Max-Weight Integral Multicommodity Flow in Spiders \& High-Capacity Trees

Jochen Könemann, Ojas Parekh, David Pritchard

Department of Combinatorics and Optimization, University of Waterloo, Canada

WAOA 2008

Maximum-weight integer multicommodity flow

- Input: graph with edge capacities c_{e}; pairs of terminals, profit w_{i} for each commodity i. Goal: integral y_{i}-flows respecting capacities,

$$
\text { such that } \sum_{i} w_{i} y_{i} \text { is maximized }
$$

\square E.g. transport beer kegs between brewer and customer along roads
ㅁ (Max-profit fractional multiflow can be found in poly-time via LP)

Bad News, Good News

- Hard to $\log ^{1 / 3-\epsilon} \mathrm{n}$-approximate [AZ 05]
- $\mathrm{O}\left(\log ^{1 / 2} \mathrm{n}\right)$ approx alg by randomized rounding
- If all edge capacities $\geq \mu, 1+O(\log n / \mu)^{1 / 2}$-apx
\square Well-studied special case: graph is a tree
- Same as weighted path packing
- Poly-time solvable for stars, paths, unit-capacity trees but APX-hard in general [GVY 93]
- 2-approximation for unit weights [GVY 93]
- 4-approximation for general weights [CMS 03]
- [CJR 99] studied naïve LP, e.g. integrality gap

Our Results

\square Exact solution when tree is a spider

- spider: subdivision of star
$\square(1+6 / \mu)$-Approximation Algorithm ${ }^{\star}$
- Iterated LP relaxation yields additive guarantee
\square Answers an open question of [CMS 03]
- Tweak into a multiplicative guarantee
\square Uses known techniques: scaling, iterated rounding
\square Uses new techniques: LP structure lemma, iterated relaxation of auxilliary covering problem
- Matching ($1+\epsilon / \mu$)-hardness result
- For $\mu \geq 2$ we get 3-approx via [CJR 99]

Exactly Solvable Cases

- In X, integer multiflow reduces to Y :
$\square X=$ stars, $Y=b$-matching
口 $X=$ paths, $Y=$ max-cost circulation
व $X=$ cap- 1 trees, $Y=$ DP + matching
- New: $X=$ spiders, $Y=$ bidirected flows (yields LP characterization)

A 5-tip star

A path

Notation/Formulation

- path h_{i} : tree path for commodity i's terminals - feasible flow: nonnegative integral y with

\square E.g. $y_{A}=1, y_{B}=2, y_{C}=1, y_{D}=1$ is feasible

Relax!

- Drop integrality \Rightarrow naïve LP relaxation
$\max w \cdot y: \quad y \geq 0, \quad \forall e \sum_{i: e \in \text { path }_{i}} y_{i} \leq c_{e}$
$\square y^{\text {OPT }}$ denotes optimal LP solution
口 "LP-based α-approximation algorithm:" produce solution y with $w \cdot y \geq w \cdot y^{\text {OPT } / \alpha}$
\square Our approach uses iterated rounding [Jain 98] \& iterated relaxation [LNSS 07]

Iterated Relaxation Idea

\square Start by routing the integral part of $y^{\text {OPT; }}$ replace capacities by residual capacities

- Afterwards, $0 \leq y_{i}^{\text {OPT }}<1$ WOLOG, for all i
\square In each remaining iteration, solve LP and
- route one more unit of flow and replace capacities by residual capacities, or,
- discard capacity constraint for an edge e

Iterated Relaxation

1. Solve the LP, obtaining $Y^{O P T} \&$ Stop iterating
2. If $y_{i}{ }^{O P T}=1$ for any i :
\square Route 1 unit of i, update capacities
\square Discard $i \leqslant$ Decrease in LP value
3. Else equals increase in output value

- Find e on at most 3 path,'s
- Delete constraint for $e \longleftarrow$ LP value does not decrease

4. Go back to step 1

Conclusion: output solution has value \geq initial LP value, but violates capacity constraints by as much as +2 .

