Efficient Divide-andConquer Simulations Of Symmetric FSAs

David Pritchard,
University of Waterloo
June 23, 2008

Jist of Talk

- A "computational process" takes a stream of input symbols and outputs a single result
- Divide-and-conquer is a computing paradigm needing less central coordination
- Can we transform any* computational process into an equivalent divide-andconquer one? If so, can we make the divide-and-conquer one efficient?
- *we'll look at Finite State Automata (FSA), the simplest kind of computational process

Overview

- An example of divide-and-conquer
- Definition of FSA's (transformation monoids)
- Basic divide-and-conquer FSA simulation [Ladner-Fischer 1977]
- Positive result: improved efficiency for symmetric FSA's
- Negative result: no improvement possible for asymmetric FSA's

Divide-and-Conquer Example

Divide-and-Conquer, Generally

- A divide-and-conquer computational process should have
- temporary results of intermediate computations (e.g. counts of subpiles)
- a rule for combining temporary results (e.g. +)
- a rule for computing "base case" results when there is only one input (e.g. "1")
- a rule for interpreting the final result as output
- such that the same final answer is obtained no matter how the inputs were divided.

Another Example of Divide-and-Conquer

- Given a picture book, tell me the maximum number of consecutive pages w/ monkeys
- How can we do it via divide-and-conquer?
- Each subproblem is a contiguous bunch of pages
- Need each "intermediate result" to contain 3 numbers: maximum number of consecutive monkey pages, \# of initial monkey pages, \# of final monkey pages. Then we can do it!
- Next: let's get formal

Finite-State Automata (1/3)

- From now on, consider only "finite-state" computational processes
- Explicitly, there needs to be a finite set such that all possible intermediate results are drawn from this set
- A finite state automaton keeps track of a single intermediate result (its "state") at each moment of time; reads one input symbol at a time; and for each pair of (current state, input symbol) has a rule telling which state is next
- Some motivation: FSA's are fundamental in theory of computation

(Definition of) Finite-State Automata (2/3)

- Input alphabet X, output alphabet O, state space Q, all finite. Initial state q_{0} in Q.
- Transition function $f_{\sigma}: Q \rightarrow Q$ for each σ in Σ.
- On input string $\alpha \beta \gamma \ldots \omega$ start in state q_{o}, then apply f_{α} to current state, then f_{β}, etc.
- i.e., (Q, Σ, f) is a transformation monoid
- FSA also has post-processing $f^{n} \Pi: Q \rightarrow O$
- Output value is $\Pi(q)$ where q is final state.
- E.g. could have $\mathrm{O}=\{$ accept, reject $\}$

Finite-State Automata (3/3)

- Explicitly, output of $\operatorname{FSA}(Q, \Sigma, f, O, \Pi)$ on input $\alpha \beta \gamma \ldots \omega$ is

$$
\Pi\left(f_{\omega}\left(\ldots f_{\gamma}\left(f_{\beta}\left(f_{\alpha}\left(q_{0}\right)\right)\right) \ldots\right)\right)
$$

- Suppose we build an FSA to read a string of jellybean colours (of which there are finitely many possible, Σ). We can compute, e.g.:
- How many red jellybeans are there (mod 10)?
- Are there at least 20 blue jellybeans?
- Was there a subsequence (red, blue, green, red)?

Equivalence of FSA's

- Each FSA yields a function that
- takes an arbitrary string wover Σ as input,
- yields an element of O as output
- We identify each FSA with its function and we say that two FSA are equivalent if they compute the same function $\Sigma^{*} \rightarrow O$
- Or, that the FSA's simulate each other
- Next: put divide-and-conquer in this framework

Divide-and-Conquer Analogue of FSA's (informal definition)

- Terminology: "intermediate results" \Leftrightarrow "states"
- Computational process using finite state space Q :
- Input string is partitioned into two parts (left, right substring)
- Have a base case B if string has only one character
- Recursively obtain an intermediate result q from each part
- Use a deterministic rule C to combine left \& right results
- Post-processing function Π maps to output alphabet.
- Overall, computes a function $\Sigma^{*} \rightarrow O$ just like an FSA.
- Definition: If output is independent of how the division was performed, $(Q, \Sigma, B, C, O, \Pi)$ is a Divide-and-Conquer Automaton (DCA).

