
Max�Weight Integral
Multicommodity Flow in

Spiders & High�Capacity Trees

Jochen Könemann, Ojas Parekh,
David Pritchard

Department of Combinatorics
and Optimization,

University of Waterloo, Canada

WAOA 2008

Maximum�weight integer
multicommodity flow

� Input: graph with edge capacities ce; pairs
of terminals, profit wi for each commodity i.
Goal: integral yi-flows respecting capacities,

� E.g. transport beer kegs between brewer
and customer along roads

� (Max�profit fractional multiflow
can be found in poly�time via LP)

such that
∑

i

wiyi is maximized

Bad News, Good News

� Hard to log1/3�ε n�approximate [AZ 05]

� O(log1/2 n) approx alg by randomized rounding

� If all edge capacities ≥ µ, 1+O(log n/µ)1/2�apx

� Well�studied special case: graph is a tree

� Same as weighted path packing

� Poly�time solvable for stars, paths, unit�capacity
trees but APX�hard in general [GVY 93]

� 2�approximation for unit weights [GVY 93]

� 4�approximation for general weights [CMS 03]

� [CJR 99] studied naïve LP, e.g. integrality gap

Our Results

� Exact solution when tree is a spider
� spider: subdivision of star

� (1+6/µ)�Approximation Algorithm
� Iterated LP relaxation yields additive guarantee

� Answers an open question of [CMS 03]

� Tweak into a multiplicative guarantee
� Uses known techniques: scaling, iterated rounding

� Uses new techniques: LP structure lemma, iterated
relaxation of auxilliary covering problem

� Matching (1+ε/µ)�hardness result

� For µ≥2 we get 3�approx via [CJR 99]

µ: minimum
edge capacity

Exactly Solvable Cases

� In X, integer multiflow reduces to Y:

� X = stars, Y = b�matching

� X = paths, Y = max�cost circulation

� X = cap�1 trees, Y = DP + matching

� New: X = spiders, Y = bidirected flows
(yields LP characterization)

A 5-tip star A path A 5-legged spider

Notation/Formulation

� pathi: tree path for commodity i’s terminals

� feasible flow: nonnegative integral y with

� E.g. yA = 1, yB = 2, yC = 1, yD = 1 is feasible

2

32

34

Altbier must be
routed on pathA

∀e :
∑

i :e∈pathi

yi ≤ ce

A,C

C B,D

c(·)

A,B

D

Relax!

� Drop integrality 0 naïve LP relaxation

� yOPT denotes optimal LP solution

� “LP�based α�approximation algorithm:”
produce solution y with w·y≥w·yOPT/α

� Our approach uses iterated rounding [Jain
98] & iterated relaxation [LNSS 07]

maxw · y : y ≥ 0, ∀e
∑

i :e∈pathi

yi ≤ ce

Iterated Relaxation Idea

� Start by routing the integral part of yOPT;
replace capacities by residual capacities

� Afterwards, 0≤yi
OPT<1 WOLOG, for all i

� In each remaining iteration, solve LP and

� route one more unit of flow and replace
capacities by residual capacities,

or,

� discard capacity constraint for an edge e

Iterated Relaxation

1. Solve the LP, obtaining yOPT

2. If yi
OPT = 1 for any i:

� Route 1 unit of i, update capacities

� Discard i

3. Else

� Find e on at most 3 pathi’s

� Delete constraint for e

4. Go back to step 1

Stop iterating
once yOPT is all-0

LP value does not decrease

Conclusion: output solution has value ≥ initial LP value, but
violates capacity constraints by as much as +2.

Decrease in LP value
equals increase in
output value

Why Iterated Relaxation Works

� (LP structure lemma) If y* is an extreme LP
solution and 0≤yi*<1 for each commodity i, then
some edge e lies on at most three pathi’s.

� Proof idea

� y* is unique solution to set of |support(y*)| linearly
independent tight capacity constraints

� Contract other edges (drop constraints) 0 T’

� Independence, integrality of ce’s 0 every degree�2
vertex in T’ is a terminal for at least 2 commodities

� Counting argument 0 some leaf in T’ is a terminal for
at most 3 commodities. Its incident edge works.

Fixing the +2�violation

� Iterated rounding gives y s.t. w·y ≥ w·yOPT,

� But… we want a solution y’ such that the
same holds without the “+2”

� w·y’ should still be large compared to w·yOPT

� Approach: find “decrease” z, set y’ := y�z

� Finding a cheap integral decrease is special case
of [Jain 98]

∀e :
∑

i :e∈pathi

yi ≤ ce + 2

Fixing the +2�violation

� Define

� z is a feasible decrease if

� Crucially, [Jain 98] gives 2�approx algorithm
relative to the optimal fractional solution

� ž = 2y/(µ+2) is feasible fractional decrease

� Proof idea: y�ž is smaller than y by a µ/(µ+2)
factor. Works since overload ≤ 2 & capacity ≥ µ.

overloade := max{0,
∑

i :e∈pathi

yi − ce}

∀e :
∑

i :e∈pathi

zi ≥ overloade

Overall Algorithm, Analysis

� Let yOPT be an optimal integral flow

� Iterated relaxation gave a +2�violating
solution y with w·y ≥ w·yOPT

� Iterated rounding [Jain 98] yields solution z
to auxilliary covering problem with

w·z ≤ 2w·ž = 4w·y/(µ+2)

� So w�(y�z) ≥ w�y*(1�4/(µ+2))
≥ w�yOPT/(1+4/µ+24/(µ2�6µ))

Loose Ends

� Slightly tighter analysis gives a better ratio
for specific values of µ:

� decreasing overload in two steps instead of one
yields 1 + 4/µ + 6/(µ2�µ) approximation

� for µ=2, 3 use load�halving argument of [CJR
99] to get better approx ratio of 3

� (1+ε/µ)–hardness, for any fixed µ, follows
by modifying original APX�hardness proof
of [GVY 93]

Can We Do Better?

� Can we find a +1�violating solution, in
place of a +2�violating solution?

� No evidence it’s completely impossible…

� But “3” in structure lemma cannot be made “2”:

[CJR 99]

• Capacities equal 1

• Blue: flows of fractional value ¼

• Red: flows of fractional value ½

• Extreme!

Future Work (I)

� We have a 3�approx when all capacities >1
and an exact algorithm when all capacities
=1. Can we combine for general instances?

� Adding {0,1/2}�Chvátal�Gomory cuts to
naïve LP creates blossom�like inequalities

� Strengthened LP is integral in the case of unit�
capacity trees and spiders

� Can separate them in polynomial time [CF 96]

� Useful for approximation in general trees?

� Would hope for a new LP structure lemma

Future Work (II)

� Obtained 1+4/µ+… approx for tree
multiflow. Similar existing LP�based results:

� Demand matching[SV 02]: 1+6*demandmax/µ+…

� “Demand” multiflow: yi ε {0, demandi}

� Smallest k�edge�connected subgraph: 1+2/k+…

� How about these problems?

� Demand tree multiflow?

� Best known apx is 1 + O(demandmax/µ)1/2

� Min-cost k�edge�connected subgraph?

� Best known apx is 2

Prosit!

