Max-Weight Integral Multicommodity Flow in Spiders & High-Capacity Trees

Jochen Könemann, Ojas Parekh, David Pritchard

Department of Combinatorics and Optimization, University of Waterloo, Canada

WAOA 2008

Maximum-weight integer multicommodity flow

Input: graph with edge capacities c_e; pairs of terminals, profit w_i for each commodity *i*.
 Goal: integral y_i-flows respecting capacities,

such that
$$\sum_{i} w_i y_i$$
 is maximized

- E.g. transport beer kegs between brewer and customer along roads
- (Max-profit *fractional* multiflow can be found in poly-time via LP)

Bad News, Good News

D Hard to $\log^{1/3-\epsilon} n$ -approximate [AZ 05]

- O(log^{1/2} n) approx alg by randomized rounding
- If all edge capacities $\geq \mu$, 1+O(log n/ μ)^{1/2}-apx
- Well-studied special case: graph is a tree
 - Same as weighted path packing
 - Poly-time solvable for stars, paths, unit-capacity trees but APX-hard in general [GVY 93]
 - 2-approximation for unit weights [GVY 93]
 - 4-approximation for general weights [CMS 03]
 - [CJR 99] studied naïve LP, e.g. integrality gap

Our Results

Exact solution when tree is a spider

spider: subdivision of star

µ: minimum
edge capacity

- □ (1+6/µ)–Approximation Algorithm
 - Iterated LP relaxation yields additive guarantee
 Answers an open question of [CMS 03]

Tweak into a multiplicative guarantee

- Uses known techniques: scaling, iterated rounding
- Uses new techniques: LP structure lemma, iterated relaxation of auxilliary covering problem
- Matching $(1+\epsilon/\mu)$ -hardness result
- For $\mu \ge 2$ we get 3-approx via [CJR 99]

Exactly Solvable Cases

In X, integer multiflow reduces to Y:
X = stars, Y = b-matching
X = paths, Y = max-cost circulation
X = cap-1 trees, Y = DP + matching
New: X = spiders, Y = bidirected flows (yields LP characterization)

Notation/Formulation

path_i: tree path for commodity *i*'s terminals
 feasible flow: nonnegative integral *y* with

Relax!

Drop integrality \Rightarrow naïve LP relaxation

$$\max w \cdot y : \quad y \ge 0, \quad \forall e \sum_{i:e \in path_i} y_i \le c_e$$

- □ *y*^{OPT} denotes optimal LP solution
- □ "LP-based α-approximation algorithm:" produce solution y with $w \cdot y \ge w \cdot y^{OPT} / \alpha$
- Our approach uses *iterated rounding* [Jain 98] & *iterated relaxation* [LNSS 07]

Iterated Relaxation Idea

- Start by routing the integral part of y^{OPT}; replace capacities by residual capacities
 Afterwards, 0≤y_i^{OPT}<1 WOLOG, for all *i* In each remaining iteration, solve LP and
 route one more unit of flow and replace capacities by residual capacities, or,
 - discard capacity constraint for an edge e

Iterated Relaxation

1. Solve the LP, obtaining y^{OPT}

Stop iterating once y^{OPT} is all-0

2. If $y_i^{OPT} = 1$ for any *i*:

Route 1 unit of *i*, update capacities

Discard *i* Decrease in LP value equals increase in output value

□ Find *e* on at most 3 *path*'s

Delete constraint for $e \leftarrow$ LP value does not decrease

4. Go back to step 1

Conclusion: output solution has value \geq initial LP value, but violates capacity constraints by as much as +2.

Why Iterated Relaxation Works

- □ (LP structure lemma) If y^* is an extreme LP solution and $0 \le y_i^* < 1$ for each commodity *i*, then some edge *e* lies on at most three *path_i*'s.
 - Proof idea
 - y* is unique solution to set of |support(y*)| linearly independent tight capacity constraints
 - Contract other edges (drop constraints) ⇒ T'
 - Independence, integrality of c_e 's \Rightarrow every degree-2 vertex in T' is a terminal for at least 2 commodities
 - Counting argument ⇒ some leaf in T' is a terminal for at most 3 commodities. Its incident edge works.

Fixing the +2-violation

□ Iterated rounding gives *y* s.t. $w \cdot y \ge w \cdot y^{OPT}$, $\forall e : \sum_{i:e \in path_i} y_i \le c_e + 2$

But... we want a solution y' such that the same holds without the "+2"

• $w \cdot y'$ should still be large compared to $w \cdot y^{OPT}$

D Approach: find "decrease" *z*, set y' := y-z

Finding a cheap integral decrease is special case of [Jain 98]

Fixing the +2-violation

□ Define overload_e := max{0,
$$\sum_{i:e \in path_i} y_i - c_e$$
}

z is a feasible decrease if

$$\forall e : \sum_{i:e \in path_i} z_i \geq overload_e$$

- Crucially, [Jain 98] gives 2-approx algorithm relative to the optimal *fractional* solution
- $\Box \check{z} = 2y/(\mu+2)$ is feasible fractional decrease
 - Proof idea: y- \check{z} is smaller than y by a $\mu/(\mu+2)$ factor. Works since overload ≤ 2 & capacity $\geq \mu$.

Overall Algorithm, Analysis

- Let *y*^{OPT} be an optimal integral flow
- □ Iterated relaxation gave a +2-violating solution y with $w \cdot y \ge w \cdot y^{OPT}$
- Iterated rounding [Jain 98] yields solution z to auxilliary covering problem with

 $w \cdot z \le 2w \cdot \check{z} = 4w \cdot y/(\mu+2)$

□ So $w \cdot (y-z) \ge w \cdot y^* (1-4/(\mu+2))$ $\ge w \cdot y^{OPT}/(1+4/\mu+24/(\mu^2-6\mu))$

Loose Ends

- Slightly tighter analysis gives a better ratio for specific values of µ:
 - decreasing overload in two steps instead of one yields $1 + 4/\mu + 6/(\mu^2 \mu)$ approximation
 - for µ=2, 3 use load-halving argument of [CJR 99] to get better approx ratio of 3
- □ (1+ε/µ)-hardness, for any fixed µ, follows by modifying original APX-hardness proof of [GVY 93]

Can We Do Better?

Can we find a +1-violating solution, in place of a +2-violating solution?

- No evidence it's completely impossible...
- But "3" in structure lemma cannot be made "2":

[CJR 99]

- Capacities equal 1
- Blue: flows of fractional value 1/4
- Red: flows of fractional value $\frac{1}{2}$
- Extreme!

Future Work (I)

- We have a 3-approx when all capacities >1 and an exact algorithm when all capacities =1. Can we combine for general instances?
- Adding {0,1/2}-Chvátal-Gomory cuts to naïve LP creates blossom-like inequalities
 - Strengthened LP is *integral* in the case of unitcapacity trees and spiders
 - Can separate them in polynomial time [CF 96]
 - Useful for approximation in general trees?
 - Would hope for a new LP structure lemma

Future Work (II)

- Obtained 1+4/µ+... approx for tree multiflow. Similar existing LP-based results:
 - Demand matching[SV 02]: 1+6*demand_{max}/µ+...
 □ "Demand" multiflow: y_i ∈ {0, demand_i}
 - Smallest k-edge-connected subgraph: 1+2/k+...
- How about these problems?
 - Demand tree multiflow?
 - **Best known apx is 1 + O(demand**_{max}/ μ)^{1/2}
 - Min-cost k-edge-connected subgraph?
 - Best known apx is 2

Prosit!

