cost of an optimal
Steiner tree and of an optimedSteiner tree, respectively, for the cloned instance. fF8e&einer ratiop; is
defined to be the supremum&t, /opt over all instances of the Steiner tree problem. Borcheroanfb]
computedp; for everyr; in particular,p, = 14+ ©(1/logr) sop; tends to 1 as goes to infinity.

The prevailing strategy of all modern Steiner tree algamghs to compute a cheagSteiner tree of the
cloned graph, since this corresponds naturally to a Stéiaerof the original graph of equal cost or less.
Computing minimum-cost-Steiner trees is NP-hard for> 4 [15], even if the underlying graph is quasi-
bipartite. The complexity status for= 3 is unresolved, and the case- 2 reduces to the minimum-cost
spanning tree problem.

In [48], Zelikovsky used 3-restricted full components tdaib an 1¥6-approximation for the Steiner
tree problem. Subsequently, a series of papers (e.g., [25236]) improved upon this result. These efforts
culminated in a recent paper by Robins and Zelikovsky [40)imch the authors presented(m '”73) ~
1.55-approximation (subsequently referred tRas for ther-Steiner tree problem. They hence obtain, for
each fixed > 2, a 155p, approximation algorithm for the (unrestricted) Steineetproblem. We refer the
reader to two surveys in [21, 37].

1.2 Approaches based on linear programs

Many approximation algorithms in combinatorial optimipat are based on LP relaxations. The general
approach is to jointly design an algorithm and a relaxatmthat the algorithm produces a feasible integral
solution whose cost is close to the cost of the optimal LPtswiu Theprimal-dual methode.g., [20]) is
one paradigm of this sort, whereby the algorithm jointly @leps a dual and integral primal solution, the
growth of each one guiding the other.

Numerous LP relaxations for the Steiner tree problem haem loevestigated in depth (e.g., [3, 9, 10,
11, 13, 19, 33, 45, 46]), and this in turn has helped to achvest improvements in the area ioteger
programmingbased exact algorithms (e.g., see Warme [45] and Polzin3i]). Despite the sizeable body
of work on Steiner tree relaxations, the best LP-based ithgos for the Steiner tree problem do not perform
as well aRRZ in terms of approximation ratio.

For general graphs, tlodassicalLP-based approximation algorithms for Steiner trees [b8]farests [2]
use theundirected cut relaxatiofi3] and have a performance guarantee of % This relaxation has an



integrality gap of 2- |—§{‘ and the analysis of these algorithms is therefore tighgh8lf improved algorithms
have since been designed for other LPs [26, 32] but do nogaelsiny constant approximation factor better
than 2. Similarly, no LP relaxation for the Steiner tree peabis known with integrality gap any constant
less than 2.

For quasi-bipartite graphs, Chakrabarty, Devanur, andraaiz[6] considered théidirected cut relax-
ation[13, 46] and obtained éapproximation algorithm and integrality gap bound, imgngvan earlier ratio
of % [38, 39]. This yields the best known bound on the integrady of any LP relaxation for quasi-bipartite
graphs; nonethelesBZ achieves an approximation ratio better t@for these graphs. On general graphs,
the bidirected cut relaxation is conjectured (e.g. in [48]have a smaller integrality gap than 2; the worst

known example shows a gap of orﬁy(see Section 5).

1.3 Contribution of this paper

In this paper we provide algorithmic evidence that the pkHdwal method is useful for the Steiner tree
problem. We first present a novel LP relaxation for the Steiree problem. It uses full components to
strengthen a formulation based 8teiner partitioninequalities [9]. We then show that the algoritika of
Robins and Zelikovsky can be analyzed as a primal-dual ifgorusing this relaxation.

In [40], Robins and Zelikovsky showed that, for a fixedhe performance ratio ®&Z is 1.279; in quasi-
bipartite graphs, and it is.350; in general graphs. We prove a natural interpolation of tihesaesults. For
a Steiner vertex, define itsSteiner neighbourhooshn(v) to be the collection of vertices that are in the same
connected component &in G\R. A graph isb-quasi-bipartiteif all of its Steiner neighbourhoods have
cardinality at mosb. We prove:

Theorem 1. Given an undirected, b-quasi-bipartite graph-5V, E), terminals RC V, and a fixed constant
r > 2, AlgorithmRzZ returns a feasible Steiner tree T s.t.

1.279. opt,  b=1
eT) <y (4g)-opt, : be{234}
(14+3In(3—2))opt, : b>5.

Note thatb-quasi-bipartite graphs are a natural interpolation betwguasi-bipartite graph® = 1) and
general graphgb < |[V\R|), hence Theorem 1 interpolates the two main results of RamidsZelikovsky
[40].

Unfortunately, Theorem 1 does not imply that our new relaxahas a small integrality gap. Nonethe-
less, we obtain the following bounds, whéris b-quasi-bipartite:

: : : 2b+1
Theorem 2. Our new relaxation has an integrality gap betw&and -

We remark that the concept filtering, due to Chakrabarty et al. [6], can be applied to improve #ye g
upper bound t&%- for b > 2 [28].

1.4 Overview

In Section 2 we give some LP background on spanning treesefirtecbur new LP relaxation. In Section 3
we show thaRZ can be interpreted as an iterated primal-dual algorithmgusie new LP. Section 4 contains
some analysis db-quasi-bipartite graphs and the proof of Theorem 1. In $ach we prove Theorem 2
and compare the new LP to existing ones. Finally, SectionnBagus deferred technical details including a
short proof of thecontraction lemmawhich appears in the analysis of many approximation algos for
the Steiner tree problem. We also remark that the contrattimma holds not just in the graphic setting, but
more generally for matroids.



2 Spanning trees and a new LP relaxation for Steiner trees

Our work is strongly motivated by linear programming foratidns for the spanning tree polyhedron due
to Fulkerson [14] and Chopra [8]. In this section, we firstcdiss Chopra’s formulation, and we describe
a primal-dual interpretation of Kruskal’'s spanning tregoaithm [30] based on this LP. Finally we extend
ideas in [9, 10] to derive a new LP relaxation for the Steinee foroblem.

