Efficient Divide-and-
Conquer Simulations Of
Symmetric FSAs

David Pritchard,
University of Waterloo
June 23, 2008

Jist of Talk

e A “computational process” takes a stream of
iInput symbols and outputs a single result

e Divide-and-conquer is a computing paradigm
needing less central coordination

e Can we transform any* computational
process into an equivalent divide-and-
conguer one? If so, can we make the divide-
and-conguer one efficient?

*we’ll look at Finite State Automata (FSA), the
simplest kind of computational process

Overview

e An example of divide-and-conquer
e Definition of FSA’s (transformation monoids)

e Basic divide-and-conquer FSA simulation
[Ladner-Fischer 1977]

e Positive result: improved efficiency for
symmetric FSA’s

e Negative result: no improvement possible for
asymmetric FSA’s

Divide-and-Conqguer Example

4+4=8 8+8=16 5+3=8

Divide-and-Conquer, Generally

e A divide-and-conquer computational process
should have

temporary results of intermediate computations
(e.g. counts of subpiles)

a rule for combining temporary results (e.g. +)

a rule for computing “base case” results when
there is only one input (e.g. “1”)
a rule for interpreting the final result as output

e such that the same final answer Is obtained
no matter how the inputs were divided.

Another Example of Divide-
and-Conquer

e Given a picture book, tell me the maximum
number of consecutive pages w/ monkeys

e How can we do It via divide-and-conquer?
Each subproblem is a contiguous bunch of pages

Need each “intermediate result” to contain 3
numbers: maximum number of consecutive
monkey pages, # of initial monkey pages, # of
final monkey pages. Then we can do it!

e Next: let’s get formal

Finite-State Automata (1/3)

e From now on, consider only “finite-state”
computational processes

Explicitly, there needs to be a finite set such that all
possible intermediate results are drawn from this set
e A finite state automaton keeps track of a single
iIntermediate result (its “state”) at each moment of
time; reads one input symbol at a time; and for each
pair of (current state, input symbol) has a rule telling
which state is next

Some motivation: FSA’s are fundamental in theory of
computation

(Definition of)
Finite-State Automata (2/3)

e Input alphabet X, output alphabet O, state
space @, all finite. Initial state g, In Q.

e Transition function f_:Q) - Q for each o Iin .

e On Input string oeB7...w start In state q_, then
apply f, to current state, then f, etc.

L.e., (Q, %, f)Is atransformation monoid

e FSA also has post-processing " I1.¢()Q - O
Output value is II(q) where q is final state.
E.g. could have O = {accept, reject}

Finite-State Automata (3/3)

e Explicitly, output of FSA (Q, X, f, O, II) on
Input aB~y...w IS

H(f (- f(Fa(Falao)))

e Suppose we build an FSA to read a string of
jellybean colours (of which there are finitely
many possible,). We can compute, e.g.:

How many red jellybeans are there (mod 10)?
Are there at least 20 blue jellybeans?
Was there a subsequence (red, blue, green, red)?

Equivalence of FSA’s

e Each FSA yields a function that
takes an arbitrary string w over X' as input,
yields an element of O as output
e We identify each FSA with its function and we

say that two FSA are equivalent if they
compute the same function X* - O

Or, that the FSA’s simulate each other

e Next: put divide-and-conquer in this
framework

Divide-and-Conquer Analogue
of FSA’s (Informal definition)

e Terminology: “intermediate results” < “states”

e Computational process using finite state space Q-
Input string Is partitioned into two parts (left, right substring)
Have a base case B if string has only one character
Recursively obtain an intermediate result g from each part
Use a deterministic rule C'to combine left & right results
Post-processing function 11 maps to output alphabet.
Overall, computes a function 2* - O just like an FSA.

e Definition: If output is independent of how the
division was performed, (Q, X, B, C, O, Il) is a
Divide-and-Conquer Automaton (DCA).

[Ladner & Fischer '77]
Functional Composition ldea

e Th™: Can simulate any FSA (Q,%, f,O,11) with a DCA.
e Proof: Note, output of FSA on input a3~...w IS

H(f (- fFa(fa(ao)))--)
= LI(f,oofe fafalao)

e Key observation: composition (°) is associative and there
are finitely many functions from Q - Q@

e “base case” for character g is f,

e ‘“intermediate result” for substring kKA...mIs f oo f,e f,
combining rule Is (f fright) |-> Fright © fiet

e In post-processing, f oo f,~ LI(f o f.(q,)

Remark

e Corollary of Ladner-Fischer: {class of all
functions computed by FSA’s} = {class of all
functions computed by DCA’s}

Proof: Ladner-Fischer showed <. To see that 2

holds, observe that every FSA can be rewritten as
a DCA that “conguers” one input at a time.

