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Abstract

The Steiner tree problem is a classical NP-hard optimization problem with a wide range of practical
applications. In an instance of this problem, we are given anundirected graphG = (V,E), a set of
terminals R⊆ V, and non-negative costsce for all edgese∈ E. Any tree that contains all terminals is
called aSteiner tree; the goal is to find a minimum-cost Steiner tree. The verticesV\Rare calledSteiner
vertices.

The best approximation algorithm known for the Steiner treeproblem is agreedyalgorithm due to
Robins and Zelikovsky (SIAM J. Discrete Math, 2005); it achieves a performance guarantee of 1+
ln3
2 ≈ 1.55. The best knownlinear programming(LP)-based algorithm, on the other hand, is due to

Goemans and Bertsimas (Math. Programming, 1993) and achieves an approximation ratio of 2−2/|R|.
In this paper we establish a link between greedy and LP-basedapproaches by showing that Robins and
Zelikovsky’s algorithm can be viewed as an iterated primal-dual algorithm with respect to a novel LP
relaxation. The LP used in the first iteration is stronger than the well-knownbidirected cut relaxation.

An instance isb-quasi-bipartiteif each connected component ofG\R has at mostb vertices. We
show that Robins’ and Zelikovsky’s algorithm has an approximation ratio better than 1+ ln3

2 for such
instances, and we prove that the integrality gap of our LP is between8

7 and 2b+1
b+1 .

1 Introduction

The Steiner tree problem is a classical problem in combinatorial optimization which owes its practical impor-
tance to a host of applications in areas as diverse as VLSI design and computational biology. The problem is
NP-hard [24], and Chlebı́k and Chlebı́ková show in [7] thatit is NP-hard even toapproximatethe minimum-
cost Steiner tree within any ratio better than96

95. They also show that it is NP-hard to obtain an approximation
ratio better than128

127 in quasi-bipartiteinstances of the Steiner tree problem. These are instances in which no
two Steiner vertices are adjacent in the underlying graphG.

1.1 Greedy algorithms andr-Steiner trees

One of the first approximation algorithms for the Steiner tree problem is the well-knownminimum-spanning
tree heuristicwhich is widely attributed to Moore [16]. Moore’s algorithmhas a performance ratio of 2 for
the Steiner tree problem and this remained the best known until the 1990s, when Zelikovsky [48] suggested
computing Steiner trees with a special structure, so calledr-Steiner trees. Nearly all of the Steiner tree
algorithms developed since then user-Steiner trees. We now provide a formal definition.

A full Steiner component(or full componentfor short) is a tree whose internal vertices are Steiner ver-
tices, and whose leaves are terminals. The edge set of any Steiner tree can be partitioned into full components
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(i) (ii)

Figure 1: The figure shows a Steiner tree in (i) and its decomposition into full components in (ii). Square and
round vertices correspond to Steiner and terminal vertices, respectively. This particular tree is 5-restricted.

by splitting the tree at terminals: see Figure 1 for an example. An r-(restricted)-Steiner treeis defined to be
a Steiner tree all of whose full components have at mostr terminals.

An r-restricted Steiner tree does not always exist; for example, if G is a star with a Steiner vertex at its
center and more thanr terminals at its tips. To avoid this problem, wecloneeach Steiner vertexv many
times and connect these clones to all ofv’s neighbours in the graph. Copies of an edge have the same cost
as the corresponding original edge inG. This cloning does not affect the cost of the optimal Steinertree
but ensures a relatively cheapr-Steiner tree exists, as follows. Letopt andoptr be the cost of an optimal
Steiner tree and of an optimalr-Steiner tree, respectively, for the cloned instance. Ther-Steiner ratioρr is
defined to be the supremum ofoptr/opt over all instances of the Steiner tree problem. Borchers andDu [5]
computedρr for everyr; in particular,ρr = 1+ Θ(1/ logr) soρr tends to 1 asr goes to infinity.

The prevailing strategy of all modern Steiner tree algorithms is to compute a cheapr-Steiner tree of the
cloned graph, since this corresponds naturally to a Steinertree of the original graph of equal cost or less.
Computing minimum-costr-Steiner trees is NP-hard forr ≥ 4 [15], even if the underlying graph is quasi-
bipartite. The complexity status forr = 3 is unresolved, and the caser = 2 reduces to the minimum-cost
spanning tree problem.

In [48], Zelikovsky used 3-restricted full components to obtain an 11/6-approximation for the Steiner
tree problem. Subsequently, a series of papers (e.g., [4, 22, 25, 36]) improved upon this result. These efforts
culminated in a recent paper by Robins and Zelikovsky [40] inwhich the authors presented a

(

1+ ln3
2

)

≈
1.55-approximation (subsequently referred to asRZ) for the r-Steiner tree problem. They hence obtain, for
each fixedr ≥ 2, a 1.55ρr approximation algorithm for the (unrestricted) Steiner tree problem. We refer the
reader to two surveys in [21, 37].

1.2 Approaches based on linear programs

Many approximation algorithms in combinatorial optimization are based on LP relaxations. The general
approach is to jointly design an algorithm and a relaxation so that the algorithm produces a feasible integral
solution whose cost is close to the cost of the optimal LP solution. Theprimal-dual method(e.g., [20]) is
one paradigm of this sort, whereby the algorithm jointly develops a dual and integral primal solution, the
growth of each one guiding the other.

Numerous LP relaxations for the Steiner tree problem have been investigated in depth (e.g., [3, 9, 10,
11, 13, 19, 33, 45, 46]), and this in turn has helped to achievevast improvements in the area ofinteger
programming-based exact algorithms (e.g., see Warme [45] and Polzin [31, 34]). Despite the sizeable body
of work on Steiner tree relaxations, the best LP-based algorithms for the Steiner tree problem do not perform
as well asRZ in terms of approximation ratio.

For general graphs, theclassicalLP-based approximation algorithms for Steiner trees [18] and forests [2]
use theundirected cut relaxation[3] and have a performance guarantee of 2− 2

|R| . This relaxation has an

2



integrality gap of 2− 2
|R| and the analysis of these algorithms is therefore tight. Slightly improved algorithms

have since been designed for other LPs [26, 32] but do not achieve any constant approximation factor better
than 2. Similarly, no LP relaxation for the Steiner tree problem is known with integrality gap any constant
less than 2.

For quasi-bipartite graphs, Chakrabarty, Devanur, and Vazirani [6] considered thebidirected cut relax-
ation [13, 46] and obtained a43 approximation algorithm and integrality gap bound, improving an earlier ratio
of 3

2 [38, 39]. This yields the best known bound on the integralitygap of any LP relaxation for quasi-bipartite
graphs; nonetheless,RZ achieves an approximation ratio better than4

3 for these graphs. On general graphs,
the bidirected cut relaxation is conjectured (e.g. in [42])to have a smaller integrality gap than 2; the worst
known example shows a gap of only8

7 (see Section 5).

1.3 Contribution of this paper

In this paper we provide algorithmic evidence that the primal-dual method is useful for the Steiner tree
problem. We first present a novel LP relaxation for the Steiner tree problem. It uses full components to
strengthen a formulation based onSteiner partitioninequalities [9]. We then show that the algorithmRZ of
Robins and Zelikovsky can be analyzed as a primal-dual algorithm using this relaxation.