2.1 The spanning tree polyhedron

To formulate the minimum-cost spanning tree (MST) problesmamLP, we associate a varialglewvith every
edgee € E. Each spanning tre€ corresponds to itscidence vector %, which is defined by] = 1if T
containse andx? = 0 otherwise. Lefl denote the set of all partitions of the vertex ¥etand suppose that
e M. Therank r(m) of mis the number of parts aft. Let E; denote the set of edges whose ends lie in
different parts ofrt. Consider the following LP.

min CeXe (Psp)
2

s.t. ZXQZr(rr)—l Ve,
eckn

x> 0.

Chopra [8] showed that the feasible region o§#fFs the dominant of the convex hull of all incidence
vectors of spanning trees, and hence each basic optimaiosotiorresponds to a minimum-cost spanning
tree. Its dual LP is

max ;(r(n) —-1)-yq (Dsp)
s.t. EE yr<Ce VecE, 1)
y>o0. @)

2.2 A primal-dual interpretation of Kruskal’'s MST algorith m

Kruskal's algorithm, which we will denote byST, can be viewed as a continuous process ovee we

start with an empty tree at time 0 and add edges as time iregedbe algorithm terminates at timéwith

a spanning tree of the input gra@ In this section we show that Kruskal’s method can be inttgat as
a primal-dual algorithm (see also [20]). At any time<0r < 7* we keep a paifx’,y"), wherex' is a (not
necessarily feasible) 0-1 primal solution fox@Pandy’ is a feasible dual solution for ).

The initial primal and dual value€ andy® are the all-zero vectors. L&’ = (V,E7) denote the forest
corresponding to’, i.e., ET = {e€ E | x{ = 1}. Let ni(1) denote the partition induced by the connected
components oG’. Attime 1, the algorithm increaseg, ;) until a constraint of type (1) becomes tight for
some edge € Ey ;). (If more than one such constraint becomes tight simultasigowe pick any sucle
arbitrarily.) Lett’ > 1 be the time at which this happens. The dual update is

Yoo =T —T.

We then includes in our solution, i.e., the primal update>i§ := 1. We terminate at time* such thaiG"™
is a spanning tree. Chopra [8] showed that the final primaldarad solutions have the same objective value
(and are hence optimal), and we give a proof of this fact fongleteness.
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In what follows, letG* be shorthand fo&" and similarly forx*, etc.

Theorem 3. Algorithm MST finishes with a pair(x*,y*) of primal and dual feasible solutions {®sp) and
(Dsp), respectively, such that
o=y (r(m—1)-yp

Proof. Checking feasibility is straightforward. For each edge E*, the constraint (1) holds with equality.
Hence, rearranging, we can express the cost of the final sréslaws:

egEcexgzeeZ*rregE Y;T: Z‘\|E*QEH|'Y;T' ®)

Note that for eactr, the final tree€G* has exactlyV|—r(71(1)) edges notirt;); hence for alirwith y;, > 0,
we have|E*NE,| = [V|-1— (V| —r(m)) =r(m) — 1. This fact, combined with Equation (3), completes
the proof. O

Observe that the above primal-dual algorithm is indeed kals algorithm: if the algorithm adds an
edgee at timeTt, thene has cost exactly equal tQ ande is a minimum-cost edge connecting two connected
components oG’.

2.3 A new LP relaxation for Steiner trees

In an instance of the Steiner tree problem, a partitioof V is defined to be &teiner partitionwhen each
part of 7T contains at least one terminal. Chopra and Rao [9] intraditices notion and proved that, when
is the incidence vector of a Steiner tree anis a Steiner partition, the inequality

Z Xe >r(m) —1. 4

holds. Thesé&teiner partition inequalitiesnotivate our approach. In order to fully describe and areabyar
approach we needmeprocessingtep; it essentially replaces the graph by the union of ltefimponents,
where the union is disjoint for edges and Steiner nodes.

In the following we useG[U] to denote the subgraph &finduced by vertex séd, i.e., the graph with
verticesU and edge&(U) = {uve E(G) |uec U,v e U}. We make the following assumptions:

Al. G[R]is a complete graph and, for any two terminalg € R, ¢,y is the cost of a minimum-cost v-path
in G.

A2. For every Steiner vertexand every vertex: € sn(v) UR, uvis an edge of5, andcyy is the cost of a
minimum-costu, v-path inG.

It is a well-known fact that these assumptions are withoss lof generality, i.e., any given instance can be
transformed into an equivalent instance that satisfiegethesumptions (e.g., see [43]). Note thajuasi-
bipartiteness is preserved by these assumptions.

Recall from Section 1.1 that a full component is a tree whagermal vertices are Steiner vertices and
all of whose leaves are terminals. Also recall that a full pomentK is r-restricted if it contains at most
r terminals. Further, the edge-set of angestricted Steiner tre€ can be partitioned into-restricted full
components. From now on, let> 2 be an arbitrary fixed constant. Define

J ={K CR:2<|K| <r and there exists a full component whose terminal skt}is
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Figure 2: Left: a collection? = {{t1,ts,t6},{t3,ta,t7}, {to,t3},{ts,ta}} Of 4 full components. Right: a
Steiner tree with”’-decomposition{t1s,tsS1,t6S1, tots}, {{t2,t6,t7}, {ta, t7} }).

We note that, for eacK € _#;, we can determine a minimum-cost full component with teahsetK in
polynomial time (e.g., by using the dynamic programmingpethm of Dreyfus and Wagner [12]). Thus,
we can computer; in polynomial time as well.

For brevity we will abuse notation slightly and ulke= .%; interchangeably for a subset of the terminal
set and for a particular min-cost full component spanrfngGiven anyr-restricted Steiner tree, we may
assume that all of its full components are frof, without increasing its cost.

