ACSL All-Star Practice, Woburn CI, 2010

**Question 1.** Find all 5-bit solutions X to

(X AND 10110) OR (LCIRC-1 X) = (RSHIFT-1 X) XOR 10101

**Question 2.** What is the value of h(8), given the following recursive prefix definition of h? (Here h is a unary operator.)

$$h(n) := \begin{cases} n, & \text{if } n \le 1; \\ + + h - n 2 h \operatorname{div} n 2 1 & \text{otherwise.} \end{cases}$$

Question 3. List the connected components of the following graph.



Question 4. What is the sum of all integers between  $1001_2$  and  $22_8$  inclusive, expressed in hexadecimal?



**Question 5.** List all triples (A, C, T) which make the expression  $\overline{A + CT} + A + C(\overline{A + T})$  false.

**Question 6.** (a) Convert the postfix expression " $a b c - \uparrow b 2 c * a 1 + //-$ " to infix (using parentheses as needed), where  $\uparrow$  represents exponentiation. (b) Write the equation

$$\tan \theta = \frac{\sin 2\theta}{1 + \cos 2\theta}$$

in prefix; here  $\sin$ ,  $\cos$ ,  $\tan$  are unary,  $\operatorname{and} = \operatorname{is} \operatorname{a} \operatorname{binary} \operatorname{operator}$ .



Question 7. In the following circuit, S = 1 and T = 0. Find all possible values of the quadruple (A, B, C, D).



**Question 8.** (a) Using the string "AHEAPTHISAINT" as input, build a binary tree; the shape of the tree is given below. (b) Calculate its internal path length. (c) Find a node, such that if we delete this node, the external path length of the tree *increases*. (Indicate the node on the tree by circling it.)



**Question 9.** What is the value of f(692)?

$$f(n) := \begin{cases} 400, & \text{if } n = 0; \\ 2, & \text{if } n = 1; \\ f(n \mod 2) + f(n \operatorname{div} 2), & \text{otherwise.} \end{cases}$$

**Question 10.** Write a regular expression which matches exactly those strings on alphabet  $\{a, b\}$  which do **not** contain the substring *aa*.

Question 11. What sequence of characters is printed by the following program?

```
10 read MSG$
20 \text{ N} = 1 + \text{INT}(\text{SQRT}(\text{LEN}(\text{MSG})))
25 rem if SUPERNOVA then RUN("AWAY")
30 MSG$ = MSG$ + LEFT$(MSG$, N*N-LEN(MSG$))
40 for I = 1 to N
      ARR$(I) = MID$(MSG$, (I-1)*N+1, N)
50
 60 next I
70 for J = 1 to N
80
      for I = 1 to N
90
        PRINT(MID$(ARR$(I), J, 1))
100
      next I
110 next J
120 data DONTFEEDTHECHIMPS
```

**Question 12.** Here is a series of LISP statements. Each statement is evaluated one at a time. Give the results of the four underlined statements.

(<u>CONS '(AND) '(PROS)</u>), (<u>ATOM 112</u>), (SET 'PI 3), (DEF AREA(R) (MULT PI R R)), (<u>AREA 10</u>), (<u>SETQ PI 4</u>), (<u>AREA 51</u>)

**Question 13.** Unscramble the following expression so that, for a every 4-bit input string X, it computes the reverse. (E.g. if X=1000 it should evaluate to 0001.)





Question 14. What are the outputs printed by the following program, if the input is 36?

| TRY  | DC    | 1      |  |
|------|-------|--------|--|
|      | READ  | INP    |  |
| LOOP | PRINT | TRY    |  |
|      | LOAD  | INP    |  |
|      | DIV   | TRY    |  |
|      | ADD   | TRY    |  |
|      | ADD   | =1     |  |
|      | DIV   | =2     |  |
|      | STORE | RESULT |  |
|      | SUB   | TRY    |  |
|      | BE    | THE    |  |
|      | LOAD  | RESULT |  |
|      | STORE | TRY    |  |
|      | BU    | LOOP   |  |
| THE  | END   |        |  |
|      |       |        |  |

**Question 15.** How many numbers between 0 and  $511_{10}$  inclusive, when written in octal, have all of their digits distinct? For example,  $123_8$  and  $30_8$  each have all their digits distinct, but  $747_8$  does not.

**Question 16.** Build a (minimal) heap out of "UNSEARCHABLE," and show the final resulting heap. Then, pop once and show the result after that.

Question 17. What is the value of S at the end of this program?

```
1 read S
 4 for P = S to 3 step -2
 9
      for D = 2 to P-1
16
        if (P mod D < 1) then 81
25
      next D
36
      if (S < P) then 64 else 49
49
      S = S - 2*P
64
      S = S + P
81 next P
100 data 33
```



**Question 18.** The following is a circuit which you need to fill in. It has two inputs AB and two outputs XY, which we will interpret as binary numbers: the input is a binary number  $AB_2$  between 0 and 3, and the output is a binary number  $XY_2$  between 0 and 3. Fill in the parts of the circuit inside the dashed box so that it computes the function  $XY_2 = (AB_2 + 1) \mod 4$ .



**Question 19.** Let x be a 5-bit input string. We want to compute LCIRC-3 x. However, our computer was hacked and no longer allows bit string flicking or boolean operations. Luckily, the computer still allows arithmetic on binary numbers. Your task: write an arithmetical expression (using constants and any of  $+, -, \times$ , div, mod) in terms of x, such that the value of the expression equals the value of LCIRC-3 x (for all possible values of x between 0 and 31 inclusive).

