Efficient Divide-and-Conquer Simulations Of Symmetric FSAs

> David Pritchard, University of Waterloo June 23, 2008

Jist of Talk

- A "computational process" takes a stream of input symbols and outputs a single result
- Divide-and-conquer is a computing paradigm needing less central coordination
- Can we transform any* computational process into an equivalent divide-andconquer one? If so, can we make the divideand-conquer one *efficient*?
 - *we'll look at Finite State Automata (FSA), the simplest kind of computational process

Overview

- An example of divide-and-conquer
- Definition of FSA's (transformation monoids)
- Basic divide-and-conquer FSA simulation [Ladner-Fischer 1977]
- Positive result: improved efficiency for symmetric FSA's
- Negative result: no improvement possible for asymmetric FSA's

Divide-and-Conquer, Generally

- A divide-and-conquer computational process should have
 - temporary results of intermediate computations (e.g. counts of subpiles)
 - a rule for combining temporary results (e.g. +)
 - a rule for computing "base case" results when there is only one input (e.g. "1")
 - a rule for interpreting the final result as output
- such that the same final answer is obtained no matter how the inputs were divided.

Another Example of Divideand-Conquer

- Given a picture book, tell me the maximum number of consecutive pages w/ monkeys
- How can we do it via divide-and-conquer?
 - Each subproblem is a contiguous bunch of pages
 - Need each "intermediate result" to contain 3 numbers: maximum number of consecutive monkey pages, # of initial monkey pages, # of final monkey pages. Then we can do it!
- Next: let's get formal

Finite-State Automata (1/3)

- From now on, consider only "finite-state" computational processes
 - Explicitly, there needs to be a finite set such that all possible intermediate results are drawn from this set
- A finite state automaton keeps track of a single intermediate result (its "state") at each moment of time; reads one input symbol at a time; and for each pair of (current state, input symbol) has a rule telling which state is next
 - Some motivation: FSA's are fundamental in theory of computation

(Definition of) Finite-State Automata (2/3)

- Input alphabet X, output alphabet O, state space Q, all finite. Initial state q_0 in Q.
- Transition function $f_{\sigma}: Q \to Q$ for each σ in Σ .
- On input string $\alpha\beta\gamma...\omega$ start in state $q_{\rm o}$, then apply f_{α} to current state, then f_{β} , etc.
 - i.e., (Q, Σ, f) is a transformation monoid
- FSA also has post-processing f^ $\Pi: Q \to O$
 - Output value is $\Pi(q)$ where q is final state.
 - E.g. could have O = {accept, reject}

Finite-State Automata (3/3)

• Explicitly, output of FSA (Q, Σ, f, O, Π) on input $\alpha\beta\gamma...\omega$ is

 $\Pi(f_{\omega}(\ldots f_{\gamma}(f_{\beta}(f_{\alpha}(q_{o})))\ldots))$

- Suppose we build an FSA to read a string of jellybean colours (of which there are finitely many possible, Σ). We can compute, e.g.:
 - How many red jellybeans are there (mod 10)?
 - Are there at least 20 blue jellybeans?
 - Was there a subsequence (red, blue, green, red)?

Equivalence of FSA's

- Each FSA yields a function that
 - takes an arbitrary string w over Σ as input,
 - yields an element of *O* as output
- We identify each FSA with its function and we say that two FSA are *equivalent* if they compute the same function $\Sigma^* \rightarrow O$
 - Or, that the FSA's *simulate* each other
- Next: put divide-and-conquer in this framework

Divide-and-Conquer Analogue of FSA's (informal definition)

- Terminology: "intermediate results" <> "states"
- Computational process using finite state space Q:
 - Input string is partitioned into two parts (left, right substring)
 - Have a base case B if string has only one character
 - Recursively obtain an intermediate result q from each part
 - Use a deterministic rule *C* to combine left & right results
 - Post-processing function Π maps to output alphabet.
 - Overall, computes a function $\Sigma^* \rightarrow O$ just like an FSA.
- Definition: If output is independent of how the division was performed, (Q, Σ, B, C, O, Π) is a <u>Divide-and-Conquer Automaton</u> (DCA).

[Ladner & Fischer '77] Functional Composition Idea

- Th^m: Can simulate any FSA (Q, Σ, f, O, Π) with a DCA.
- Proof: Note, output of FSA on input $\alpha\beta\gamma...\omega$ is

$$\begin{split} &\Pi(f_{\omega}(\dots f_{\gamma}(f_{\beta}(f_{\alpha}(q_{o})))\dots)) \\ &= \Pi(f_{\omega}^{\circ\dots\circ}f_{\gamma}^{\circ}f_{\beta}^{\circ}f_{\alpha}(q_{o})) \end{split}$$

- Key observation: composition (°) is associative and there are finitely many functions from $Q \to Q$
- "base case" for character σ is f_{σ}
- "intermediate result" for substring $\kappa \lambda \dots \pi$ is $f_{\pi}^{\circ \dots \circ} f_{\lambda}^{\circ} f_{\kappa}$
 - combining rule is $(f_{left}, f_{right}) \mid -> f_{right} \circ f_{left}$
- In post-processing, $f_{\omega}^{\circ \dots \circ} f_{\alpha} \mapsto \Pi(f_{\omega}^{\circ \dots \circ} f_{\alpha}(q_{o})).$

Remark

- Corollary of Ladner-Fischer: {class of all functions computed by FSA's} = {class of all functions computed by DCA's}
 - Proof: Ladner-Fischer showed ≤. To see that ≥ holds, observe that every FSA can be rewritten as a DCA that "conquers" one input at a time.