For each full componeri, we useE(K) to denote its edged/(K) to denote its vertices (including
Steiner vertices), anck to denote its cost. For a sef of full components we definE(.¥) := Uke.» E(K)
and similarlyV (.#) := Uke.#V (K). By assumption A1 we may assume that the full component femainal
pair is just the edge linking those terminals, and by assiom@#2 we may assume that any Steiner vertex
has degree at least 3. We will also assume that any two diftilhcomponent¥{,, K, € .%; are edge disjoint
and internally vertex disjoint. This assumption is withtags of generality as each Steiner verteXaman
be cloned a sufficient number of times to ensure this propEmally, we redefinés to be (V (%), E(#));
as aresult, the Steiner trees of the new graph correspohdtte¢stricted Steiner trees of the original graph.
This completes the preprocessing.

Let 7 (T) denote the set of all full components of a Steiner ¥e&or an arbitrary subfamily” of the
full components’;, our new LP uses the following canonical decomposition ofean®r tree into elements
of E(.*) and.#\.~.

Definition 4. If T is an r-restricted Steiner tree, it$’-decompositions the pair
(E(T)NE(S), A (T)\F).

Figure 2 illustrates the”-decomposition of a Steiner tree. Observe that affedecomposing a Steiner
treeT we have

et » k=c(T).
ecE(MNE(Y)  KeAM)\o

We hence obtain a new higher-dimensional view of the Stefeerpolyhedron. Define

STE g := conv{x € {0,1}E(") x {0,1}#\ : 3T € sTgrs.t.xis the incidence
vector of the-decomposition of }.

The following definitions are used to generalize Steinetifpam inequalities to use full components. We
usel~ to denote the family of all partitions &f(.) UR.



Definition 5. Letm= {V4,...,Vp} € N be a partition of the set RV (.#). Therank contributionof full
component Ke % \.7 is defined as

rcg = |{i : K contains a terminal in | — 1.
TheSteiner rank (1) of rris defined as
r(m) := {the number of parts aff that contain terminal.

For example, where” denotes the collection of full components on the left sid&igtire 2, consider
the partitionrt = {{t1,t5,51}, {2}, {t6,t7}, {t2,t3}, {ts}} € M. Its rank isr(m) = 5 but its Steiner rank is
r(m = 4. The rank contribution of full componekt = {t,,t¢,t7} isrcg = 1.

We describe below a new LP relaxationgflp of STg r- The relaxation has a variablg for eache €
E(.%) and a variable for eachK € .#;\.#. For a partitionrt € M, we defineEn(.%) to be the edges of
. whose endpoints lie in different parts @fi.e.,Ex(.%) = E(.¥) NEnr.

min CeXet H Ok X (P&
ecE(Y) Ke\
s.t Xe+ Y rek-xe>T(m -1 vren” (5)
ecEq () Ke\.
Xe, Xk >0 Vee E(Y),K € 4\ (6)

Its LP dual has a variablg, for each partitiorrte M- :

max Y (F(m)—1)-yn (OZ
nen”
s.t z Y < Ce Vec E() (7)
nen? :ecEn(.%)
Z reg - Yn < Ck VK € #\ (8)
el
Y >0 vmen” 9)

We conclude this section with a proof that the (primal) LPndeed a relaxation of the convex hull of
7-decompositions for-restricted Steiner trees. The inequalities (6) are otshowalid for STé’f R

Lemma 6. The inequalities5) are valid for ST .

Proof. Let T be a Steiner tree witl¥’-decomposition(E(T) NE(.7), % (T)\.#), and letx € ST g be the

corresponding incidence vector. Fix an arbitrary panitioc N~; we will now argue that the left-hand side
of (5) for ris at least () — 1.

In order to do that we successively modify the given pariitioby merging some of its parts. Initially,
let T= 1. For each each edges of E(T) NE(.¥), merge the part oft containingu and that containing;
if both endpoints lie in the same part af the partition remains unchanged. Subsequently, consiale
K € % (T)\.7, and merge all parts af meeting any terminal df.

Initially, 7T has Steiner rank(m), and its final Steiner rank is 1 sinde connects all terminals. The
Steiner rank drop oft due to any edge € E;(.) with Xe = 1 is clearly at most 1. For any other edge
ec E(T)NE(.), since the endpoints @ are in the same part af, the Steiner rank drop df due toe is
0. Similarly, the Steiner rank drop af due toK € % (T)\. is at mostrcf. This shows thak satisfies
constraint (5). AS and T were chosen arbitrarily, the lemma follows. O



3 An iterated primal-dual algorithm for Steiner trees

As described in Section 2.2ST(G, ¢) denotes a call to Kruskal’'s minimum-spanning tree algoritm graph

G with cost-functionc. It returns a minimum-cost spanning tréeand an optimal feasible dual solutign
for (Dsp). Letmst(G,c) denote the cost afST(G,c). Sincec is fixed, in the rest of the paper we ongit
where possible for brevity. Let us also abuse notation ag@utify each set” c % of full components with
the graph(V (.#),E(¥)). In particular when¥ = (V(.),E(.¥)) is connected and spans all terminals,
MST(.) is a Steiner tree; namely, the one produced by running the hifistic on the instance wherein
the full component set is” and all other full components from the original instanceraepresent.

The main idea of the greedy algorithms in [40, 47, 48] is to Arekt¥ C % of full components such
thatMST(.¥) is a Steiner tree with small cost relativedpt,. Let (2) denote the collection of all pairs of
terminals. The algorithms all start with’ = (g) and then grow?, so for the rest of the paper we assume
that (5) C.7; henceE(G[R]) C E(.) andRC V(.¥).

The reason thatST is useful in our primal-dual framework is that we can rel&ie dual (;p) on graph
< to the dual (II%‘/T). Lety be the dual returned by a call#sT(.#). We treaty as a dual solution of (§r);
note that constraints (1) and (2) of {p) imply thaty also meets constraints (7) and (9) ofgél)) If Kisa
full component such that (8) does not hold jome say thak is violatedby y.

