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Jist of Talk

� A “computational process” takes a stream of 
input symbols and outputs a single result

� Divide-and-conquer is a computing paradigm 
needing less central coordination

� Can we transform any* computational 
process into an equivalent divide-and-
conquer one? If so, can we make the divide-
and-conquer one efficient?
� *we’ll look at Finite State Automata (FSA), the 

simplest kind of computational process



Overview

� An example of divide-and-conquer
� Definition of FSA’s (transformation monoids)
� Basic divide-and-conquer FSA simulation 

[Ladner-Fischer 1977]
� Positive result: improved efficiency for 

symmetric FSA’s
� Negative result: no improvement possible for 

asymmetric FSA’s



Divide-and-Conquer Example

… … … …

4 4
5 3

4+4=8 5+3=88+8=16



Divide-and-Conquer, Generally

� A divide-and-conquer computational process 
should have
� temporary results of intermediate computations 

(e.g. counts of subpiles)
� a rule for combining temporary results (e.g. +)
� a rule for computing “base case” results when 

there is only one input (e.g. “1”)
� a rule for interpreting the final result as output

� such that the same final answer is obtained 
no matter how the inputs were divided.



Another Example of Divide-
and-Conquer

� Given a picture book, tell me the maximum 
number of consecutive pages w/ monkeys

� How can we do it via divide-and-conquer?
� Each subproblem is a contiguous bunch of pages
� Need each “intermediate result” to contain 3 

numbers: maximum number of consecutive 
monkey pages, # of initial monkey pages, # of 
final monkey pages. Then we can do it!

� Next: let’s get formal



Finite-State Automata (1/3)

� From now on, consider only “finite-state”
computational processes
� Explicitly, there needs to be a finite set such that all 

possible intermediate results are drawn from this set

� A finite state automaton keeps track of a single 
intermediate result (its “state”) at each moment of 
time; reads one input symbol at a time; and for each 
pair of (current state, input symbol) has a rule telling 
which state is next
� Some motivation: FSA’s are fundamental in theory of 

computation



(Definition of)
Finite-State Automata (2/3)

� Input alphabet X, output alphabet O, state 
space Q, all finite. Initial state q in Q.

� Transition function fσ:Q → Q for each σ in Σ.
� On input string αβγ…ω start in state q, then 

apply fα to current state, then fβ, etc.
� i.e., (Q, Σ, f) is a transformation monoid

� FSA also has post-processing fn Π:Q → O
� Output value is Π(q) where q is final state.

� E.g. could have O = {accept, reject}



Finite-State Automata (3/3)

� Explicitly, output of FSA (Q, Σ, f , O , Π) on 
input αβγ…ω is

Π(fω(…fγ(f β(fα(q)))…))

� Suppose we build an FSA to read a string of 
jellybean colours (of which there are finitely 
many possible, Σ). We can compute, e.g.:
� How many red jellybeans are there (mod 10)?
� Are there at least 20 blue jellybeans?
� Was there a subsequence (red, blue, green, red)?



Equivalence of FSA’s

� Each FSA yields a function that
� takes an arbitrary string w over Σ as input,
� yields an element of O as output

� We identify each FSA with its function and we 
say that two FSA are equivalent if they 
compute the same function Σ* → O
� Or, that the FSA’s simulate each other

� Next: put divide-and-conquer in this 
framework



Divide-and-Conquer Analogue 
of FSA’s (informal definition)

� Terminology: “intermediate results” � “states”
� Computational process using finite state space Q:

� Input string is partitioned into two parts (left, right substring)
� Have a base case B if string has only one character

� Recursively obtain an intermediate result q   from each part
� Use a deterministic rule C to combine left & right results
� Post-processing function Π maps to output alphabet. 

� Overall, computes a function Σ* → O just like an FSA.
� Definition: If output is independent of how the 

division was performed, (Q, Σ, B, C, O , Π) is a 
Divide-and-Conquer Automaton (DCA).



[Ladner & Fischer '77]
Functional Composition Idea

� Thm: Can simulate any FSA (Q,Σ,f ,O ,Π) with a DCA.
� Proof: Note, output of FSA on input αβγ…ω is

Π(fω(…fγ(f β(fα(q)))…))
= Π(fω∘…∘fγ∘fβ∘fα(q))

� Key observation: composition (∘) is associative and there 
are finitely many functions from Q → Q

� “base case” for character σ is f 
σ

� “intermediate result” for substring κλ…π is f 
π
∘…∘f

λ
∘f
κ

� combining rule is (f left, f right) |-> f right ∘ f left

� In post-processing, fω∘…∘fα ↦ Π(fω∘…∘fα(q)).



Remark

� Corollary of Ladner-Fischer: {class of all 
functions computed by FSA’s} = {class of all 
functions computed by DCA’s}
� Proof: Ladner-Fischer showed ≤. To see that ≥

holds, observe that every FSA can be rewritten as 
a DCA that “conquers” one input at a time. 