Part 2: Efficiency

Definition of Symmetric FSA’s

o f: J* > O Is symmetric If, for every string w
and every permutation w’ of w, f(w)=f(w’)

e An FSA is symmetric If the function it
computes is symmetric. Similarly for DCA's.

e Some motivation from P.-Vempala '06

FSSGA distributed computing model = graph w/
same symmetric FSA at each node
Symmetric computation => fault-tolerance, empirically

Showed {class of all symmetric functions
computed by FSA’s} = {"mod-thresh formulae’}

FSSGA Applet

FSSGA Update via Divide-and-
Conguer

FIGURE 1

An F5A in a network updates its state via divide-and-conquer. The node v 18 activating
and 1ts neighbours are labeled n. The lines carry values from tail to head, and the boxes
apply functions, like 1 a circuit diagram. Each neighbour supplies an mput symbol
and the divide-and-congquer process produces an oufput symboel which 15 used by v to
update its state.

Main Results

e The Ladner-Fischer FSA->DCA conversion
entails an exponential increase in the state
space size (i.e., from |Q| to |Q]¥))

e Main result: a way to convert a symmetric
FSA to a DCA without any increase In size
of state space.

e Can also show that if we don’t assume
symmetry, Ladner-Fischer result is optimal

2 Applications of Main Result

e Can efficiently implement the “read all
neighbours and update” step in FSSGA
model via the divide-and-conquer circuit

e Divide-and-conguer lets us simulate FSA’s In
the model of parallel processing; for
symmetric FSA’s our conversion makes
these parallel programs use less memory

Main Lemma (1/3)

e Forstring S = a@...wdefine fg=f o°fgef,
e State g of FSA Inaccessible if no string S has

fsla,) = q.

e States q, ¢' are indistinguishable if for all S,

I1(fs(q)) = 1I(fs(q))-

e If an FSA has no inaccessible states and no
iIndistinguishable pairs, it is irredundant.

e Claim: we can make any FSA irredundant without
changing the function it computes.

e Aside: FSA is irredundant iff it is “minimal” (smallest
FSA to compute its function) [Myhill-Nerode ‘58]

Main Lemma (2/3)

e Statement of main lemma: if an FSA Is
iIrredundant and symmetric, then its transition
functions {f_|o In X} commute.

Symmetry is a black-box property; add to it the
Innocent-looking "white-box" property of

irredundancy and we get a "white-box" result
(commuting transition functions).

e We then obtain a simple D&C construction
with a reasonably short proof of correctness.

Main Lemma (3/3)

In a symmetric irredundant FSA, f_ 's commute.

e Say input symbols o,0" have f,(f,(a)%f,(f.(q))
e By distinguishability some string S has

LI(fs(fo(o)) # LI(f s(f o (f5(2))))-
e By accessibility some string 7'has g =f{q,).

o & LI(fo(folfolfra)))) # LI(fs(fo(fo(F1{20))))-

e But this says that outputs on inputs To'cS and
Toco'S differ, contradicting symmetry.

Intermission

e We will show shortly how the Main Lemma is
used to obtain the efficient simulation

e Meanwhile, notice that the content of the
Main Lemma is that we really care about
finite abelian transformation monoids

e Finite abelian groups are very well-
understood. Is there a known structure for
finite abelian monoids?

Construction, Proof Idea (1/2)

e Given: symmetric irredundant FSA.

e Wanted: equivalent DCA with few states.

e Construction: For each state g fix a representative
string r[q] that brings FSA to state g from q_,

ffr'[q](qo):q
e Easy claim: for every string S, where f4(q)=q,

| Fs= Fug | |
l.e., we can swap S for r[q] wherever it appears in
the input. (This is trivially true at start of input.)

o => Key observation: for intermediate result g, we
may assume r|[q] was the substring to generate it

Construction, Proof Idea (2/2)

Definition of the DCA to simulate the FSA

DCA intermediate state space = FSA state
space,; its size could only have decreased when
redundancy was removed.

Base case: map input character o to f_(q,).
Combining: map pair (g, ¢') to f,1(q)-
Post-processing: use same I as FSA did

Proof of correctness is straightforward, using
claim and observation from previous slide

The Negative Result (sketch)

e Forany n 21, there is an n-state FSA on a
three-symbol alphabet 2 so that any
equivalent DCA has at least n" states.

e |dea: set Q={1,...,n}. Want the groupoid
generated by {f_|o in X7} to be the set QR of
all transformations.

[Dénes '68]. such a generating set of size 3 exists

e Then argue that every function in QR needs
its own intermediate result in the DCA.

Related/Future Work

e [Feldman et al. '08]: independent work wit

1

analogous notions to FSA’s and DCA'’s but

on Turing machines

One consequence: for probabilistic symmetric

automata, efficient simulation is not possible

e |s there an analogue of these results for
nondeterministic FSAs?

e If fIs given implicitly, as a Turing machine
efficient FSA->DCA conversion possible?
Partial answers are known

1S

Thanks for listening!