The primal-dual algorithm finds such a s#tin an iterative fashion. Initially,# is equal to(g). In each
iteration, we compute a minimum-cost spanning es the graph¥’. The dual solutiory corresponding to
this tree is converted to a dual for@, and ify is feasible for (ijT), we stop. Otherwise, we add a violated
full component ta¥ and continue. The algorithm clearly terminates .¢ésis finite) and at termination, it
returns the final tre@ as an approximately-optimum Steiner tree.

Algorithm 1 summarizes the above description. The greeglyriihms in [40, 47, 48] differ only in how
K is selected in each iteration, i.e., in how the selectioretion f; : 2#; — R is defined (see also [2§1.4]
for a well-written comparison of these algorithms).

Algorithm 1 A general iterative primal-dual framework for Steiner gee
1: Given: Undirected grapt® = (V,E), non-negative cosis for all edgese € E, constant > 2.
22 7%= (5),i==0
3: repeat

4 (T\y) :=MST(S) '

5. if y is not feasible fofDZ;) then

6: Choose a violated full componelit € % \.' such thatf;(K') is minimized
7: = UK}

8: endif

9 =i+l

10: until y—1 is feasible fo(DZ; ")
11: Letp=i—1and return(TP yP).

In the typical primal-dual approach [20, 43] dual feastbils maintained and primal feasibility happens
only at the end. This is true MST relative to (Dsp), however if you consider the entirety of Algorithm 1
relative to our new LPs, we obtain a primal feasible solutioaach iteration but attain dual feasibility only
in the final iteration; more specifically the objective valfey' decreases asincreases (see Lemma 21).
We remark that the recer%&approximation algorithm of Chakrabarty et al. [6] for gubipartite instances
uses the same generic approach, with the addition of aalifiitering step, and using any possible selection
function.

The following lemma is at the heart of our proof, and explairts/ our LP can be used to find cheap
Steiner trees. We us#’ /K to denote the graph obtained frofi by identifying the terminals ifK, and by
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deleting loops created in this process.

Lemma 7. Let(T,y) =MST(.”). Then K is violated by y if and only if
ck < ¢(T) —mst(./K).

Proof. Let us adopt the notation from the proof of Theorem 3, andraeshatMST(.”) finishes at timer*.
Consider how the rank contribution Bf changes with respect (1) over time. Clearlyxcﬁ(o) =|Kl-1
andrc,’z(m = 0. Whenever an edge is addedgb in MST, the valuerc,’z(r) either stays the same or drops
by 1; hence there are edges...,ex—1 € T such that, for I< i < [K| -1, rc:z(r) drops from|K| —i to

|IK| —i—1 when edge is added. Let (i) denote the time at which edgeis added, then by the definition
of theg,
T* n(r) IK|-1
rc, 'dr = 7(i). 10
Jy wekdr=3 ) (10

Notice that due to the definition ®T, the following two facts hold: firsty (i) = cq for eachi; second, the
left hand side of Equation (10) B,rc{ys Hence we obtain

K|-1

ZICEYIT: Zl Ce (11)

Let the partition maintained b¥ST on input G at time T be denoted by (7). An easy inductive
argument shows that for atl we obtainr,, (1) from 115 (7) by first merging all parts that mekt, and by
subsequently identifying the verticesif It follows thatT\{e, ... ek -1} is @ minimum spanning tree of
< /K. With Equation (11) this yields

> rekYn=c(T) —mst(S/K).

By the definition of violating full component, the proof isroplete. O

Corollary 8. Let(T,y) =MST(¥). If K is violated by y, then adding K t&’ produces a cheaper spanning
tree, i.e.,
mst(L U{K}) <c(T).

Proof. MST(.#/K) UK is a spanning tree of” U{K}, and by Lemma 7 its cost is less the(T). O

3.1 Cutting losses: therZ selection function

A potential weak point in Algorithm 1 is that once a full cormgmt is added tg”, it is never removed. On
the other hand, if some cheap subgra&pleonnects all Steiner vertices of to terminals, then adding to
any Steiner tree gives us a tree that spdng’), i.e., we have so fdost at mostc(H) in the final answer.
This leads to the concept of th@ssof a Steiner tree which was first introduced by Karpinski artikovsky
in [25].

Definition 9. Let G = (V/,E’) be a subgraph of G. THessL(G') is a minimum-cost set’EC E’ such that
every connected component(ef,E”) contains a terminal. Let(G’) denote the cost af(G').

See Figure 3 for an example of the loss of a graph. The aboweisdi®n amounts to saying that
min{mst(.*") | ' 2 .} < opt, +1(¥). Consequently, our selection functidnin step 6 of the algo-
rithm should try to keep the loss small. The following factdsbecause full components.i#; meet only
at terminals.



Figure 3: The figure shows the Steiner tree instance fromr&igjwith costs on the edges. The loss of the
Steiner tree in this figure is shown in thick edges. Its co8t is

Fact 10. If .7 C J#, thenL(.’) = Uke.»L(K) and sol(*) = S ke.» 1(K).
For a set¥ of full components, whergis the dual solution returned IMgT(.#), define

mst(#) = Y (M- Dyn (12)

men

If yis feasible for (ijT) then by weak LP dualitypst(.#’) provides a lower bound aspt,. If yis infeasible
for (DgT), then which full component should we add? Robins and Zeskp propose minimizing the ratio
of the added loss to the change in potential lower bound {i®ir selection functiorf; is defined by

1(K) 1S U{K}) —1()

T mst(S) —mst(AU{K})  mst(A) —mst(SULK])’ (13)

ﬁ(K)Z

where the equality uses Fact 10.

4  Analysis

Fix an optimumr-Steiner tre€l *. There are several steps in proving the performance g afitRobins
and Zelikovsky's algorithm, and they are encapsulatedarfdliowing result, whose complete proof appears
in Section 6.

Lemma 11. The cost of the tree Areturned by Algorithm 1 is at most

mst(G[R],c) — optr>
1(T*) '

opt, +1(T*)-In <1+

The main observation in the proof of the above lemma can besuired as follows: from the discussion
in Section 2, we know that the tr8€ returned by Algorithm 1 has cost

mst(P) = ¥ (r(m-1)yh
men P
and the corresponding lower-bound @st, returned by the algorithm is

mEP) = Y (Fm) - Dyh

nens?