In [40], Robins and Zelikovsky showed that, for a fixedr, the performance ratio ofRZ is 1.279ρr in quasi-
bipartite graphs, and it is 1.55ρr in general graphs. We prove a natural interpolation of thesetwo results. For
a Steiner vertexv, define itsSteiner neighbourhoodsn(v) to be the collection of vertices that are in the same
connected component asv in G\R. A graph isb-quasi-bipartiteif all of its Steiner neighbourhoods have
cardinality at mostb. We prove:

Theorem 1. Given an undirected, b-quasi-bipartite graph G= (V,E), terminals R⊆V, and a fixed constant
r ≥ 2, AlgorithmRZ returns a feasible Steiner tree T s.t.

c(T) ≤







1.279·optr : b = 1
(1+ 1

e) ·optr : b∈ {2,3,4}
(

1+ 1
2 ln
(

3− 2
b

))

optr : b≥ 5.

Note thatb-quasi-bipartite graphs are a natural interpolation between quasi-bipartite graphs(b = 1) and
general graphs(b≤ |V\R|), hence Theorem 1 interpolates the two main results of Robinsand Zelikovsky
[40].

Unfortunately, Theorem 1 does not imply that our new relaxation has a small integrality gap. Nonethe-
less, we obtain the following bounds, whenG is b-quasi-bipartite:

Theorem 2. Our new relaxation has an integrality gap between8
7 and 2b+1

b+1 .

We remark that the concept offiltering, due to Chakrabarty et al. [6], can be applied to improve the gap
upper bound to2b−1

b for b≥ 2 [28].

1.4 Overview

In Section 2 we give some LP background on spanning trees and define our new LP relaxation. In Section 3
we show thatRZ can be interpreted as an iterated primal-dual algorithm using the new LP. Section 4 contains
some analysis ofb-quasi-bipartite graphs and the proof of Theorem 1. In Section 5 we prove Theorem 2
and compare the new LP to existing ones. Finally, Section 6 contains deferred technical details including a
short proof of thecontraction lemma, which appears in the analysis of many approximation algorithms for
the Steiner tree problem. We also remark that the contraction lemma holds not just in the graphic setting, but
more generally for matroids.
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2 Spanning trees and a new LP relaxation for Steiner trees

Our work is strongly motivated by linear programming formulations for the spanning tree polyhedron due
to Fulkerson [14] and Chopra [8]. In this section, we first discuss Chopra’s formulation, and we describe
a primal-dual interpretation of Kruskal’s spanning tree algorithm [30] based on this LP. Finally we extend
ideas in [9, 10] to derive a new LP relaxation for the Steiner tree problem.

2.1 The spanning tree polyhedron

To formulate the minimum-cost spanning tree (MST) problem as an LP, we associate a variablexe with every
edgee∈ E. Each spanning treeT corresponds to itsincidence vector xT , which is defined byxT

e = 1 if T
containse andxT

e = 0 otherwise. LetΠ denote the set of all partitions of the vertex setV, and suppose that
π ∈ Π. The rank r(π) of π is the number of parts ofπ. Let Eπ denote the set of edges whose ends lie in
different parts ofπ. Consider the following LP.

min ∑
e∈E

cexe (PSP)

s.t. ∑
e∈Eπ

xe ≥ r(π)−1 ∀π ∈ Π,

x≥ 0.

Chopra [8] showed that the feasible region of (PSP) is the dominant of the convex hull of all incidence
vectors of spanning trees, and hence each basic optimal solution corresponds to a minimum-cost spanning
tree. Its dual LP is

max ∑
π∈Π

(r(π)−1) ·yπ (DSP)

s.t. ∑
π:e∈Eπ

yπ ≤ ce ∀e∈ E, (1)

y≥ 0. (2)

2.2 A primal-dual interpretation of Kruskal’s MST algorith m

Kruskal’s algorithm, which we will denote byMST, can be viewed as a continuous process overtime: we
start with an empty tree at time 0 and add edges as time increases. The algorithm terminates at timeτ∗ with
a spanning tree of the input graphG. In this section we show that Kruskal’s method can be interpreted as
a primal-dual algorithm (see also [20]). At any time 0≤ τ ≤ τ∗ we keep a pair(xτ ,yτ ), wherexτ is a (not
necessarily feasible) 0-1 primal solution for (PSP) andyτ is a feasible dual solution for (DSP).

The initial primal and dual valuesx0 andy0 are the all-zero vectors. LetGτ = (V,Eτ ) denote the forest
corresponding toxτ , i.e., Eτ = {e∈ E | xτ

e = 1}. Let π(τ) denote the partition induced by the connected
components ofGτ . At time τ , the algorithm increasesyπ(τ) until a constraint of type (1) becomes tight for
some edgee∈ Eπ(τ). (If more than one such constraint becomes tight simultaneously, we pick any suche
arbitrarily.) Letτ ′ ≥ τ be the time at which this happens. The dual update is

yτ ′
π(τ) := τ ′− τ .

We then includee in our solution, i.e., the primal update isxτ ′
e := 1. We terminate at timeτ∗ such thatGτ∗

is a spanning tree. Chopra [8] showed that the final primal anddual solutions have the same objective value
(and are hence optimal), and we give a proof of this fact for completeness.
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In what follows, letG∗ be shorthand forGτ∗ and similarly forx∗, etc.

Theorem 3. AlgorithmMST finishes with a pair(x∗,y∗) of primal and dual feasible solutions to(PSP) and
(DSP), respectively, such that

∑
e∈E

cex
∗
e = ∑

π∈Π
(r(π)−1) ·y∗π .

Proof. Checking feasibility is straightforward. For each edgee∈ E∗, the constraint (1) holds with equality.
Hence, rearranging, we can express the cost of the final tree as follows:

∑
e∈E

cex
∗
e = ∑

e∈E∗
∑

π:e∈Eπ

y∗π = ∑
π∈Π

|E∗∩Eπ | ·y
∗
π . (3)

Note that for eachτ , the final treeG∗ has exactly|V|− r(π(τ)) edges not inEπ(τ); hence for allπ with y∗π > 0,
we have|E∗∩Eπ | = |V|−1− (|V |− r(π)) = r(π)−1. This fact, combined with Equation (3), completes
the proof.

Observe that the above primal-dual algorithm is indeed Kruskal’s algorithm: if the algorithm adds an
edgeeat timeτ , thenehas cost exactly equal toτ , ande is a minimum-cost edge connecting two connected
components ofGτ .

2.3 A new LP relaxation for Steiner trees

In an instance of the Steiner tree problem, a partitionπ of V is defined to be aSteiner partitionwhen each
part ofπ contains at least one terminal. Chopra and Rao [9] introduced this notion and proved that, whenx
is the incidence vector of a Steiner tree andπ is a Steiner partition, the inequality

∑
e∈Eπ

xe ≥ r(π)−1. (4)

holds. TheseSteiner partition inequalitiesmotivate our approach. In order to fully describe and analyze our
approach we need apreprocessingstep; it essentially replaces the graph by the union of its full components,
where the union is disjoint for edges and Steiner nodes.