Question 20. Write a finite state automaton which accepts the same strings as those generated by the regular expression  $(a(a \cup \lambda)(b \cup \lambda)b)^*$ .

Question 21. Here is a picture of my house, which is a directed graph. I start at S and take 8 steps (following one edge from my current location each time, always respecting the directions of the edges). What are all possible locations where I could be after these 8 steps?

U



Question 22. Write a simplified boolean expression whose value agrees with the following truth table.

| А            | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
|--------------|---|---|---|---|---|---|---|---|
| В            | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| $\mathbf{C}$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| expression   | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
|              |   |   |   |   |   |   |   |   |
|              |   |   |   |   |   |   |   |   |
|              |   |   |   |   |   |   |   |   |

Question 23. Consider the following pseudocode.

```
MainObject := an empty queue
BackupObject := an empty stack
for each letter in the input (ignoring punctuation),
    convert it to upper case
    if it is a consonant, push it into MainObject
    otherwise (it's a vowel), pop MainObject once, then swap MainObject with BackupObject
```

If the input is "West Philadelphia born and raised", what is the list of all letters popped by the algorithm (in order)?



**Question 24.** Fill the following binary tree with any English letters (all capital letters, ignore capitalization) so that

- the 5-letter string obtained from a postfix traversal is an English word, and
- the 5-letter string obtained from a infix traversal is the same as the 5-letter string obtained from a prefix traversal.

Note that it's *not* a binary *search* tree. (If you can't figure out an English word to make it work, just put in letters that make it work, but are as general as possible, e.g. just filling everything with W is not general enough.)

**Question 25.** One well-known way to define the *GCD* function is recursively: GCD(a, b) equals a + b when ab = 0, and  $GCD(a, b) = GCD(b, a \mod b)$  otherwise. However, you forgot how to do this correctly and instead wrote

$$g(a,b) := \begin{cases} a-b, & \text{if } ab = 0; \\ g(b, a \operatorname{div} b), & \text{otherwise} \end{cases}$$

- (a) What is g(2010, 500)?
- (b) For what pair (x, y) of positive integers is g(x, y) undefined?



Question 26. Write a finite state automaton which accepts exactly those strings on alphabet  $\{a, b\}$  which are not generated by the regular expression  $(a(bb \cup baa)^*a)^*bb$ .

**Question 27.** Here is a series of LISP statements. Each statement is evaluated one at a time. Give the results of the five underlined statements. (The last is trickier and is a **Bonus**.)

(SETQ CHOOSE 'X), (SET CHOOSE (CAR '(CHOOSE ATOM RIGHTLY))), (SET 'CHOOSE (CDR '(CHOOSE DA REST))), <u>CHOOSE</u>, X, (DEF E(X) (EVAL X)), (E (E '''X)), (DEF F(X) (EVAL 'X)), (F (F '''X))



**Question 28. Bonus:** We run the following program (the left column is followed by the middle column and then the right column). If the output is 177, and the input was a positive integer less than 256, what was the input?

| А | DC      | 214 | Y | LOAD  | =1  |    | LOAD  | В   |
|---|---------|-----|---|-------|-----|----|-------|-----|
|   | READ    | В   |   | STORE | F   |    | DIV   | =2  |
| F | DC      | -1  |   | LOAD  | V   |    | STORE | В   |
| R | DC      | 0   |   | ADD   | Р   |    | BU    | L   |
| L | LOAD    | A   |   | BU    | SB  | SB | STORE | V   |
|   | BG      | SB  | Z | LOAD  | V   |    | DIV   | =2  |
|   | PRINT   | R   |   | ADD   | R   |    | MULT  | =2  |
|   | END     |     |   | ADD   | R   |    | SUB   | V   |
| Х | LOAD    | V   |   | STORE | R   |    | MULT  | =-1 |
|   | STORE   | Р   |   | LOAD  | =-1 |    | STORE | V   |
|   | LOAD    | =0  |   | STORE | F   |    | LOAD  | F   |
|   | STORE   | F   |   | LOAD  | A   |    | BL    | Х   |
|   | LOAD    | В   |   | DIV   | =2  |    | BE    | Y   |
|   | BU      | SB  |   | STORE | A   |    | BU    | Z   |
|   | <b></b> |     |   |       |     |    |       |     |
|   | 1       |     |   |       |     |    |       |     |

**Question 29. Bonus:** A *claw* in a graph is a collection of three edges which all meet at one common vertex. For example, the graph pictured below contains 5 different claws:

 $\{AC, AW, AS\}, \{AL, CL, LS\}, \{AC, AL, AS\}, \{AL, AW, AS\}, \{AL, AW, AC\}.$ 

Now consider a graph whose vertex set is  $\{0, 1, 2, ..., 12\}$ , where two vertices share an edge iff the absolute value of their difference is a prime. How many claws does that graph contain?





Question 30. Bonus: What is evil(new int[3], 2)?
static int evil(int[] e, int v) {

```
int i = v;

v = e[0]+1;

e[0] = e[1]*2;

e[1] = e[2]+1;

e[2] = i;

if (e[0]>e[2] && e[2]>e[1]) return e[0];

int l = evil(e, v-1+e[2]);

return e[e[0]%3]+1;

}
```