We know thatnst(.”P) < opt, but how large is the difference betweest (.#P) andmst(.#P)? We show
that the difference

(r(m) —T(m)yn

nen?
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is exactly equal to the losg TP) of treeTP — this is proved in Lemma 18. We then bound the loss of each
selected full componer', and putting everything together finally yields Lemma 11.

The following lemma states the performance guarantee ofr&®minimum-spanning tree heuristic as
a function of the optimum loss and the maximum cardinditf any Steiner neighbourhood 5.

Lemma 12. Fix an arbitrary optimum r-restricted Steiner tree' TGiven an undirected, b-quasi-bipartite
graph G= (V,E), a set of terminals K V, and non-negative costs for all e € E, we have

mst(G[R],c) < 2opt, — %I(T*)

forany b> 1.

Proof. Recall that’#; (T*) is the set of full components of trée*. Now consider a full componer
4 (T*). We will now show that there is a minimum-cost spanning tré&[K] whose cost is at most
2ck — %1(K). By repeating this argument for all full compone#ts % (T*), adding the resulting bounds,
and applying Fact 10, we obtain the lemma.

For terminals, s € K, let Ps denote the unique s-path inK. Picku,v € K such that(P,y) is maximal.
Define thediameterA(K) := ¢(PR,y). Do a depth-first search traversalloftarting inu and ending inv. The
resulting walk inK traverses each edge not By, twice while each edge oR,, is traversed once. Hence
the walk has cost& — A(K). Using standard short-cutting arguments it follows tha&t mhinimum-cost
spanning tree 06[K] has cost at most

2ck —A(K) (14)
as well.
Each Steiner vertese V (K)\R can connect to some terminag K at cost at mosf@. Hence, the cost
1(K) of the loss oK is at mosb@. In other words we havAa(K) > %1(K). Plugging this into (14) yields
the lemma. O

For small values ob we can obtain additional improvements via case analysis.

Lemma 13. Suppose k {3,4}. Fix an arbitrary optimum r-restricted Steiner tre€ TGiven an undirected,
b-quasi-bipartite graph G= (V,E), a set of terminals R V, and non-negative costsg for all e € E, we
have

mst(G[R],c) < 2opt, — 1(T").

Proof. As in the proof of Lemma 12 it suffices to prove that, for eadhdomponentK € 7 (T*), there is a
minimum-cost spanning tree &fK] whose cost is at mostR — 1(K), for then we can add the bound over
all suchK to get the desired result. For terminals € K, let P again denote the uniques-path inK.

Notice that the Steiner vertices (there are at nhagtthem) in the full componer either form a path,
or else there are 4 of them and they form a star.

Case 1: the Steiner vertices iK form a path. Le andy be the Steiner vertices on the ends of this path.
Let u (resp.v) be any terminal neighbour of (resp.y); see Figure 4(i) for an example. Perform a
depth-first search i starting fromu and ending at; the cost of this search isck — c(R,y). By
standard short-cutting arguments it follows that 2- c(P,y) is an upper bound onst(G[K]). On the
other hand, sincB,,\{ux} is a candidate for the loss &f, we know thatt (K) < c(Py\{ux}) < c(Py).
Therefore we obtain

mst(G[K]) < 2ck — ¢(Py) < 2ck — 1(K). (15)

11



(i) (ii)

Figure 4: The figure shows the two types of full componentsmihel 4. On the left is a full component
where the Steiner vertices form a path, and on the right il admponent where the Steiner vertices form
a star with 3 tips.

Case 2: the Steiner vertices iK form a star. Let the tips of the star Bey,z and lett,u,v be any terminal
neighbours ok,y, z respectively; see Figure 4(ii) for an example. Without loEgenerality, we may
assume thaty < ¢y < C,. As before, a depth-first search knstarting fromu and ending av has
cost Zx — ¢(Ry) and this is an upper bound at(G[K]). On the other hand?,,\{yu} U {xt} is a
candidate for the loss &f and sol(K) < c(Pu) — ¢yu+ ¢ < c(P.v). We hence obtain Equation (15)
as in the previous case. O

We are ready to prove our main theorem. We restate it usingnategtion introduced in the last two
sections.

Theorem 1. Given an undirected, b-quasi-bipartite graph-5V, E), terminals RC V, and a fixed constant
r > 2, Algorithm 1 returns a feasible Steiner tre@ With

1.279- opt, : b=1
c(TP) << (1+1/e)-opt, : be{2,3,4}
(1+3In(3—2))opt, : b>5.

Proof. Using Lemma 11 we see that

mst(G[R],c) — OPtr>
1(T7) :

= opt,+1(T%)-In <l—|— (16)

The second equality above holds becaBe| has no Steiner vertices. Applying the boundman (G[R], ¢)

from Lemma 12 yields
1(T*) 2 opt
Py < . . - — r .
c(TP) < opt, [1+ opt, In (1 5 + 1(T*)>] 17)

Karpinski and Zelikovsky [25] show that(T*) < %optr. We can therefore obtain an upper-bound on the
right-hand side of (17) by bounding the maximum value of fioxexIn(1—2/b+1/x) for x € [0,1/2]. We
branch into cases:

b= 1. The maximum okIn(1/x—1) forx € [0,1/2] is attained fox ~ 0.2178. HencexIn(1/x—1) <0.279
forx e [0,1/2].

12



b=2: The maximum okIn(1/x) is attained fox = 1/e and henceIn(1/x) < 1/efor x € [0,1/2].

be {3,4}: We use Equation (16) together with Lemma 13 in place of Lemiydte subsequent analysis
and result are the same as in the previous case.

b>5: The functionxin(1—2/b+ 1/x) is increasing irk and its maximum is attained for= 1/2. Thus,
xIn(1—2/b+1/x) < 3In(3—2/b) for x € [0,1/2].