In the following we useG[U ] to denote the subgraph ofG induced by vertex setU , i.e., the graph with
verticesU and edgesE(U) = {uv∈ E(G) | u∈U,v∈U}. We make the following assumptions:

A1. G[R] is a complete graph and, for any two terminalsu,v∈R, cuv is the cost of a minimum-costu,v-path
in G.

A2. For every Steiner vertexv and every vertexu∈ sn(v)∪R, uv is an edge ofG, andcuv is the cost of a
minimum-costu,v-path inG.

It is a well-known fact that these assumptions are without loss of generality, i.e., any given instance can be
transformed into an equivalent instance that satisfies these assumptions (e.g., see [43]). Note thatb-quasi-
bipartiteness is preserved by these assumptions.

Recall from Section 1.1 that a full component is a tree whose internal vertices are Steiner vertices and
all of whose leaves are terminals. Also recall that a full componentK is r-restricted if it contains at most
r terminals. Further, the edge-set of anyr-restricted Steiner treeT can be partitioned intor-restricted full
components. From now on, letr ≥ 2 be an arbitrary fixed constant. Define

Kr := {K ⊆ R : 2≤ |K| ≤ r and there exists a full component whose terminal set isK}.
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Figure 2: Left: a collectionS = {{t1, t5, t6},{t3, t4, t7},{t2, t3},{t3, t4}} of 4 full components. Right: a
Steiner tree withS -decomposition({t1s1, t5s1, t6s1, t2t3},{{t2, t6, t7},{t4, t7}}).

We note that, for eachK ∈ Kr , we can determine a minimum-cost full component with terminal setK in
polynomial time (e.g., by using the dynamic programming algorithm of Dreyfus and Wagner [12]). Thus,
we can computeKr in polynomial time as well.

For brevity we will abuse notation slightly and useK ∈ Kr interchangeably for a subset of the terminal
set and for a particular min-cost full component spanningK. Given anyr-restricted Steiner tree, we may
assume that all of its full components are fromKr , without increasing its cost.

For each full componentK, we useE(K) to denote its edges,V(K) to denote its vertices (including
Steiner vertices), andcK to denote its cost. For a setS of full components we defineE(S ) := ∪K∈S E(K)
and similarlyV(S ) :=∪K∈S V(K). By assumption A1 we may assume that the full component for a terminal
pair is just the edge linking those terminals, and by assumption A2 we may assume that any Steiner vertex
has degree at least 3. We will also assume that any two distinct full componentsK1,K2 ∈Kr are edge disjoint
and internally vertex disjoint. This assumption is withoutloss of generality as each Steiner vertex inG can
be cloned a sufficient number of times to ensure this property. Finally, we redefineG to be(V(Kr),E(Kr));
as a result, the Steiner trees of the new graph correspond to ther-restricted Steiner trees of the original graph.
This completes the preprocessing.

Let Kr(T) denote the set of all full components of a Steiner treeT. For an arbitrary subfamilyS of the
full componentsKr , our new LP uses the following canonical decomposition of a Steiner tree into elements
of E(S ) andKr\S .

Definition 4. If T is an r-restricted Steiner tree, itsS -decompositionis the pair

(E(T)∩E(S ),Kr(T)\S ).

Figure 2 illustrates theS -decomposition of a Steiner tree. Observe that afterS -decomposing a Steiner
treeT we have

∑
e∈E(T)∩E(S )

ce+ ∑
K∈Kr(T)\S

cK = c(T).

We hence obtain a new higher-dimensional view of the Steinertree polyhedron. Define

STS
G,R := conv{x∈ {0,1}E(S ) ×{0,1}Kr\S : ∃T ∈ STG,R s.t. x is the incidence

vector of theS -decomposition ofT}.

The following definitions are used to generalize Steiner partition inequalities to use full components. We
useΠS to denote the family of all partitions ofV(S )∪R.
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Definition 5. Let π = {V1, . . . ,Vp} ∈ ΠS be a partition of the set R∪V(S ). Therank contributionof full
component K∈ Kr\S is defined as

rcπ
K := |{i : K contains a terminal in Vi}|−1.

TheSteiner rank ¯r(π) of π is defined as

r̄(π) := {the number of parts ofπ that contain terminals}.

For example, whereS denotes the collection of full components on the left side ofFigure 2, consider
the partitionπ = {{t1, t5,s1},{s2},{t6, t7},{t2, t3},{t4}} ∈ ΠS . Its rank isr(π) = 5 but its Steiner rank is
r̄(π) = 4. The rank contribution of full componentK = {t2, t6, t7} is rcπ

K = 1.
We describe below a new LP relaxation (PS

ST) of STS
G,R. The relaxation has a variablexe for eache∈

E(S ) and a variablexK for eachK ∈ Kr\S . For a partitionπ ∈ ΠS , we defineEπ(S ) to be the edges of
S whose endpoints lie in different parts ofπ, i.e.,Eπ(S ) = E(S )∩Eπ .

min ∑
e∈E(S )

ce ·xe+ ∑
K∈Kr\S

cK ·xK (PS
ST)

s.t ∑
e∈Eπ (S )

xe+ ∑
K∈Kr\S

rcπ
K ·xK ≥ r̄(π)−1 ∀π ∈ ΠS (5)

xe,xK ≥ 0 ∀e∈ E(S ),K ∈ Kr\S (6)

Its LP dual has a variableyπ for each partitionπ ∈ ΠS :

max ∑
π∈ΠS

(r̄(π)−1) ·yπ (DS
ST)

s.t ∑
π∈ΠS :e∈Eπ (S )

yπ ≤ ce ∀e∈ E(S ) (7)

∑
π∈ΠS

rcπ
K ·yπ ≤ cK ∀K ∈ Kr\S (8)

yπ ≥ 0 ∀π ∈ ΠS (9)

We conclude this section with a proof that the (primal) LP is indeed a relaxation of the convex hull of
S -decompositions forr-restricted Steiner trees. The inequalities (6) are obviously valid forSTS

G,R.

Lemma 6. The inequalities(5) are valid forSTS
G,R.

Proof. Let T be a Steiner tree withS -decomposition(E(T)∩E(S ),Kr(T)\S ), and letx∈ STS
G,R be the

corresponding incidence vector. Fix an arbitrary partition π ∈ ΠS ; we will now argue that the left-hand side
of (5) for π is at least ¯r(π)−1.

In order to do that we successively modify the given partition π by merging some of its parts. Initially,
let π̂ = π. For each each edgeuv of E(T)∩E(S ), merge the part of̂π containingu and that containingv;
if both endpoints lie in the same part ofπ̂, the partition remains unchanged. Subsequently, considereach
K ∈ Kr(T)\S , and merge all parts of̂π meeting any terminal ofK.

