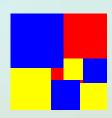
Approximability of Sparse Integer Programs



David Pritchard, University of Waterloo Sept 7, 2009 European Symposium on Algorithms

Motivation

- Integer linear programming (IP) is a classical NP-complete problem
- Lenstra 1983: for a fixed number of variables, IP is poly-time solvable
 - Also for fixed number of constraints
- What can we say if the number of variables per constraint is fixed?
 - Or number of constraints per variable?
- How hard are these problems?

4 Families of Problems

- We consider two common and natural types of IP
 - Packing IPs: $\{\max cx \mid Ax \leq b, x \geq 0\}$
 - Covering IPs: $\{\min cx \mid Ax \ge b, x \ge 0\}$
- We consider sparse IPs (refers to pattern of nonzeroes of constraint matrix A)
 - k-row sparse means at most k variables are involved in each constraint
 - k-column sparse means each variable is involved in at most k constraints

What are these problems?

in simplest case A & b 0-1, c=1, k=2:

	CS (k occurrences/var)	RS (k vars/constraint)
PIPs		
CIPs		

What are these problems?

in simplest case A & b 0-1, c=1, k=2:

	CS (k occurrences/var)	RS (k vars/constraint)
PIPs	maximum matching (poly-time)	max independent set (NP-complete)
CIPs	minimum edge cover (poly-time)	min vertex cover (NP-complete)

• NP-hard for general A or k=3

Approximability Bounds, Then

<u> </u>	CS (k occurrences/var)	RS (k vars/constraint)
PIPs	≥ Ω(k/ln k) [Hazan et al ′03]	≥ Ω(# vars¹-o(¹)) [Khot-Ponnuswami ′06]
	(k-set matching)	(independent set)
CIPs	≥ In k – O(In In k) [Trevisan '01] (k-set cover)	≥ k-ε [UGC + Khot-Regev '03] (hypergraph vertex cover)

Approximability Bounds, Now

	CS (k occurrences/var)	RS (k vars/constraint)
PIPs	≥ \O(k/ln k) [Hazan et al '03]	≥ \O(\# vars ^{1-o(1)}) [Khot-Ponnuswami '06]
	our paper: ≤ k²2k Bansal et al: ≤ O(k)	≤ ε· (# vars) [using Lenstra '83]
CIPs	≥ In k – O(In In k) [Trevisan '01]	≥ k-ε (mod UGC) [Khot-Regev '03]
	≤ O(In k) [Kolliopoulos-Young '01]	our paper: ≤ k also Koufogiannakis-Young

k-Column-Sparse Packing

- Our paper uses iterated LP relaxation to get super-optimal solution with additive violation, then try to remove violation
- O(k²2^k)-approx in paper; same framework improved to O(k²)-approx later (CEK & CP)
- Bansal, Korula, Nagarajan in August:
 - Nice O(k)-approx via randomized rounding
 - Works for submodular objective functions

Iterated Rounding Result

- Lemma: for extreme point solution x to the LP {max cx : Ax ≤ b, 1 ≥ x ≥ 0}, either
 - (round) x_e = 1 for some e
 - (relax) there is a vertex v* such that at most k edges e have (v* in e) and (x_e > 0)
- Iterated rounding then gives solution
 - with value ≥ LP-OPT
 - but violating each constraint by up to +k

k-Row-Sparse Covering

- We get direct LP-rounding k-approx alg
- Insight: direct rounding depends on a property of each individual constraint
- The ith constraint is k-roundable if for all real nonnegative x with $\sum_{j} a_{ij} x_{j} \ge b_{i}$, $\sum_{j} a_{ij} floor(kx_{j}) \ge b_{i}$
- If all k-roundable, floor(kx^{OPT}) is a k-apx
 - x^{OPT}:= optimal solution to LP relaxation of IP

Getting k-Roundability

- k-RS constraint has ≤ k variables
- Not all k-RS constraints are k-roundable unfortunately
- Define two constraints to be equivalent if they have same solutions in Z₊
- Main lemma: every k-RS constraint is equivalent to a k-roundable constraint

Illustration of Lemma

Example with k=2

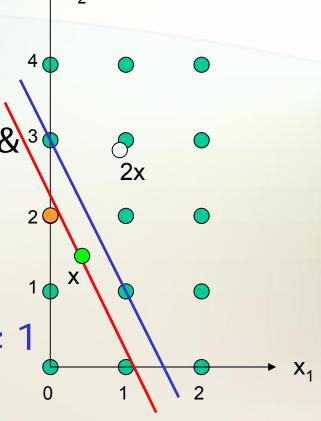
 $0.99x_1 + 0.49x_2 \ge 1$ is not

2-roundable.

Proof: x=(0.4, 1.4) feasible &

floor(2x) = (0,2) not feasible

However the constraint is equivalent to $\frac{2}{3}x_1 + \frac{1}{3}x_3 \ge 1$ which *is* 2-roundable



Lemma Proof Idea

- Scale constraint ∑_ja_{ij}x_j ≥ b_i so that b_i=1
- Cap each a_{ij} at 1
 - This preserves integer feasible set
- Short calculation shows this constraint is ρ -roundable for $\rho = 1 + \sum_i a_{ij}$
- Thus we are good if ∑_ia_{ij} ≤ k-1
- Some easy ad-hoc case analysis takes care of case that ∑_ia_{ii} > k-1

Overall k-RS CIP Algorithm

- Replace each row with an equivalent kroundable one
- Solve the LP to get optimal solution x*
- Output floor(kx*)
 - Can also handle multiplicity constraints
 x ≤ d with knapsack cover inequalities
 - Koufogiannakis-Young's approach: Simple fast iterated primal alg, works for broad generalization, no integrality gap bound

Future Work

- Remaining open problems for k-CS PIPs:
 - Find O(k) approximation without solving LP
 - Close gap of approximability between Ω(k/ln k) and O(k)
 - even in 0-1 case, i.e. k-set packing
- Generalizations of sparse IPs
 - Semimodular objective
 - Monotone sparse constraints