Part 2: Efficiency

Definition of Symmetric FSA's

- f: ∑* → O is symmetric if, for every string w and every permutation w' of w, f(w)=f(w')
- An FSA is symmetric if the function it computes is symmetric. Similarly for DCA's.
- Some motivation from P.-Vempala '06
 - FSSGA distributed computing model = graph w/ same symmetric FSA at each node
 - Symmetric computation => fault-tolerance, empirically
 - Showed {class of all symmetric functions computed by FSA's} = {"mod-thresh formulae"}

FSSGA Applet

FSSGA Update via Divide-and-Conquer

FIGURE 1

An FSA in a network updates its state via divide-and-conquer. The node v is activating and its neighbours are labeled n. The lines carry values from tail to head, and the boxes apply functions, like in a circuit diagram. Each neighbour supplies an input symbol and the divide-and-conquer process produces an output symbol which is used by v to update its state.

Main Results

- The Ladner-Fischer FSA->DCA conversion entails an exponential increase in the state space size (i.e., from |Q| to $|Q|^{|Q|}$)
- Main result: a way to convert a symmetric FSA to a DCA without any increase in size of state space.
- Can also show that if we don't assume symmetry, Ladner-Fischer result is optimal

2 Applications of Main Result

- Can *efficiently* implement the "read all neighbours and update" step in FSSGA model via the divide-and-conquer circuit
- Divide-and-conquer lets us simulate FSA's in the model of parallel processing; for symmetric FSA's our conversion makes these parallel programs use less memory

Main Lemma (1/3)

- For string $S = \alpha \beta \dots \omega$ define $f_S = f_{\omega} \circ \dots \circ f_{\beta} \circ f_{\alpha}$
- State q of FSA <code>inaccessible</code> if no string S has $f_S(q_{\rm o}) = q.$
- States q, q' are <u>indistinguishable</u> if for all S,

 $\Pi(f_S(q)) = \Pi(f_S(q')).$

- If an FSA has no inaccessible states and no indistinguishable pairs, it is <u>irredundant</u>.
- Claim: we can make any FSA irredundant without changing the function it computes.
- Aside: FSA is irredundant iff it is "minimal" (smallest FSA to compute its function) [Myhill-Nerode '58]

Main Lemma (2/3)

- Statement of main lemma: if an FSA is irredundant and symmetric, then its transition functions $\{f_{\sigma}|\sigma \text{ in }\Sigma\}$ commute.
 - Symmetry is a black-box property; add to it the innocent-looking "white-box" property of irredundancy and we get a "white-box" result (commuting transition functions).
- We then obtain a simple D&C construction with a reasonably short proof of correctness.

Main Lemma (3/3)

In a symmetric irredundant FSA, f_{σ} 's commute.

- Say input symbols σ, σ' have $f_{\sigma'}(f_{\sigma'}(q)) \neq f_{\sigma'}(f_{\sigma}(q))$
- By distinguishability some string S has

 $\Pi(f_{S}(f_{\sigma}(f_{\sigma'}(q)))) \neq \Pi(f_{S}(f_{\sigma'}(f_{\sigma}(q)))).$

- By accessibility some string T has $q = f_T(q_0)$.
- ** $\Pi(f_S(f_{\sigma'}(f_{\sigma'}(f_T(q_o))))) \neq \Pi(f_S(f_{\sigma'}(f_{\sigma'}(f_{\sigma'}(q_o))))).$
- But this says that outputs on inputs $T\sigma'\sigma S$ and $T\sigma\sigma'S$ differ, contradicting symmetry.

Intermission

- We will show shortly how the Main Lemma is used to obtain the efficient simulation
- Meanwhile, notice that the content of the Main Lemma is that we really care about finite abelian transformation monoids
- Finite abelian groups are very wellunderstood. Is there a known structure for finite abelian monoids?

Construction, Proof Idea (1/2)

- Given: symmetric irredundant FSA.
- Wanted: equivalent DCA with few states.
- Construction: For each state q fix a <u>representative</u> <u>string</u> r[q] that brings FSA to state q from q_0 ,

$$f_{r[q]}(q_{o})=q$$

• Easy claim: for every string S, where $f_S(q_o)=q$,

$$f_S = f_{r[q]}$$

i.e., we can swap S for r[q] wherever it appears in the input. (This is trivially true at start of input.)

 => Key observation: for intermediate result q, we may assume r[q] was the substring to generate it

Construction, Proof Idea (2/2)

Definition of the DCA to simulate the FSA

- DCA intermediate state space = FSA state space; its size could only have decreased when redundancy was removed.
- Base case: map input character σ to $f_{\sigma}(q_{o})$.
- Combining: map pair (q, q') to $f_{r[q']}(q)$.
- Post-processing: use same \varPi as FSA did
- Proof of correctness is straightforward, using claim and observation from previous slide

The Negative Result (sketch)

- For any n ≥ 1, there is an n-state FSA on a three-symbol alphabet Σ so that any equivalent DCA has at least nⁿ states.
- Idea: set $Q=\{1,...,n\}$. Want the groupoid generated by $\{f_{\sigma} | \sigma \text{ in } \Sigma\}$ to be the set Q^{Q} of all transformations.
 - [Dénes '68]: such a generating set of size 3 exists
- Then argue that every function in Q^Q needs its own intermediate result in the DCA.

Related/Future Work

- [Feldman et al. '08]: independent work with analogous notions to FSA's and DCA's but on Turing machines
 - One consequence: for probabilistic symmetric automata, efficient simulation is not possible
- Is there an analogue of these results for nondeterministic FSAs?
- If *f* is given implicitly, as a Turing machine, is efficient FSA->DCA conversion possible?
 - Partial answers are known

Thanks for listening!