Initially, π̂ has Steiner rank ¯r(π), and its final Steiner rank is 1 sinceT connects all terminals. The
Steiner rank drop of̂π due to any edgee∈ Eπ(S ) with xe = 1 is clearly at most 1. For any other edge
e∈ E(T)∩E(S ), since the endpoints ofe are in the same part ofπ, the Steiner rank drop of̂π due toe is
0. Similarly, the Steiner rank drop of̂π due toK ∈ Kr(T)\S is at mostrcπ

K . This shows thatx satisfies
constraint (5). AsT andπ were chosen arbitrarily, the lemma follows.
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3 An iterated primal-dual algorithm for Steiner trees

As described in Section 2.2,MST(G,c) denotes a call to Kruskal’s minimum-spanning tree algorithm on graph
G with cost-functionc. It returns a minimum-cost spanning treeT and an optimal feasible dual solutiony
for (DSP). Let mst(G,c) denote the cost ofMST(G,c). Sincec is fixed, in the rest of the paper we omitc
where possible for brevity. Let us also abuse notation and identify each setS ⊂Kr of full components with
the graph(V(S ),E(S )). In particular whenS = (V(S ),E(S )) is connected and spans all terminals,
MST(S ) is a Steiner tree; namely, the one produced by running the MSTheuristic on the instance wherein
the full component set isS and all other full components from the original instance arenot present.

The main idea of the greedy algorithms in [40, 47, 48] is to finda setS ⊂ Kr of full components such
thatMST(S ) is a Steiner tree with small cost relative tooptr . Let

(R
2

)

denote the collection of all pairs of
terminals. The algorithms all start withS =

(R
2

)

and then growS , so for the rest of the paper we assume
that

(R
2

)

⊆ S ; henceE(G[R]) ⊆ E(S ) andR⊆V(S ).
The reason thatMST is useful in our primal-dual framework is that we can relate the dual (DSP) on graph

S to the dual (DSST). Let y be the dual returned by a call toMST(S ). We treaty as a dual solution of (DSST);
note that constraints (1) and (2) of (DSP) imply thaty also meets constraints (7) and (9) of (DS

ST). If K is a
full component such that (8) does not hold fory, we say thatK is violatedby y.

The primal-dual algorithm finds such a setS in an iterative fashion. Initially,S is equal to
(R

2

)

. In each
iteration, we compute a minimum-cost spanning treeT of the graphS . The dual solutiony corresponding to
this tree is converted to a dual for (DS

ST), and ify is feasible for (DSST), we stop. Otherwise, we add a violated
full component toS and continue. The algorithm clearly terminates (asKr is finite) and at termination, it
returns the final treeT as an approximately-optimum Steiner tree.

Algorithm 1 summarizes the above description. The greedy algorithms in [40, 47, 48] differ only in how
K is selected in each iteration, i.e., in how the selection function fi : Kr → R is defined (see also [21,§1.4]
for a well-written comparison of these algorithms).

Algorithm 1 A general iterative primal-dual framework for Steiner trees.
1: Given: Undirected graphG = (V,E), non-negative costsce for all edgese∈ E, constantr ≥ 2.
2: S 0 :=

(R
2

)

, i := 0
3: repeat
4: (T i ,yi) := MST(S i)

5: if yi is not feasible for(DS i

ST) then
6: Choose a violated full componentK i ∈ Kr\S

i such thatfi(K i) is minimized
7: S i+1 := S i ∪{K i}
8: end if
9: i := i +1

10: until yi−1 is feasible for(DS i−1

ST )
11: Let p = i −1 and return(T p,yp).

In the typical primal-dual approach [20, 43] dual feasibility is maintained and primal feasibility happens
only at the end. This is true inMST relative to (DSP), however if you consider the entirety of Algorithm 1
relative to our new LPs, we obtain a primal feasible solutionin each iteration but attain dual feasibility only
in the final iteration; more specifically the objective valueof yi decreases asi increases (see Lemma 21).
We remark that the recent4

3-approximation algorithm of Chakrabarty et al. [6] for quasi-bipartite instances
uses the same generic approach, with the addition of an initial filtering step, and using any possible selection
function.

The following lemma is at the heart of our proof, and explainswhy our LP can be used to find cheap
Steiner trees. We useS /K to denote the graph obtained fromS by identifying the terminals inK, and by
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deleting loops created in this process.

Lemma 7. Let (T,y) = MST(S ). Then K is violated by y if and only if

cK < c(T)−mst(S /K).

Proof. Let us adopt the notation from the proof of Theorem 3, and assume thatMST(S ) finishes at timeτ∗.

Consider how the rank contribution ofK changes with respect toπ(τ) over time. Clearly,rcπ(0)
K = |K|−1

andrcπ(τ∗)
K = 0. Whenever an edge is added toEτ in MST, the valuercπ(τ)

K either stays the same or drops

by 1; hence there are edgese1, . . . ,e|K|−1 ∈ T such that, for 1≤ i ≤ |K| − 1, rcπ(τ)
K drops from|K| − i to

|K|− i −1 when edgeei is added. Letτ(i) denote the time at which edgeei is added, then by the definition
of theei ,

∫ τ∗

0
rc

π(τ)
K dτ =

|K|−1

∑
i=1

τ(i). (10)

Notice that due to the definition ofMST, the following two facts hold: first,τ(i) = cei for eachi; second, the
left hand side of Equation (10) is∑π rc

π
Kyπ . Hence we obtain

∑
π
rcπ

Kyπ =
|K|−1

∑
i=1

cei (11)

Let the partition maintained byMST on input G at time τ be denoted byπG(τ). An easy inductive
argument shows that for allτ , we obtainπS /K(τ) from πS (τ) by first merging all parts that meetK, and by
subsequently identifying the vertices ofK. It follows thatT\{e1, . . . ,e|K|−1} is a minimum spanning tree of
S /K. With Equation (11) this yields

∑
π
rcπ

Kyπ = c(T)−mst(S /K).

By the definition of violating full component, the proof is complete.

Corollary 8. Let (T,y) = MST(S ). If K is violated by y, then adding K toS produces a cheaper spanning
tree, i.e.,

mst(S ∪{K}) < c(T).

Proof. MST(S /K)∪K is a spanning tree ofS ∪{K}, and by Lemma 7 its cost is less thanc(T).

3.1 Cutting losses: theRZ selection function

A potential weak point in Algorithm 1 is that once a full component is added toS , it is never removed. On
the other hand, if some cheap subgraphH connects all Steiner vertices ofS to terminals, then addingH to
any Steiner tree gives us a tree that spansV(S ), i.e., we have so farlost at mostc(H) in the final answer.
This leads to the concept of thelossof a Steiner tree which was first introduced by Karpinski and Zelikovsky
in [25].

Definition 9. Let G′ = (V ′,E′) be a subgraph of G. ThelossL(G′) is a minimum-cost set E′′ ⊆ E′ such that
every connected component of(V ′,E′′) contains a terminal. Letl(G′) denote the cost ofL(G′).

See Figure 3 for an example of the loss of a graph. The above discussion amounts to saying that
min{mst(S ′) | S ′ ⊇ S } ≤ optr +l(S ). Consequently, our selection functionfi in step 6 of the algo-
rithm should try to keep the loss small. The following fact holds because full components inKr meet only
at terminals.

9
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Figure 3: The figure shows the Steiner tree instance from Figure 1 with costs on the edges. The loss of the
Steiner tree in this figure is shown in thick edges. Its cost is8.

Fact 10. If S ⊆ Kr , thenL(S ) = ∪K∈S L(K) and sol(S ) = ∑K∈S l(K).

