Question 1. Which is bigger: 0.11_{10} or 0.000111_{2} ?

Question 2. How many boolean strings $R A T S$ satisfy the following equation?

$$
\overline{(T A R)}+S \oplus R=A \bar{R} T \bar{S}+\overline{S T+A R}
$$

Question 3. Build a minimal heap out of "RUMBLESTRIP"
(a) Show the resulting heap.
(b) What does the heap look like after one pop?
(c) If we pop three more times (for a total of four pops), what's the fourth letter popped?

Question 4. The complete graph on n vertices, denoted K_{n}, is a graph with n vertices and all $\binom{n}{2}=\frac{n(n-1)}{2}$ possible non-loop edges.
(a) Draw the adjacency matrix for K_{5}.
(b) Let v be a vertex of K_{5}. How many length- 3 paths are there from v to itself?
(c) Let v be a vertex of K_{5}. How many length-4 paths are there from v to itself?
(bonus) Repeat the preceding two questions for K_{n} in place of K_{5}; your answers will be functions of n.

Question 5. What is the final value of X in this Basic program?

```
X=0
read A$
for I=1 to len(A$)-1
    for J=1 to len(A$)-I
            for K=J+1 to len(A$)-I+1
                if mid$(A$, J, I)=mid$(A$, K, I) then
                X=X+1
            next K
        next J
    next I
70 data BANANARAMA
```

80 end

Question 6. What is the output of the following program when the data is $1,3,1,8,0$?

N	DC	1
D	DC	2
GOLD	READ	A
	LOAD	A
	BE	MEMBER
	READ	B
	LOAD	B
	MULT	D
	STORE	D
	MULT	A
	STORE	T
	LOAD	B
	MULT	B
	MULT	N
	SUB	T
	DIV	B
	STORE	N
	BU	GOLD
MEMBER	PRINT	N
	PRINT	D

Question 7. The following expressions are evaluated in order. Determine the result of each one. Write "ERROR" if an error is the result.

```
(SETQ X (CONS (+ 1 2 3) '(X)))
(EVAL (CDR X))
(CADAR (CONS (CONS 'X X) X))
(QUOTE QUOTE)
```

Question 8. Simplify the following regular expression as much as possible:

$$
A B \cup B B^{*} \cup B A^{*} B^{*} \cup(A B)^{*}
$$

Question 9. A binary search tree, when traversed in postfix, gives the order "MONKEY". Draw the tree.

Question 10. When written in base 24 , how many zeroes does the number $24_{10}!=24_{10} \times 23_{10} \times 22_{10} \times \cdots \times 1_{10}$ end in?

Question 11. Suppose the values of three Boolean variables X, Y, Z are chosen independently at random. (So each one is true with probability $1 / 2$.) What is the probability that each of the following expressions evaluates to true?
(a) $X Y+Z$
(b) $Z+X Y+Y Z$
(c) $(X+Y)(Y+Z) \bar{Z}$
(d) $(X \oplus Y)+(\bar{X} Y Z \oplus Z)$

Question 12. If X is a 12-character string accepted by the following FSA, and X contains 2 b's, how many c's does X contain?

Question 13. The following is a program for Qascal, which is a version of Pascal that has a built-in queue. The functions push() and pop() operate on this queue. Assume the queue is initially empty. What is the output?

```
function prank(): integer;
var t, u: integer;
begin
    t := -1;
    repeat
        u := t;
        t := pop();
        if (t <> -1) then push(u)
    until (t = -1);
    prank := u
end;
begin
    push(3); push(5); push(7); println(prank()); push(9); println(prank()); println(prank());
end.
```

Question 14. Ficus Magoo is a very confused student! He is working on a ACSL problem and correctly derived that

$$
A+B=A+C
$$

Then, he forgot the laws of Boolean algebra and deduced that $B=C$, by "cancelling out" the A. Show Ficus the error of his ways by giving all triples (A, B, C) of values such that $A+B=A+C$ but $B \neq C$.

Question 15. Draw an equivalent circuit to the one below, using only three gates. (Splitting an input does not count as a gate.)

Question 16. In this problem, h is a recursive function that takes an integer as input and outputs a Boolean value. Find the 100th smallest positive integer x such that $h(x)$ is true.

$$
h(n):= \begin{cases}\text { true, } & \text { if } n<0 \\ \text { false, } & \text { if } n=0 \\ \operatorname{not}(h(n-1) \text { or } h(n-3) \text { and } h(n-4)), & \text { otherwise }\end{cases}
$$

Question 17. Find a solution X to the following equation where X is a 5 -bit string

$$
\text { X AND ((LCIRC-2 RSHIFT-1 X) OR (RCIRC-1 NOT X })=\text { abcde }
$$

(a) if abcde $=11000$
(b) if abcde=10011

Question 18. Compute $F 154_{16}+F 00 D_{16}$ and $F 154_{16} \times F 00 D_{16}$, expressing your answers in base 8 .