[Ladner \& Fischer '77] Functional Composition Idea

- Thm: Can simulate any FSA (Q, Σ, f, O, Π) with a DCA.
- Proof: Note, output of FSA on input $\alpha \beta \gamma \ldots \omega$ is

$$
\begin{aligned}
& \Pi\left(f_{\omega}\left(\ldots f_{\gamma}\left(f_{\beta}\left(f_{\alpha}\left(q_{0}\right)\right)\right) \ldots\right)\right) \\
& =\Pi\left(f_{\omega} \circ \ldots \circ f_{\gamma} \circ f_{\beta}{ }^{\circ} f_{\alpha}\left(q_{o}\right)\right)
\end{aligned}
$$

- Key observation: composition (${ }^{\circ}$) is associative and there are finitely many functions from $Q \rightarrow Q$
- "base case" for character σ is f_{σ}
- "intermediate result" for substring $\kappa \lambda \ldots \pi$ is $f_{\pi}{ }^{\circ} \circ \circ f_{\lambda}{ }^{\circ} f_{\kappa}$
- combining rule is $\left(f_{\text {left }} f_{\text {right }}\right) \mid->f_{\text {right }} \circ f_{\text {left }}$
- In post-processing, $f_{\omega} \circ \cdots \circ f_{\alpha} \mapsto \Pi\left(f_{\omega} \circ \cdots \circ f_{\alpha}\left(q_{o}\right)\right)$.

Remark

- Corollary of Ladner-Fischer: \{class of all functions computed by FSA's\} = \{class of all functions computed by DCA's\}
- Proof: Ladner-Fischer showed \leq. To see that \geq holds, observe that every FSA can be rewritten as a DCA that "conquers" one input at a time.

Part 2: Efficiency

Definition of Symmetric FSA's

- $f: \Sigma^{*} \rightarrow O$ is symmetric if, for every string w and every permutation w^{\prime} of $w, f(w)=f\left(w^{\prime}\right)$
- An FSA is symmetric if the function it computes is symmetric. Similarly for DCA's.
- Some motivation from P.-Vempala '06
- FSSGA distributed computing model = graph w/ same symmetric FSA at each node
- Symmetric computation => fault-tolerance, empirically
- Showed \{class of all symmetric functions computed by FSA's $\}=\{$ "mod-thresh formulae" $\}$

FSSGA Applet

FSSGA Update via Divide-andConquer

FIGURE 1
An FSA in a network updates its state via divide-and-conquer. The node v is activating and its neighbours are labeled n. The lines carry values from tail to head, and the boxes apply functions, like in a circuit diagram. Each neighbour supplies an input symbol and the divide-and-conquer process produces an output symbol which is used by v to update its state.

Main Results

- The Ladner-Fischer FSA->DCA conversion entails an exponential increase in the state space size (i.e., from $|Q|$ to $|Q|^{|Q|}$)
- Main result: a way to convert a symmetric FSA to a DCA without any increase in size of state space.
- Can also show that if we don't assume symmetry, Ladner-Fischer result is optimal

2 Applications of Main Result

- Can efficiently implement the "read all neighbours and update" step in FSSGA model via the divide-and-conquer circuit
- Divide-and-conquer lets us simulate FSA's in the model of parallel processing; for symmetric FSA's our conversion makes these parallel programs use less memory

Main Lemma (1/3)

- For string $S=\alpha \beta \ldots \omega$ define $f_{S}=f_{\omega}{ }^{\circ \cdots \circ} f_{\beta}{ }^{\circ} f_{\alpha}$
- State q of FSA inaccessible if no string S has

$$
f_{S}\left(q_{0}\right)=q
$$

- States q, q^{\prime} are indistinguishable if for all S ,

$$
\Pi\left(f_{S}(q)\right)=\Pi\left(f_{S}\left(q^{\prime}\right)\right)
$$

- If an FSA has no inaccessible states and no indistinguishable pairs, it is irredundant.
- Claim: we can make any FSA irredundant without changing the function it computes.
- Aside: FSA is irredundant iff it is "minimal" (smallest FSA to compute its function) [Myhill-Nerode '58]

Main Lemma (2/3)

- Statement of main lemma: if an FSA is irredundant and symmetric, then its transition functions $\left\{f_{\sigma} \mid \sigma\right.$ in $\left.\Sigma\right\}$ commute.
- Symmetry is a black-box property; add to it the innocent-looking "white-box" property of irredundancy and we get a "white-box" result (commuting transition functions).
- We then obtain a simple D\&C construction with a reasonably short proof of correctness.