The four cases above conclude the proof of the theorem. O

We remark that under the original analysis of Robins andk@etiky, forRZ to achieve an approximation
ratio better than the MST heuristic requirgs+ 3In(3))p; < 2 which occurs for > 12. Note the graph
resulting from preprocessing under a given choice isf (r — 2)-quasi-bipartite; hence, Theorem 1 shows
that forr = 5, RZ achieves ratigs - (1+ %) = 1—93 1+ %) < 2 and does better than the MST heuristic.

5 Properties of (P7)

In this section, we first prove that the linear progrél?é/T) is gradually weakened as the algorithm progresses
(i.e., as more full components are added£9. Then we describe bounds on the integrality gap of the new
LP, and its strength compared to other LPs for the Steinermreblem.

Lemma 14. If ¥/ C ./, then the integrality gap o(PS‘/T) is at most the integrality gap céPsyT/).

Proof. We consider only the case wheté’ = . U {J} for some full componend; the general case then
follows by induction on."\.7|.

Letx be any feasible primal point for §2) and define thextension %of x to be a primal point o(PSyT/),
with x; = x; for all ee E(J) andx; = xz forall Z € (% \.") UE(.¥). We claim thai is feasible for(PZ;).
Sincex andx’ have the same objective value, this will prove Lemma 14.

It is clear thatX' satisfies constraints (6), so now let us show ihattisfies the partition inequality (5) in
(PgT'). Fix an arbitrary partitiorr?’ of V(.#), and letrt be the restriction of? toV(.%). We get

Xe+ rcf X = ( > Xt rcEXK> +|Ex NE() X3 — rcix;. (18)
BT KeJpo ecBd?) KT\

Now J spans at leastc] + 1 parts ofr, and it follows thatE;; NE(J)| > rc]. Hence, using Equation (18),
the fact thaix satisfies constraint (5) far, and the fact that(m) = r(77), we have

Xe + > rcf ¥ > Y Xt > regx =r(m-1= r(m) -1
ecE () KeJ\.’ ecEq(Y) Ke 4\

Sox satisfies (5) font. O

In 1997, Warme [44] introduced a new linear program for treirtetr tree problem. He observed (as did
the authors of [36] in the same year) that full componentsaalh reduction from the Steiner tree problem
to thespanning-tree-in-hypergrapproblem. Warme also gave an LP relaxation for spanning trelegper-
graphs. That LP turns out to be exactly as strong as our owis&d>[27, Corollary 3.19] for a proof. Now,
Polzin et al. [35] proved that Warme'’s relaxation is strantf@n the bidirected cut relaxation, and Goe-
mans [17] proved that the (graph) Steiner partition ineitjgalare valid for the bidirected cut formulation.
Hence, using full components as iré?,l?strengthens the Steiner partition inequalities.
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Figure 5: Skutella’s example, which shows that the bidedatut formulation and our new formulation both
have a gap of at Iea§t The shaded edges denote one of the quasi-bipartite fulbonents on 5 terminals.

5.1 Alower bound on the integrality gap of(PgT)

Note that when¥ = (g) (ngT) and (rrgT) are equivalent LPs: for each terminal-terminal edgethe full
component variablg, , of the former corresponds to the edge variagleof the latter. Hence although we
consider the simpler LIEPgT) in this section, the results apply also to the LP used in tiseiferation ofRZ.

As reported by Agarwal & Charikar [1], Goemans gave a famflg@phs upon which, in the limit, the
integrality gap of the bidirected cut reIaxation%s Interestingly, it can be shown that once you preprocess
these graphs as described in Section 2.3, the gap comptittalypears. Here we describe another example,
due to Skutella [41]. It shows not only that the gap of thereictied cut relaxation is at Iea%x but that the
gap of our new formulation (including preprocessing) iseast% The example is quasi-bipartite.

The Fano design is a well-known finite geometry consisting pdintsand 7lines, such that every point
is on 3 lines, every line contains 3 points, any two lines nrea@tunique point, and any two points lie on a
unique common line. We construct Skutella’s example bytirga bipartite graph, with one side consisting
of one vertexn,, for each pointp of the Fano design, and the other side consisting of onexveytr each
line ¢ of the Fano design. Defing, andn, to be adjacent in our graph if and onlygfdoesnotlie on /. Then
it is easy to see this graph is 4-regular, and that given anywesticesny, n, from one side, there is a vertex
from the other side that is adjacent to neithgmor n,. Let one side be terminals, the other side be Steiner
vertices, and then attach one additional terminal to allSteener vertices. We illustrate the resulting graph
in Figure 5.

Each Steiner vertex is in a unique 5-terminal quasi-bifgaffiill component. There are 7 such full
components. Denote the family of these 7 full components’by

Claim 15. Let %, = % for each Ke ¢, and % = 0 otherwise. Then*s feasible for(Py).

Proof. It is immediate thak* satisfies constraints (6). It remains only to show tiameets constraint (5).
Let m= (Mo, V4,...,Vin) be an arbitrary partition such thej contains the extregop terminal. If we can show
that xirc > mthen we will be done, since was arbitrary. For each=1,...,m, lett; be any terminal
in Vi. Note that each lies in exactly 4 full components fror. Furthermore, every full componekite ¢
satisfiesrcg > |[KN {ty,...,tm}|, asK meetsvp as well as each paxt; for whicht; € K. Hence

N

. 15n . 1
Z|{J-tj6K}|:Zgl|{Ke(g'tjEK}|—Z'm-4_m, 0

1
* m TT
E XKrCK = Z E rcg 2
Kee Kee

Ke¥

The objective value of* is 375, but the optimal integral solution to the LP is 10, since aste3 Steiner
10 _ 8

vertices need to be included. Hence, the gap of our new LP igtter tha 54 = 7'
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5.2 A gap upper bound forb-quasi-bipartite instances

In [38] Rajagopalan and Vazirani show that the bidirectetdrelaxation has a gap of at mc%t if the graph
is quasi-bipartite. SincePgT) is stronger than the bidirected cut relaxation its gap is atsmost% for such
graphs. We are able to generalize this result as follows.

Theorem 2. On b-quasi-bipartite graphgP&r) has an integrality gap betweehand 2 in the worst case.