For a setS of full components, wherey is the dual solution returned byMST(S ), define

mst(S ) := ∑
π∈ΠS

(r̄(π)−1)yπ . (12)

If y is feasible for (DSST) then by weak LP duality,mst(S ) provides a lower bound onoptr . If y is infeasible
for (DS

ST), then which full component should we add? Robins and Zelikovsky propose minimizing the ratio
of the added loss to the change in potential lower bound (12).Their selection functionfi is defined by

fi(K) :=
l(K)

mst(S i)−mst(S i ∪{K})
=

l(S i ∪{K})−l(S i)

mst(S i)−mst(S i ∪{K})
, (13)

where the equality uses Fact 10.

4 Analysis

Fix an optimumr-Steiner treeT∗. There are several steps in proving the performance guarantee of Robins
and Zelikovsky’s algorithm, and they are encapsulated in the following result, whose complete proof appears
in Section 6.

Lemma 11. The cost of the tree Tp returned by Algorithm 1 is at most

optr +l(T∗) · ln

(

1+
mst(G[R],c)−optr

l(T∗)

)

.

The main observation in the proof of the above lemma can be summarized as follows: from the discussion
in Section 2, we know that the treeT p returned by Algorithm 1 has cost

mst(S p) = ∑
π∈ΠS p

(r(π)−1)yp
π

and the corresponding lower-bound onoptr returned by the algorithm is

mst(S p) = ∑
π∈ΠS p

(r̄(π)−1)yp
π .

We know thatmst(S p) ≤ optr but how large is the difference betweenmst(S p) andmst(S p)? We show
that the difference

∑
π∈ΠS p

(r(π)− r̄(π))yp
π

10



is exactly equal to the lossl(T p) of treeT p — this is proved in Lemma 18. We then bound the loss of each
selected full componentK i, and putting everything together finally yields Lemma 11.

The following lemma states the performance guarantee of Moore’s minimum-spanning tree heuristic as
a function of the optimum loss and the maximum cardinalityb of any Steiner neighbourhood inG.

Lemma 12. Fix an arbitrary optimum r-restricted Steiner tree T∗. Given an undirected, b-quasi-bipartite
graph G= (V,E), a set of terminals R⊆V, and non-negative costs ce for all e∈ E, we have

mst(G[R],c) ≤ 2optr −
2
b
l(T∗)

for any b≥ 1.

Proof. Recall thatKr(T∗) is the set of full components of treeT∗. Now consider a full componentK ∈
Kr(T∗). We will now show that there is a minimum-cost spanning tree of G[K] whose cost is at most
2cK − 2

bl(K). By repeating this argument for all full componentsK ∈ Kr(T∗), adding the resulting bounds,
and applying Fact 10, we obtain the lemma.

For terminalsr,s∈ K, let Prs denote the uniquer,s-path inK. Picku,v∈ K such thatc(Puv) is maximal.
Define thediameter∆(K) := c(Puv). Do a depth-first search traversal ofK starting inu and ending inv. The
resulting walk inK traverses each edge not onPuv twice while each edge onPuv is traversed once. Hence
the walk has cost 2cK −∆(K). Using standard short-cutting arguments it follows that the minimum-cost
spanning tree ofG[K] has cost at most

2cK −∆(K) (14)

as well.
Each Steiner vertexs∈V(K)\Rcan connect to some terminalv∈ K at cost at most∆(K)

2 . Hence, the cost

l(K) of the loss ofK is at mostb∆(K)
2 . In other words we have∆(K)≥ 2

bl(K). Plugging this into (14) yields
the lemma.

For small values ofb we can obtain additional improvements via case analysis.

Lemma 13. Suppose b∈ {3,4}. Fix an arbitrary optimum r-restricted Steiner tree T∗. Given an undirected,
b-quasi-bipartite graph G= (V,E), a set of terminals R⊆ V, and non-negative costs ce for all e ∈ E, we
have

mst(G[R],c) ≤ 2optr −l(T∗).

Proof. As in the proof of Lemma 12 it suffices to prove that, for each full componentK ∈Kr(T∗), there is a
minimum-cost spanning tree ofG[K] whose cost is at most 2cK −l(K), for then we can add the bound over
all suchK to get the desired result. For terminalsr,s∈ K, let Prs again denote the uniquer,s-path inK.

Notice that the Steiner vertices (there are at mostb of them) in the full componentK either form a path,
or else there are 4 of them and they form a star.

Case 1: the Steiner vertices inK form a path. Letx andy be the Steiner vertices on the ends of this path.
Let u (resp.v) be any terminal neighbour ofx (resp.y); see Figure 4(i) for an example. Perform a
depth-first search inK starting fromu and ending atv; the cost of this search is 2cK − c(Puv). By
standard short-cutting arguments it follows that 2cK −c(Puv) is an upper bound onmst(G[K]). On the
other hand, sincePuv\{ux} is a candidate for the loss ofK, we know thatl(K)≤ c(Puv\{ux})≤ c(Puv).
Therefore we obtain

mst(G[K]) ≤ 2cK −c(Puv) ≤ 2cK −l(K). (15)

11
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Figure 4: The figure shows the two types of full components when b≤ 4. On the left is a full component
where the Steiner vertices form a path, and on the right is a full component where the Steiner vertices form
a star with 3 tips.

Case 2: the Steiner vertices inK form a star. Let the tips of the star bex,y,z and lett,u,v be any terminal
neighbours ofx,y,z respectively; see Figure 4(ii) for an example. Without lossof generality, we may
assume thatcxt ≤ cyu ≤ czv. As before, a depth-first search inK starting fromu and ending atv has
cost 2cK − c(Puv) and this is an upper bound onmst(G[K]). On the other hand,Puv\{yu}∪{xt} is a
candidate for the loss ofK and sol(K) ≤ c(Puv)−cyu+cxt ≤ c(Puv). We hence obtain Equation (15)
as in the previous case.

We are ready to prove our main theorem. We restate it using thenotation introduced in the last two
sections.

Theorem 1. Given an undirected, b-quasi-bipartite graph G= (V,E), terminals R⊆V, and a fixed constant
r ≥ 2, Algorithm 1 returns a feasible Steiner tree Tp with

c(T p) ≤







1.279·optr : b = 1
(1+1/e) ·optr : b∈ {2,3,4}
(

1+ 1
2 ln
(

3− 2
b

))

optr : b≥ 5.

Proof. Using Lemma 11 we see that

c(T p) ≤ optr +l(T∗) · ln

(

1+
mst(G[R],c)−optr

l(T∗)

)

= optr +l(T∗) · ln

(

1+
mst(G[R],c)−optr

l(T∗)

)

. (16)

The second equality above holds becauseG[R] has no Steiner vertices. Applying the bound onmst(G[R],c)
from Lemma 12 yields

c(T p) ≤ optr ·

[

1+
l(T∗)

optr
· ln

(

1−
2
b

+
optr

l(T∗)

)]

. (17)

Karpinski and Zelikovsky [25] show thatl(T∗) ≤ 1
2optr . We can therefore obtain an upper-bound on the

right-hand side of (17) by bounding the maximum value of function xln(1−2/b+1/x) for x∈ [0,1/2]. We
branch into cases:

b = 1: The maximum ofxln(1/x−1) for x∈ [0,1/2] is attained forx≈ 0.2178. Hence,xln(1/x−1)≤ 0.279
for x∈ [0,1/2].