Question 19. Insert the word "BLOOMING" into a binary search tree.
(a) Show the resulting tree.
(b) What is the internal path length?
(c) What is the external path length?
(d) Delete L; what does the remaining tree look like?

Question 20. Evaluate the following prefix expression, where "/" is interpreted as integer division.

Question 21. Compute $f(2,1,1)$ and $f(3,3,2)$, where

$$
f(x, y, z):= \begin{cases}0, & \text { if } x, y, \text { or } z \text { is negative } \\ 1, & \text { if } x=y=z=0 \\ f(x-1, y, z)+f(x, y-1, z)+f(x, y, z-1), & \text { otherwise }\end{cases}
$$

Bonus: find a general formula for f; hint: the answer is related to Pascal's triangle.

Question 22. Ada Smalltalk is a student who loves factoring. In fact, she just wrote an ACSL Assembler program that would compute the sum of all divisors of N and store the result in X . But due to a clerical error, 7 lines of her program have been jumbled out of order. Replace those 7 lines in the correct order.

X	DC	0		
	LOAD	N		
	STORE	I		
GODZ	LOAD	N	The 7 jumble	lines, in alphabetical order:
			ADD	X
			BL	ILLA
			DIV	I
			LOAD	I
			MULT	I
			STORE	X
			SUB	N
ILLA	LOAD	I		
	SUB	=1		
	STORE	I		
	BG	GODZ		

Question 23. Suppose that the LISP function (MAX X Y) returns the maximum of the two numbers X and Y. Define the following functions; you may use MAX and the functions you define as subroutines.
(a) A function MIN to compute the minimum of two numbers.
(b) A function SORT2 that sorts a list of 2 numbers in ascending order. (E.g. (SORT2 ' (5 4)) and (SORT2 ' (45)) should both return the list (45)). You may assume MIN is defined even if you get part (a) wrong.
(bonus) A function SORT3 that sorts a list of 3 numbers in ascending order. Feel free to define additional helper functions as needed.

Hint: the proper syntax for part (a) is (DEF MIN (X Y) <function-body>).

Question 24. In the following problem, work over the alphabet containing the letters L and O .
(a) Write a regular expression for all strings that contain "LOL" as a contiguous substring.
(b) Write an FSA that accepts all strings that contain "LOL" as a contiguous substring.
(c) Write an FSA that accepts all strings that do not contain "LOL" as a contiguous substring.
(bonus) Write a regular expression for all strings that do not contain "LOL" as a contiguous substring.

Question 25. Write an expression that computes the reverse of a three-bit binary string X, using only shift, circ, and boolean operators. Bonus: make your answer as simple as possible.

Question 26. Two drawings of the Petersen graph are shown below. How many paths of length 8 are there:
(a) From v back to itself?
(b) From v to u ?
(c) From v to w ?

Question 27. What are the final contents of the array P in this Basic program?

```
10 P(1)=4: P(2)=7: P(3)=1
20 P(4)=6: P(5)=3: P(6)=2
30 P(7)=5
40 for J=7 to 1 step -1
50 P(P(J))=P(J)
60 next J
70 end
```

Question 28. Draw a circuit with three inputs X, Y, Z and two outputs Y^{\prime}, Z^{\prime} so that when X is false, $Y^{\prime}=Y$ and $Z^{\prime}=Z$, and when X is true, $Y^{\prime}=Z$ and $Z^{\prime}=Y$. Bonus: use at most seven gates in total.

Question 29. Do LSHIFT-1 (01 AND NOT 11) and LSHIFT-1 01 AND NOT 11 have the same value?

Question 30. For a prime number p, let $g(n, p)$ denote the maximum number of times that n ! can be divided by p. (So $p^{g(n, p)}$ is a divisor of $n!$, but $p^{g(n, p)+1}$ is not.) Find an expression \langle blank \rangle so that the following gives a recursive definition for g. (Note: both copies of $\langle b l a n k\rangle$ must be the same!)

$$
g(n, p):= \begin{cases}0, & \text { if } n=0 \\ g(\langle\text { blank }\rangle, p)+\langle\text { blank }\rangle, & \text { otherwise }\end{cases}
$$

