Practical Advice for Small Group Learning in Undergraduate Mathematics
 David Pritchard, Ph.D. Candidate Department of Combinatorics and Optimization

What Is Small Group Learning?

Student Quotes
Here are some representative student quotes that illustrate the effects of small group learning in undergraduate mathematics.

Applications to "CO 456: Intro. to Game Theory"

- Use a many-player game that is relevant to the course content in order to introduce students to each other in the first class.
- Give two-part assignments, consisting of an individual-only part that builds basic tools and skills, and a collaboration-optional part that requires more insight and creativity to solve.
-When introducing impartial combinatorial games, give the students first-hand experience. Explain the rules of several such games, pair up the students, and have them play these games against each other. Debrief them afterwards to see if winning strategies were developed.
- Design group-assessed projects with multiple components that can be worked on independently. As part of the final project, have students give group presentations about papers from game theory literature
- Ask students to create a one-page review sheet to bring to the last class. Have them critique and improve each others' designs in small groups. Ask each group to give one tip to the res of the class: discuss which were the most important ideas in the course.

Tips
Start small. Plan specific small group learning activities for your course. Tell your students what you plan to do and make sure the rationale and expectations are clear
Give a specific collaboration policy to the students. E.g. can groups provide answers to other groups "so they have an example," or use on-line resources such as Facebook?
To form heterogeneous groups, give a pre-test and make each group have a mix of weak and strong students
Plan activities appropriate to the class size
If you encourage out-of-class group work, find out what on-campus resources exist for groups of students (e.g. group study areas) and advertise them to the class Make the fraction of the students' final g
When groups have questions on the material, act as a catalyst for the group to answer it them selves, rather than a primary resource. Be willing to relinquish control of class discussions. Track the effectiveness of your methods using formative assessment tools such as mid-term questionnaires and teaching observations.
Group homework yields fewer submissions, so give more feedback to each submission
Encourage intra- and inter-team cooperation, and discourage competition.

Caveats

Group learning can enhance delivery of course material, but is not a substitute for good course content. Using small group learning successfully requires careful planning and commitment on the part of the teacher.
If using group assessment, give students a chance to evaluate their group peers for fairness. Some students (e.g. mature students) may prefer that you do not use group learning, due to past experience or personal preference.
Avoid random selection of groups; student-selected groups and teacher-selected heterogeneous groups yield better results.
Avoid gratuitous group tasks; if the benefits of being grouped are not evident to the students, Avoid gratuitous group tasks, if the
they may work individually instead.
Completely unsupervised groups may make uncorrected mistakes. Pay attention to each group to ensure steady progress.

References

American Association for the Advancement of Science (AAAS) (1990). The liberal art of science: Agenda for action.

 Washington, DC: AAASBerry, J. and Nyman, M. (2002). Small-group assessment methods in mathematics. International Journal of Mathe-
matical Education in marcal Education in Science and Technology, 33 (5), $641-649$.
Berry, J. and Sharp. . (1999). Developing student-centred learning in mathematics through co-operation, reflection and discussion. Teaching in, Higher Education, 4 (1), 27-41.
Christensen Hughes, \downarrow and dian Journal of Higher Education, 36 (2), $1-21$. . Academic misconduct within higher educalion in Canada. Cana-
D'S D'Souza, S. and Wood, LL. (2003). Tertiary students' views about group work in mathematics EElectronic version]. In Proceedings of the AARE-NZARE International Education Research Conterence.
Duncan, H. and Dick, T. (2000). Collaborative workshops and student academic performance in introductory college mathematics courses: a study of a Treisman model Math Excel program. School Science and Mathematics, 100 (7), 365-373.
Goldberg, D. J. (1981). Problem solving in small groups. International Journal of Mathematical Education in Science and Technology, 12 (2), 211-217.
Grassl, R. and Mingus, T. T. Y. (2007). Team teaching and cooperative groups in abstract algebra: nurturing a Grassl, R. and Mingus, T. T. Y. (2007). Team teaching and cooperative groups in abstract algebra: nurturing a
new generation of contident mathematics teachers. International Journal of Mathematical Education in Science and Technology, 38 (5), 581-597.
MacBean, J., Graham, E. and Sangwin, C. (2004). Group work in mathematics: a survey of students' experiences and atititudes. Teaching Mathematics and its Applications, 23, 49-68.
Springer, L., Stanne, M. and Donovan, S. (1999). Effects of small-group learning on undergraduates in science,
mathematics, engineering, and technology: a meta-analysis. Review of Educational Research, 69 (1). $21-51$. Wills, C., Deremer, D., McCauley, R. and Null, L. (1999). Studyying the use of peer learning in the introductory computer science curriculum. Computer Science Education, 9 (2), 71-88