12



b = 2: The maximum ofxln(1/x) is attained forx = 1/e and hencexln(1/x) ≤ 1/e for x∈ [0,1/2].

b∈ {3,4}: We use Equation (16) together with Lemma 13 in place of Lemma 12; the subsequent analysis
and result are the same as in the previous case.

b≥ 5: The functionxln(1−2/b+ 1/x) is increasing inx and its maximum is attained forx = 1/2. Thus,
xln(1−2/b+1/x) ≤ 1

2 ln(3−2/b) for x∈ [0,1/2].

The four cases above conclude the proof of the theorem.

We remark that under the original analysis of Robins and Zelikovsky, forRZ to achieve an approximation
ratio better than the MST heuristic requires(1+ 1

2 ln(3))ρr < 2 which occurs forr ≥ 12. Note the graph
resulting from preprocessing under a given choice ofr is (r − 2)-quasi-bipartite; hence, Theorem 1 shows
that forr = 5, RZ achieves ratioρ5 · (1+ 1

e) = 13
9 · (1+ 1

e) < 2 and does better than the MST heuristic.

5 Properties of(PS

ST)

In this section, we first prove that the linear program(PS

ST) is gradually weakened as the algorithm progresses
(i.e., as more full components are added toS ). Then we describe bounds on the integrality gap of the new
LP, and its strength compared to other LPs for the Steiner tree problem.

Lemma 14. If S ⊂ S ′, then the integrality gap of(PS
ST) is at most the integrality gap of(PS ′

ST).

Proof. We consider only the case whereS ′ = S ∪{J} for some full componentJ; the general case then
follows by induction on|S ′\S |.

Let x be any feasible primal point for (PSST) and define theextension x′ of x to be a primal point of(PS ′

ST),

with x′e = xJ for all e∈ E(J) andx′Z = xZ for all Z∈ (Kr\S
′)∪E(S ). We claim thatx′ is feasible for(PS ′

ST).
Sincex andx′ have the same objective value, this will prove Lemma 14.

It is clear thatx′ satisfies constraints (6), so now let us show thatx′ satisfies the partition inequality (5) in
(PS ′

ST). Fix an arbitrary partitionπ ′ of V(S ′), and letπ be the restriction ofπ ′ to V(S ). We get

∑
e∈Eπ′ (S

′)

x′e+ ∑
K∈Kr\S ′

rcπ ′

K x′K =

(

∑
e∈Eπ (S )

xe+ ∑
K∈Kr\S

rcπ
KxK

)

+ |Eπ ′ ∩E(J)|xJ−rcπ
J xJ. (18)

Now J spans at leastrcπ
J +1 parts ofπ ′, and it follows that|Eπ ′ ∩E(J)| ≥ rcπ

J . Hence, using Equation (18),
the fact thatx satisfies constraint (5) forπ, and the fact that ¯r(π) = r̄(π ′), we have

∑
e∈Eπ′ (S

′)

x′e+ ∑
K∈Kr\S ′

rcπ ′

K x′K ≥ ∑
e∈Eπ (S )

xe+ ∑
K∈Kr\S

rcπ
KxK ≥ r̄(π)−1 = r̄(π ′)−1.

Sox′ satisfies (5) forπ ′.

In 1997, Warme [44] introduced a new linear program for the Steiner tree problem. He observed (as did
the authors of [36] in the same year) that full components allow a reduction from the Steiner tree problem
to thespanning-tree-in-hypergraphproblem. Warme also gave an LP relaxation for spanning treesin hyper-
graphs. That LP turns out to be exactly as strong as our own LP;see [27, Corollary 3.19] for a proof. Now,
Polzin et al. [35] proved that Warme’s relaxation is stronger than the bidirected cut relaxation, and Goe-
mans [17] proved that the (graph) Steiner partition inequalities are valid for the bidirected cut formulation.
Hence, using full components as in (PS

ST) strengthens the Steiner partition inequalities.
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Figure 5: Skutella’s example, which shows that the bidirected cut formulation and our new formulation both
have a gap of at least8

7. The shaded edges denote one of the quasi-bipartite full components on 5 terminals.

5.1 A lower bound on the integrality gap of(P∅

ST)

Note that whenS =
(R

2

)

, (P∅

ST)and (PSST) are equivalent LPs: for each terminal-terminal edgeuv, the full
component variablex{u,v} of the former corresponds to the edge variablexuv of the latter. Hence although we
consider the simpler LP(P∅

ST) in this section, the results apply also to the LP used in the first iteration ofRZ.
As reported by Agarwal & Charikar [1], Goemans gave a family of graphs upon which, in the limit, the

integrality gap of the bidirected cut relaxation is8
7. Interestingly, it can be shown that once you preprocess

these graphs as described in Section 2.3, the gap completelydisappears. Here we describe another example,
due to Skutella [41]. It shows not only that the gap of the bidirected cut relaxation is at least8

7, but that the
gap of our new formulation (including preprocessing) is at least8

7. The example is quasi-bipartite.
The Fano design is a well-known finite geometry consisting of7 pointsand 7lines, such that every point

is on 3 lines, every line contains 3 points, any two lines meetin a unique point, and any two points lie on a
unique common line. We construct Skutella’s example by creating a bipartite graph, with one side consisting
of one vertexnp for each pointp of the Fano design, and the other side consisting of one vertex nℓ for each
line ℓ of the Fano design. Definenp andnℓ to be adjacent in our graph if and only ifp doesnot lie onℓ. Then
it is easy to see this graph is 4-regular, and that given any two verticesn1,n2 from one side, there is a vertex
from the other side that is adjacent to neithern1 nor n2. Let one side be terminals, the other side be Steiner
vertices, and then attach one additional terminal to all theSteiner vertices. We illustrate the resulting graph
in Figure 5.

Each Steiner vertex is in a unique 5-terminal quasi-bipartite full component. There are 7 such full
components. Denote the family of these 7 full components byC .

Claim 15. Let x∗K = 1
4 for each K∈ C , and x∗K = 0 otherwise. Then x∗ is feasible for(P∅

ST).

Proof. It is immediate thatx∗ satisfies constraints (6). It remains only to show thatx∗ meets constraint (5).
Let π = (V0,V1, . . . ,Vm) be an arbitrary partition such thatV0 contains the extratop terminal. If we can show
that∑K x∗Krc

π
K ≥ m then we will be done, sinceπ was arbitrary. For eachi = 1, . . . ,m, let ti be any terminal

in Vi . Note that eachti lies in exactly 4 full components fromC . Furthermore, every full componentK ∈ C

satisfiesrcπ
K ≥ |K∩{t1, . . . , tm}|, asK meetsV0 as well as each partVj for which t j ∈ K. Hence

∑
K∈C

x∗Krc
π
K =

1
4 ∑

K∈C

rcπ
K ≥

1
4 ∑

K∈C

|{ j : t j ∈ K}| =
1
4

m

∑
j=1

|{K ∈ C : t j ∈ K}| =
1
4
·m·4 = m.

The objective value ofx∗ is 35
4 , but the optimal integral solution to the LP is 10, since at least 3 Steiner

vertices need to be included. Hence, the gap of our new LP is nobetter than 10
35/4 = 8

7.