Main Lemma (3/3)

In a symmetric irredundant FSA, f_{σ} 's commute.

- Say input symbols σ, σ^{\prime} have $f_{\sigma}\left(f_{\sigma^{\prime}}(q)\right) \neq f_{\sigma^{\prime}}\left(f_{\sigma}(q)\right)$
- By distinguishability some string S has

$$
\Pi\left(f_{S}\left(f_{\sigma}\left(f_{\sigma^{\prime}}(q)\right)\right)\right) \neq \Pi\left(f_{S}\left(f_{\sigma^{\prime}}\left(f_{\sigma}(q)\right)\right)\right) .
$$

- By accessibility some string T has $q=f_{T}\left(q_{0}\right)$.
- ${ }^{*}{ }^{*} \Pi\left(f_{S}\left(f_{\sigma}\left(f_{\sigma^{\prime}}\left(f_{T}\left(q_{o}\right)\right)\right)\right)\right) \neq \Pi\left(f_{S}\left(f_{\sigma^{\prime}}\left(f_{\sigma}\left(f_{T}\left(q_{o}\right)\right)\right)\right)\right.$).
- But this says that outputs on inputs $T \sigma^{\prime} \sigma S$ and $T \sigma \sigma^{\prime} S$ differ, contradicting symmetry.

Intermission

- We will show shortly how the Main Lemma is used to obtain the efficient simulation
- Meanwhile, notice that the content of the Main Lemma is that we really care about finite abelian transformation monoids
- Finite abelian groups are very wellunderstood. Is there a known structure for finite abelian monoids?

Construction, Proof Idea (1/2)

- Given: symmetric irredundant FSA.
- Wanted: equivalent DCA with few states.
- Construction: For each state q fix a representative string $r[q]$ that brings FSA to state q from q_{0},

$$
f_{r[q]}\left(q_{0}\right)=q
$$

- Easy claim: for every string S, where $f_{S}\left(q_{0}\right)=q$,

$$
f_{S}=f_{r[f]}
$$

i.e., we can swap S for $r[q]$ wherever it appears in the input. (This is trivially true at start of input.)

- => Key observation: for intermediate result q, we may assume $r[q]$ was the substring to generate it

Construction, Proof Idea (2/2)

Definition of the DCA to simulate the FSA

- DCA intermediate state space = FSA state space; its size could only have decreased when redundancy was removed.
- Base case: map input character σ to $f_{\sigma}\left(q_{o}\right)$.
- Combining: map pair $\left(q, q^{\prime}\right)$ to $f_{r\left[q^{\prime}\right]}(q)$.
- Post-processing: use same Π as FSA did
- Proof of correctness is straightforward, using claim and observation from previous slide

The Negative Result (sketch)

- For any $n \geq 1$, there is an n-state FSA on a three-symbol alphabet Σ so that any equivalent DCA has at least n^{n} states.
- Idea: set $Q=\{1, \ldots, n\}$. Want the groupoid generated by $\left\{f_{\sigma} \mid \sigma\right.$ in $\left.\Sigma\right\}$ to be the set Q^{Q} of all transformations.
- [Dénes '68]: such a generating set of size 3 exists
- Then argue that every function in Q^{Q} needs its own intermediate result in the DCA.

Related/Future Work

- [Feldman et al. '08]: independent work with analogous notions to FSA's and DCA's but on Turing machines
- One consequence: for probabilistic symmetric automata, efficient simulation is not possible
- Is there an analogue of these results for nondeterministic FSAs?
- If f is given implicitly, as a Turing machine, is efficient FSA->DCA conversion possible?
- Partial answers are known

Thanks for listening!