Part 2: Efficiency



Definition of Symmetric FSA’s

� f: Σ* → O is symmetric if, for every string w
and every permutation w’ of w, f(w)=f(w’)

� An FSA is symmetric if the function it 
computes is symmetric. Similarly for DCA’s.

� Some motivation from P.-Vempala ’06
� FSSGA distributed computing model = graph w/ 

same symmetric FSA at each node
� Symmetric computation => fault-tolerance, empirically

� Showed {class of all symmetric functions 
computed by FSA’s} = {“mod-thresh formulae”}



FSSGA Applet



FSSGA Update via Divide-and-
Conquer



Main Results

� The Ladner-Fischer FSA->DCA conversion 
entails an exponential increase in the state 
space size (i.e., from |Q| to |Q||Q|)

� Main result: a way to convert a symmetric
FSA to a DCA without any increase in size 
of state space.

� Can also show that if we don’t assume 
symmetry, Ladner-Fischer result is optimal



2 Applications of Main Result

� Can efficiently implement the “read all 
neighbours and update” step in FSSGA 
model via the divide-and-conquer circuit

� Divide-and-conquer lets us simulate FSA’s in 
the model of parallel processing; for 
symmetric FSA’s our conversion makes 
these parallel programs use less memory



Main Lemma (1/3)

� For string S = αβ…ω define f S = fω∘…∘fβ∘fα
� State q of FSA inaccessible if no string S has

fS(q) = q .
� States q, q' are indistinguishable if for all S,

Π(fS(q)) = Π(fS(q')).
� If an FSA has no inaccessible states and no 

indistinguishable pairs, it is irredundant.
� Claim: we can make any FSA irredundant without 

changing the function it computes.
� Aside: FSA is irredundant iff it is “minimal” (smallest 

FSA to compute its function) [Myhill-Nerode ‘58]



Main Lemma (2/3)

� Statement of main lemma: if an FSA is 
irredundant and symmetric, then its transition 
functions {fσ|σ in Σ} commute.
� Symmetry is a black-box property; add to it the 

innocent-looking "white-box" property of 
irredundancy and we get a "white-box" result 
(commuting transition functions).

� We then obtain a simple D&C construction 
with a reasonably short proof of correctness.



Main Lemma (3/3)

In a symmetric irredundant FSA, ffffσσσσ's commute.
� Say input symbols σ,σ' have fσ(fσ'(q))≠fσ'(fσ(q))
� By distinguishability some string S has

Π(fS(fσ(fσ'(q)))) ≠Π(fS(fσ'(fσ(q)))).

� By accessibility some string T has q =fT(q).

� �Π(fS(fσ(fσ'(fT(q))))) ≠Π(fS(fσ'(fσ(fT(q))))).

� But this says that outputs on inputs  Tσ'σS and 
Tσσ'S differ, contradicting symmetry. �



Intermission

� We will show shortly how the Main Lemma is 
used to obtain the efficient simulation

� Meanwhile, notice that the content of the 
Main Lemma is that we really care about 
finite abelian transformation monoids

� Finite abelian groups are very well-
understood. Is there a known structure for 
finite abelian monoids?



Construction, Proof Idea (1/2)

� Given: symmetric irredundant FSA.
� Wanted: equivalent DCA with few states.
� Construction: For each state q fix a representative 

string r[q] that brings FSA to state q from q,
fr[q](q)=q

� Easy claim: for every string S, where fS(q)=q ,
fS = fr[q]

i.e., we can swap S for r[q] wherever it appears in 
the input. (This is trivially true at start of input.)

� => Key observation: for intermediate result q, we 
may assume r[q] was the substring to generate it



Construction, Proof Idea (2/2)

Definition of the DCA to simulate the FSA
� DCA intermediate state space = FSA state 

space; its size could only have decreased when 
redundancy was removed.

� Base case: map input character σ to fσ(q).
� Combining: map pair (q, q') to fr[q'](q).

� Post-processing: use same Π as FSA did

� Proof of correctness is straightforward, using 
claim and observation from previous slide



The Negative Result (sketch)

� For any n ≥ 1, there is an n-state FSA on a 
three-symbol alphabet Σ so that any 
equivalent DCA has at least nn states.

� Idea: set Q={1,…,n}. Want the groupoid
generated by {fσ|σ in Σ} to be the set QQ of 
all transformations.
� [Dénes ’68]: such a generating set of size 3 exists

� Then argue that every function in QQ needs 
its own intermediate result in the DCA.



Related/Future Work

� [Feldman et al. ’08]: independent work with 
analogous notions to FSA’s and DCA’s but 
on Turing machines
� One consequence: for probabilistic symmetric 

automata, efficient simulation is not possible

� Is there an analogue of these results for 
nondeterministic FSAs?

� If f is given implicitly, as a Turing machine, is 
efficient FSA->DCA conversion possible?
� Partial answers are known



Thanks for listening!