14



5.2 A gap upper bound forb-quasi-bipartite instances

In [38] Rajagopalan and Vazirani show that the bidirected cut relaxation has a gap of at most3
2, if the graph

is quasi-bipartite. Since(P∅

ST) is stronger than the bidirected cut relaxation its gap is also at most32 for such
graphs. We are able to generalize this result as follows.

Theorem 2. On b-quasi-bipartite graphs,(P∅

ST)has an integrality gap between87 and 2b+1
b+1 in the worst case.

Proof. The lower bound comes from Section 5.1. We assumeG is b-quasi-bipartite, we letT∗ be an optimal
Steiner tree, and we letS ∗ be its set of full components. SinceT∗ is a minimum spanning tree forS ∗,
there is a corresponding feasible dualy for (DSP). When we converty to a dual for(DS

∗

ST ), we claim thaty is
feasible: indeed, by Corollary 8 a violated full component could be used to improve the solution, butT∗ is
already optimal. The next lemma is the cornerstone of our proof.

Lemma 16. Let π be a partition of V(S ∗) with yπ > 0. Then(r̄(π)−1) ≥ b+1
2b+1(r(π)−1).

Proof. For each partVi of π, let us identify all of the vertices ofVi into a single pseudo-vertexvi . We may
assume by Theorem 3 that eachT∗[Vi ] is connected, hence this identification process yields a tree T ′. Let us
say thatvi is Steinerif and only if all vertices ofVi are Steiner. Note thatT ′ hasr(π) pseudo-vertices and
r(π)− r̄(π) of these pseudo-vertices are Steiner. The full components of T ′ are defined analogously to the
full components of a Steiner tree.

Consider any full componentK′ of T ′ and letK′ contain exactlys Steiner pseudo-vertices. It is straight-
forward to see thats≤ b. Each Steiner pseudo-vertex inK′ has degree at least 3 by Assumptions A1 and
A2, and at mosts− 1 edges ofK′ join Steiner vertices to other Steiner vertices. HenceK′ has at least
3s− (s−1) = 2s+1 edges, and so

|E(K′)| ≥
2s+1

s
·s≥

2b+1
b

·s.

Now summing over all full componentsK′, we obtain

|E(T ′)| ≥
2b+1

b
·#{Steiner pseudo-vertices ofT ′}.

But |E(T′)| = r(π)−1 andT ′ hasr(π)− r̄(π) Steiner pseudo-vertices, therefore

r(π)−1≥
2b+1

b
((r(π)−1)− (r̄(π)−1)) ⇒

2b+1
b

(r̄(π)−1) ≥
b+1

b
(r(π)−1).

This proves what we wanted to show.

It follows that the objective value ofy in (DS ∗

ST ) is

∑
π∈ΠS

(r̄(π)−1)yπ ≥ ∑
π∈ΠS

b+1
2b+1

(r(π)−1)yπ =
b+1
2b+1

c(T∗)

and sinceT∗ is an optimum integer solution of(PS ∗

ST ), it follows that the integrality gap of(PS ∗

ST ) is at most
2b+1
b+1 . Then, finally, by applying Lemma 14 to(P∅

ST)and(PS ∗

ST )we obtain Theorem 2.

15



6 Proof of Lemma 11

In this section we present a proof of Lemma 11. The methodology follows that proposed by Gröpl et al. [21],
see also the presentation of Korte & Vygen [29, Ch. 20] which corrects a small bug. The essential novelty
of our approach is an integral-based interpretation ofmst, mst and loss, which leads to the cornerstone
mst = mst+ l (Lemma 18). This also results in a new, short proof of the ubiquitous contraction lemma
(Lemma 22).

WhenG is a graph andτ is a real number, letG≤τ denote the subgraph ofG obtained by deleting all
edges with weight greater thanτ . For a graphG, let κ(G) denote the number of connected components ofG.

Lemma 17. mst(G) =
∫ ∞

τ=0(κ(G≤τ)−1)dτ .

Proof. At time τ , Kruskal’s primal-dual algorithm raises the objective function of (DSP) at a rate ofr(π(τ))−
1 per unit time. By Theorem 3,

mst(G) = c(T) = ∑
π

y∗π(r(π)−1) =

∫ τ∗

τ=0
(r(π(τ))−1)dτ .

Now, sinceπ(τ) is the same as the partition induced by the connected components of G≤τ , and since
κ(G≤τ) = 1 for τ ≥ τ∗, we are done.

We first relate the cost of a minimum-cost spanning tree ofS for some setS of full components to the
(potential) lower-boundmst(S ) onoptr that it provides.

Lemma 18. For any graph G and terminal set R⊂V(G),

mst(G) = mst(G)+l(G).

Proof. RunMST on inputG, obtaining output(T,y) Let us adopt the notation from the proof of Theorem 3.
The differencemst(G)−mst(G) satisfies

mst(G)−mst(G) = ∑
π

yπ r(π)−∑
π

yπ r̄(π) =

∫ τ∗

0
(r(π(τ))− r̄(π(τ)))dτ . (19)

Let aSteiner partof a partition be a part which contains only Steiner vertices. The quantityr(π(τ))− r̄(π(τ))
counts the number of Steiner parts ofπ(τ). Recall from Section 2.2 thatGτ denotes the forest maintained
by Kruskal’s algorithm at timeτ ≥ 0. We then obtainGτ/R from Gτ by identifying the set of all terminals;
Gτ/R has one connected component for each Steiner part ofπ(τ), and one additional connected component
containing all other vertices. Therefore, the right-hand side of (19) is equal to

∫ τ∗

0
(κ(Gτ/R)−1)dτ =

∫ ∞

0
(κ((G/R)≤τ)−1)dτ = mst(G/R),

where the last equality uses Lemma 17.
Finally, note thatl(G) = mst(G/R), since the loss is the minimum-cost set of edges to connect every

Steiner vertex to some terminal, which is the same as the minimum-cost set of edges to connect every
Steiner vertex to the pseudo-vertex corresponding toR in G/R, which is in turn the minimum spanning tree
of G/R.

We obtain the following immediate corollary:

Corollary 19. In iteration i of Algorithm 1, adding full component K∈Kr to S reduces the cost ofmst(S )
if and only if fi(K) < 1.
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Proof. By applying Lemma 18 we see that

mst(S i)−mst(S i ∪{K}) = mst(S i)+l(S i)−mst(S i ∪{K})−l(S i ∪{K}).

Whereas the left-hand side is positive iff addingK to S i causes a reduction inmst, the right-hand side is
positive iff fi(K) < 1, due to the definition offi (equation (13)).

Using Corollaries 8 and 19, we obtain the following.

Corollary 20. For all 1≤ i ≤ p, fi(K i) < 1.

Fix an optimumr-Steiner treeT∗. The next two lemmas give bounds that are needed to analyzeRZ’s
greedy strategy. Informally, the first says thatmst is non-increasing, while the second says thatmst is
supermodular.

Lemma 21. If S ⊆ S ′ ⊆ Kr , thenmst(S ′) ≤ mst(S ).

Proof. Using Lemma 18 and Fact 10 we see

mst(S )−mst(S ′) = mst(S )+l(S ′\S )−mst(S ′).