Why Iterated Relaxation Works

- (LP structure lemma) If y^{*} is an extreme LP solution and $0 \leq y_{i}^{*}<1$ for each commodity i, then some edge e lies on at most three $p a t h_{i}$'s.
- Proof idea
- y^{*} is unique solution to set of $\left|\operatorname{support}\left(y^{*}\right)\right|$ linearly independent tight capacity constraints
- Contract other edges (drop constraints) \Rightarrow T'
- Independence, integrality of c_{e} 's \Rightarrow every degree-2 vertex in T^{\prime} is a terminal for at least 2 commodities
- Counting argument \Rightarrow some leaf in T ' is a terminal for at most 3 commodities. Its incident edge works. \square

Fixing the +2 -violation

- Iterated rounding gives y s.t. $w \cdot y \geq w \cdot y^{O P T}$,

$$
\forall e: \sum_{i: e \in \text { path }_{i}} y_{i} \leq c_{e}+2
$$

- But... we want a solution y' such that the same holds without the " +2 "
- $w \cdot y^{\prime}$ should still be large compared to $w \cdot y^{\text {OPT }}$
- Approach: find "decrease" z, set $y^{\prime}:=y-z$
- Finding a cheap integral decrease is special case of [Jain 98]

Fixing the +2 -violation

\square Define overload $_{e}:=\max \left\{0, \sum_{i: e \in \text { path }} y_{i}-c_{e}\right\}$
$\square z$ is a feasible decrease if

$$
\forall e: \sum_{i: e \in \text { path }_{i}} z_{i} \geq \text { overload }_{e}
$$

- Crucially, [Jain 98] gives 2-approx algorithm relative to the optimal fractional solution
$\square \check{z}=2 y /(\mu+2)$ is feasible fractional decrease
- Proof idea: y-ž is smaller than y by a $\mu /(\mu+2)$ factor. Works since overload $\leq 2 \&$ capacity $\geq \mu$.

Overall Algorithm, Analysis

- Let $y^{\text {OPT }}$ be an optimal integral flow
- Iterated relaxation gave a +2 -violating solution y with $w \cdot y \geq w \cdot y^{O P T}$
- Iterated rounding [Jain 98] yields solution z to auxilliary covering problem with

$$
w \cdot z \leq 2 w \cdot z=4 w \cdot y /(\mu+2)
$$

- So $w \cdot(y-z) \geq w \cdot y^{*}(1-4 /(\mu+2))$

$$
\geq w \cdot y^{O P T} /\left(1+4 / \mu+24 /\left(\mu^{2}-6 \mu\right)\right) \square
$$

Loose Ends

- Slightly tighter analysis gives a better ratio for specific values of μ :
- decreasing overload in two steps instead of one yields $1+4 / \mu+6 /\left(\mu^{2}-\mu\right)$ approximation
- for $\mu=2$, 3 use load-halving argument of [CJR 99] to get better approx ratio of 3
$\square(1+\epsilon / \mu)$-hardness, for any fixed μ, follows by modifying original APX-hardness proof of [GVY 93]

Can We Do Better?

- Can we find a +1 -violating solution, in place of a +2 -violating solution?
■ No evidence it's completely impossible...
■ But " 3 " in structure lemma cannot be made " 2 ":

[CJR 99]
- Capacities equal 1
- Blue: flows of fractional value $1 / 4$
- Red: flows of fractional value $1 / 2$
- Extreme!

Future Work (I)

\square We have a 3-approx when all capacities >1 and an exact algorithm when all capacities
$=1$. Can we combine for general instances?

- Adding $\{0,1 / 2\}$-Chvátal-Gomory cuts to naïve LP creates blossom-like inequalities
- Strengthened LP is integral in the case of unitcapacity trees and spiders
- Can separate them in polynomial time [CF 96]
- Useful for approximation in general trees?

■ Would hope for a new LP structure lemma

Future Work (II)

- Obtained $1+4 / \mu+\ldots$ approx for tree multiflow. Similar existing LP-based results:
- Demand matching[SV 02]: 1+6*demand $\max / \mu+\ldots$
\square "Demand" multiflow: $y_{i} \in\left\{0\right.$, demand $\left.{ }_{i}\right\}$
- Smallest k-edge-connected subgraph: $1+2 / k+\ldots$
- How about these problems?
- Demand tree multiflow?
- Best known apx is $1+O\left(\text { demand }_{\max } / \mu\right)^{1 / 2}$
- Min-cost k-edge-connected subgraph?
- Best known apx is 2

Prosit!