Proof. The lower bound comes from Section 5.1. We ass@ieb-quasi-bipartite, we IeT * be an optimal
Steiner tree, and we le?* be its set of full components. Sind€ is a minimum spanning tree fo#*,
there is a corresponding feasible dydbr (Dsp). When we convery to a dual for(DéﬂT*), we claim thaty is
feasible: indeed, by Corollary 8 a violated full componentild be used to improve the solution, But is
already optimal. The next lemma is the cornerstone of ousfpro

Lemma 16. Let irbe a partition of (.*) with y > 0. Then(r{m) — 1) > 2L (r(m) — 1).

Proof. For each parV, of m, let us identify all of the vertices of; into a single pseudo-vertex. We may
assume by Theorem 3 that eatHV;] is connected, hence this identification process yieldsedlitel et us
say thaty; is Steinerif and only if all vertices ofV; are Steiner. Note that’ hasr(m) pseudo-vertices and
r(m) —r(m) of these pseudo-vertices are Steiner. The full componédnits are defined analogously to the
full components of a Steiner tree.

Consider any full componet’ of T’ and letK’ contain exactlys Steiner pseudo-vertices. It is straight-
forward to see thas < b. Each Steiner pseudo-vertex ki has degree at least 3 by Assumptions Al and
A2, and at moss— 1 edges ofK’ join Steiner vertices to other Steiner vertices. HeHKéenas at least
3s—(s—1) =2s+1 edges, and so

25—1—1. S 2b+1-s

!
>
[E(K)[ 2 ——-s=—

Now summing over all full component§’, we obtain

B> 21

-#{Steiner pseudo-vertices ®f}.

But [E(T')| =r(m) — 1 andT’ hasr(m) —r(m) Steiner pseudo-vertices, therefore

(-1 2 2wy -mm-1) = 2w -n> 2 em -,

This proves what we wanted to show. O

It follows that the objective value ofin (DZ; )is

S [0 -yn> Y () = o o(T)

men” nen

and sincel * is an optimum integer solution c@r{;), it follows that the integrality gap o(fPS/T) is at most

2l Then, finally, by applying Lemma 14 {®S;) and (PZ; ) we obtain Theorem 2. O
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6 Proof of Lemma 11

In this section we present a proof of Lemma 11. The methogdioigpws that proposed by Gropl et al. [21],
see also the presentation of Korte & Vygen [29, Ch. 20] whiatrects a small bug. The essential novelty
of our approach is an integral-based interpretatiomsf, mst and loss, which leads to the cornerstone
mst = mst +1 (Lemma 18). This also results in a new, short proof of the wibdgs contraction lemma
(Lemma 22).

WhenG is a graph and is a real number, leG<; denote the subgraph @& obtained by deleting all
edges with weight greater than For a graplG, let k (G) denote the number of connected components.of

Lemma 17. mst(G) = [~ o(K(G<7) — 1)dT.

Proof. Attime 1, Kruskal’s primal-dual algorithm raises the objectivedtion of (Dsp) at a rate of (11(1)) —
1 per unit time. By Theorem 3,

r*
mst(G) =c(T) = Z)f;r(r(n) -1 :/T (r(m(t)) —1)dr.
T
Now, sincer(Tt) is the same as the partition induced by the connected comméG-;, and since
K(G<¢) =1fort > 1%, we are done. O

We first relate the cost of a minimum-cost spanning treg’dibr some set¥” of full components to the
(potential) lower-boundist (") onopt, that it provides.

Lemma 18. For any graph G and terminal setRV(G),
mst(G) =mst(G) + 1(G).

Proof. RunMST on inputG, obtaining outpu(T,y) Let us adopt the notation from the proof of Theorem 3.
The differencenst(G) — mst(G) satisfies

T*

mst(G) —mst(G) = yur (1) = yuf (1) :/0 (r(m(t)) —r(m(t)))dt. (19)

Let aSteiner parbf a partition be a part which contains only Steiner vertidese quantityr (17(1)) —r (71(1))
counts the number of Steiner partsm(fr). Recall from Section 2.2 tha@" denotes the forest maintained
by Kruskal's algorithm at time& > 0. We then obtairfG’ /R from G’ by identifying the set of all terminals;
G'/R has one connected component for each Steiner partf and one additional connected component
containing all other vertices. Therefore, the right-haiu ®f (19) is equal to

[ (k@ /R - dr = [“(k((6/R1<0) ~ 1T = mst(G/R)

where the last equality uses Lemma 17.

Finally, note thatl(G) = mst(G/R), since the loss is the minimum-cost set of edges to connety ev
Steiner vertex to some terminal, which is the same as thenmimi-cost set of edges to connect every
Steiner vertex to the pseudo-vertex corresponding ito G/R, which is in turn the minimum spanning tree
of G/R. O

We obtain the following immediate corollary:

Corollary 19. Initeration i of Algorithm 1, adding full component&.#; to . reduces the cost afst(.7)
if and only if §(K) < 1.
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Proof. By applying Lemma 18 we see that
nst() —mst(S U{K}) =mst(S) + 1(S) —mst (S U{K}) —1(S U{K}).

Whereas the left-hand side is positive iff addikgo .#' causes a reduction imst, the right-hand side is
positive iff f;(K) < 1, due to the definition of; (equation (13)). O

Using Corollaries 8 and 19, we obtain the following.
Corollary 20. Forall 1<i<p, fi(K) < 1.

Fix an optimumr-Steiner treeT*. The next two lemmas give bounds that are needed to anafy/ze
greedy strategy. Informally, the first says thatt is non-increasing, while the second says that is
supermodular.

Lemma21. If ¥ C .’ C %, thenmst(’) < mst(.¥).
Proof. Using Lemma 18 and Fact 10 we see
mst(.) —mst(S’) = mst(Y) + 1(S'\.) —mst(.S).