However, the right hand side of the above equation is non-negative, asMST(S )∪ L(S ′\S ) is a spanning
tree ofS ′. Lemma 21 then follows.

Lemma 22 (Contraction Lemma). Let S 0,S 1,S 2 ⊂ Kr be disjoint collections of full components with
(R

2

)

⊆ S 0. Then

mst(S 0)−mst(S 0∪S
2) ≥ mst(S 0∪S

1)−mst(S 0∪S
1∪S

2).

Proof. The statement to be proved is equivalent to

mst(S 0)−mst(S 0∪S
2) ≥ mst(S 0∪S

1)−mst(S 0∪S
1∪S

2), (20)

due to Lemma 18 and Fact 10. Our proof is centred around proving that for allτ ≥ 0,

κ(S 0
≤τ)−κ(S 0

≤τ ∪S
2
≤τ) ≥ κ(S 0

≤τ ∪S
1
≤τ)−κ(S 0

≤τ ∪S
1
≤τ ∪S

2
≤τ). (21)

If we prove Equation (21), then by adding−1+1 to each side, integrating alongτ , and using Lemma 17, we
obtain Equation (20) as needed.

Define a functionµ on graphs byµ(G) = |V(G)| − κ(G). The crux is thatµ is the rank function for
graphic matroids, and is hence submodular. Similarly, the function |V(G)| is modular, and soκ(G) =
|V(G)|−µ(G) is supermodular, which proves Equation (21).

Note that the proof of Lemma 22 easily generalizes to other matroids. This seems not to have been
noticed before, and is not evident from early proofs of the Contraction Lemma (e.g. [4, Lemma 3.9], [21],
[39, Lemma 2]) — although it is not hard to deduce from the presentation of Korte & Vygen [29].

We are finally near the end of the analysis, where the Contraction Lemma comes into play. We can now
bound the valuefi(K i) for all 0≤ i ≤ p−1 in terms of the cost ofT∗’s loss. In the remainder of the section,
let l∗ denotel(T∗), let msti denotemst(S i) and letmst∗ denotemst(T∗).

Lemma 23. For all 0≤ i ≤ p−1, if msti −mst
∗ > 0, then fi(K i) ≤ l∗/(msti −mst

∗).
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Proof. Let the full components ofT∗ beK∗,1, . . . ,K∗,q. By the choice ofK i in Algorithm 1, we havefi(K i)≤
min j fi(K∗, j). A standard fraction averaging argument implies that

fi(K
i) ≤

∑q
j=1l(K

∗, j)

∑q
j=1

(

mst(S i)−mst(S i ∪{K∗, j})
)

≤
l∗

∑q
j=1

(

mst(S i ∪{K∗,1, . . . ,K∗, j−1})−mst(S i ∪{K∗,1, . . . ,K∗, j})
) (22)

where the last inequality uses Fact 10 and Lemma 22. The denominator of the right-hand side of Equation
(22) is a telescoping sum. Canceling like terms, and using Lemma 21 to replacemst(S i ∪{K∗,1, . . . ,K∗,q})
with mst

∗, we are done.

We can now bound the cost ofT p.

Proof of Lemma 11.We first bound the lossl(T p) of treeT p. Using Fact 10,

l(T p) =
p−1

∑
i=0

l(K i) =
p−1

∑
i=0

fi(K
i) · (msti −mst

i+1) (23)

where the last equality uses the definition offi from (13). Using Corollary 20 and Lemma 23, the right hand
side of Equation (23) is bounded as follows:

p−1

∑
i=0

fi(K
i) · (msti −mst

i+1) ≤
p−1

∑
i=0

l∗

max{l∗,msti −mst
∗}

· (msti −mst
i+1). (24)

The right hand side of Equation (24) can in turn be bounded from above by the following integral:

p−1

∑
i=0

l∗ · (msti −mst
i+1)

max{l∗,msti −mst
∗}

≤

∫

mst
0

mst
p

l∗

max{l∗,x−mst
∗}

dx=

∫

mst
0−mst∗

mst
p−mst∗

l∗

max{l∗,x}
dx. (25)

Notice thatmst0 = mst(G[R],c)≥ optr = l∗+mst
∗. The termination condition in Algorithm 1 and Lemma

6 imply thatmstp ≤ optr . Hence the result of evaluating the integral in the right-hand side of Equation (25)
is

l∗− (mstp−mst
∗)+l∗ ·

∫

mst
0−mst∗

l∗

1
x

dx= optr −mst
p +l∗ · ln

(

mst
0−mst

∗

l∗

)

(26)

where the equality uses Lemma 18. Applying Lemma 18 two more times, and combining Equations (23)–
(26), we obtain

c(T p) = mst
p +l(Tp) ≤ optr +l∗ · ln

(

mst
0−mst

∗

l∗

)

= optr +l∗ · ln

(

1+
mst

0− (mst∗ +l∗)

l∗

)

= optr +l∗ · ln

(

1+
mst

0−optr

l∗

)

as wanted.
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7 Conclusion and Future Directions

There is a large body of work on relaxations for the Steiner tree problem. While many of these formulations
have lead to improved, integer-programming based exact algorithms, none of the relaxations has a known
integrality gap smaller than 2. In this paper we propose a hypergraph-based relaxation, and we first showed
that the best known approximation algorithm for the Steinertree problem has a natural interpretation as a
primal-dual algorithm for this LP. We then derived an upper-bound on the integrality gap of our LP which is
nearly 2 for general graphs, but smaller than 2 for graphs with small Steiner neighbourhoods.

The obvious open question is whether there is a relaxation whose gap is a constant strictly smaller than
2 for general instances. The integrality gap of the bidirected cut relaxation, and therefore also the gap of our
formulation, is widely conjectured to be bounded away from 2. We hope that the connection between greedy
and LP-based algorithms developed in this paper proves useful in the quest for smaller integrality gaps.

Most primal-dual algorithms naı̈vely increase dual variables in a monotone way, and thus often find dual
solutions of poor quality. In their recent paper [6], Chakrabarty et al. showed that a suitable preprocessing of
a given quasi-bipartite Steiner tree instance may steer a primal-dual algorithm to higher value dual solutions.
As mentioned, we can use the filtering technique from [6] in order to slightly improve the bound given in
Theorem 2 to(2b−1)/b for b≥ 2 [28]. Can this bound be decreased further by using more sophisticated
filtering ideas?

Direct primal LP rounding techniques offer yet another way of proving upper bounds on the integrality
gap of an LP. Hypergraph-based formulations may be useful inthis approach as their basic solutions have
an appealingnestedstructure. Extending known results for undirected-cut formulations, partitions corre-
sponding to tight inequalities in basic solutions to our LP may beuncrossed[27]. This suggests an attack
via iterated rounding, a technique pioneered by Jain [23] that produces an integral feasible solution for an
instance of the survivable network design problem by rounding a fractional basic solution in multiple stages.
However, one quickly realizes that a naı̈ve implementationof Jain’s strategy will not work as a folklore ex-
ample similar to Skutella’s shows that some extreme points of bidirected cut have support of sizeΩ(|V|2).
Developing more a sophisticated direct rounding strategy is a challenging open question.
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