However, the right hand side of the above equation is notheg asMST(.) UL("\.) is a spanning
tree of /. Lemma 21 then follows. O

Lemma 22 (Contraction Lemma)Let.7°,.71,.%? C # be disjoint collections of full components with
(§) €.#°. Then
5) € 7.

mst(°) —mst(°U.7?) > mst(SOU. ) —mst(SPU U2,
Proof. The statement to be proved is equivalent to

nst(.7%) —mst(Y°U.72) > mst(S°U.S1) —mst(SPU.STUS?), (20)
due to Lemma 18 and Fact 10. Our proof is centred around pydiaet for allt > 0,

K(F2) = K(F2UF2) > k(S UTE) — k(LU T2 UT2). (21)

If we prove Equation (21), then by addirgl+ 1 to each side, integrating alomgand using Lemma 17, we
obtain Equation (20) as needed.

Define a functionu on graphs byu(G) = |[V(G)| — kK(G). The crux is thatu is the rank function for
graphic matroids, and is hence submodular. Similarly, theetion |V (G)| is modular, and s&(G) =
IV(G)| — u(G) is supermodular, which proves Equation (21). O

Note that the proof of Lemma 22 easily generalizes to otheraiks. This seems not to have been
noticed before, and is not evident from early proofs of that@wtion Lemma (e.g. [4, Lemma 3.9], [21],
[39, Lemma 2]) — although it is not hard to deduce from the @néstion of Korte & Vygen [29].

We are finally near the end of the analysis, where the Coidratemma comes into play. We can now
bound the valud; (K‘) forall 0 <i < p—1interms of the cost of *’s loss. In the remainder of the section,
let 1* denotel (T*), letmst' denotemst(.#") and letnst” denotemst(T*).

Lemma 23. Forall 0<i < p—1, if mst' —mst” > 0, then f(K') < 1*/(mst' —mst").
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Proof. Let the full components 6f * beK*?,...,K*9. By the choice oK' in Algorithm 1, we havef; (K') <
min; fi(K*!). A standard fraction averaging argument implies that

< Z?:ll(K*’J)

T Y (msE(ST) —mst(STU{KHIY))

< -

Ty a(msE(ATULKSL, L KAIT) —msE(T UKL, L K®IY))

fi (K"

(22)

where the last inequality uses Fact 10 and Lemma 22. The deatimof the right-hand side of Equation
(22) is a telescoping sum. Canceling like terms, and usimgrha 21 to replacest (' U {K*, ... K*9})
with mst”, we are done. O

We can now bound the cost .

Proof of Lemma 11 We first bound the loss(TP) of treeTP. Using Fact 10,

— :)_Zjl(K' % fi(K") - (mst —mst ™) (23)

where the last equality uses the definitionfofrom (13). Using Corollary 20 and Lemma 23, the right hand
side of Equation (23) is bounded as follows:

p—-1 1*
;f (K'Y (mst' —mst 1) < Z} . - (mst —mst ). (24)
max{1*

mst —mst 1

The right hand side of Equation (24) can in turn be boundeh fabove by the following integral:

(25)

=1l g, (mst t|+l) mst? 1 msto—mst” 1*
< — dx:/ —————dx
£ max{1*,mst —mst'}  Jmst? max{l*,x—mst’} mstP-mst max{1*,x}
Notice thafmst® = mst(G[R],c) > opt, = 1*+mst". The termination condition in Algorithm 1 and Lemma

6 imply thatmst® < opt,. Hence the result of evaluating the integral in the rightehaide of Equation (25)
is

%

o mst’—mst L mst — mst”
1*—(mstp—mst*)—|—1*-/ ;dX:optr—mstp—kl*-ln <#> (26)

where the equality uses Lemma 18. Applying Lemma 18 two miored, and combining Equations (23)—
(26), we obtain

— 0 —
_ t” —mst
c(TP) =mst?+1(TP) < opt,+1*In <u>

1*
mst’ — (mst” +1%)
= opt,+1"-In{ 1+ T
mst’ — opt
as wanted. O
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7 Conclusion and Future Directions

There is a large body of work on relaxations for the Steires problem. While many of these formulations
have lead to improved, integer-programming based exaotitigns, none of the relaxations has a known
integrality gap smaller than 2. In this paper we propose &igrnaph-based relaxation, and we first showed
that the best known approximation algorithm for the Steinee problem has a natural interpretation as a
primal-dual algorithm for this LP. We then derived an uppeund on the integrality gap of our LP which is
nearly 2 for general graphs, but smaller than 2 for graphis sviall Steiner neighbourhoods.

The obvious open question is whether there is a relaxatiarse/igap is a constant strictly smaller than
2 for general instances. The integrality gap of the bidedatut relaxation, and therefore also the gap of our
formulation, is widely conjectured to be bounded away frarfiV2 hope that the connection between greedy
and LP-based algorithms developed in this paper provesilisehe quest for smaller integrality gaps.

Most primal-dual algorithms naively increase dual vdgalin a monotone way, and thus often find dual
solutions of poor quality. In their recent paper [6], Chdlady et al. showed that a suitable preprocessing of
a given quasi-bipartite Steiner tree instance may stedénepdual algorithm to higher value dual solutions.
As mentioned, we can use the filtering technique from [6] ideorto slightly improve the bound given in
Theorem 2 taq2b—1)/b for b > 2 [28]. Can this bound be decreased further by using moreistagied
filtering ideas?

Direct primal LP rounding techniques offer yet another waproving upper bounds on the integrality
gap of an LP. Hypergraph-based formulations may be usefililisnapproach as their basic solutions have
an appealinghestedstructure. Extending known results for undirected-cutriglations, partitions corre-
sponding to tight inequalities in basic solutions to our LRynbeuncrossed[27]. This suggests an attack
via iterated rounding a technique pioneered by Jain [23] that produces an irltégasible solution for an
instance of the survivable network design problem by raogai fractional basic solution in multiple stages.
However, one quickly realizes that a naive implementatibdain’s strategy will not work as a folklore ex-
ample similar to Skutella’s shows that some extreme poihtsdirected cut have support of sig(|V|?).
Developing more a sophisticated direct rounding strategydhallenging open question.
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