

Hypergraphic LP Relaxations for Steiner Trees

IPCO 2010

The Steiner Tree Problem

- Input: graph (R⊎N, E) with edge costs c_e
 - R: required vertices or terminals
 - N: optional vertices or Steiner nodes
- Output: subgraph (R⊎N, F) connecting R
- Objective: min $\Sigma_{e\in F}c_e$
- NP-hard, APX-hard.
- Best approx alg has ratio 1.39 [BGRS10]

Summary

- Study LPs for the Steiner tree problem using full components as building blocks
- Give a new LP based on partitions
- It has same value as some previous LPs
 - Directed cut and subtour formulations
- Show all are equivalent to *bidirected cut formulation* on quasibipartite instances
- Integrality gap bound of $\sqrt{3} \sim 1.73$
 - Also 73/60 ~ 1.22 on "uniformly quasi-bipartite"

Steiner Trees as Hypergraphs

Full Component ~ Hyperedge, Steiner Tree ~ Hyper-Spanning Tree

- Steiner trees are hypergraphs that are
 - acyclic, connected, span R
 - called hyper-spanning trees
- Overall approach:

- $\forall K \subset R$ let C_K be cheapest full component on K
- Then Steiner tree problem becomes special case of Min Cost Hyper-Spanning Tree
- Motivates hypergraph-based LPs

LPs Old and New

Hypergraphic Steiner tree relaxation	MST special case (size-2 full comps)
 Subtour Relaxation [Warme 97] equality constraint every subset of R is fractionally acyclic 	Matroid / Subtour LP [Edmonds 1970]
 Directed Cut Relaxation [P-VD 03, B+10] direct full components every nontrivial cut fractionally spanned 	Bidirected cut LP [Edmonds 1967]
Partition Relaxation [here, KPT09] • every partition π is fractionally spanned rank(π)-1 times, counting multiplicity	Partition LP [Fulkerson 1971]

Partitions

- Partition of R: family {V₁, V₂, ..., V_r} of disjoint nonempty subsets of R (*parts*) with U_iV_i = R
- r: *rank* of π (number of parts)

How do partitions, hyper-spanning trees interact?

Rank Contribution

• For hyperedge K \subset V the rank-contribution $\operatorname{rc}_{K}^{\pi} := |\{ \text{parts of } \pi \text{ met by } K \}| - 1$

 $\sum rc_K^{\pi} \ge r(\pi) - 1$

 (Equal to rank lost by π if we merge all its parts intersecting K)

 $K \in T$

- Solid partition π and dashed set Khave $\operatorname{rc}_{K}^{\pi} = 2$

 For any hyperspanning tree T,

Hyperedge/Partition LP(9)

Variable x_{K} in [0,1] for each hyperedge $K \subset R$ Inequality for each partition π of V:

$$\sum_{K} x_{K} \operatorname{rc}_{K}^{\pi} \geq r(\pi) - 1$$
Objective: minimize $\Sigma C_{\kappa} x_{\kappa}$

• Main results:

- integrality gaps by *dual fitting* and *MST-exactness*
- equivalence theorems by *partition uncrossing*

Partition Uncrossing

• **Prop.** If constraints for partitions π , σ hold with equality, same holds for their *meet* & *join*

Meet: intersect parts of π with parts of σ in all possible ways

Join: transitively join parts of π with parts of σ

Partition Uncrossing

- Proving Prop looks easy in that (9) resembles a lattice polyhedron... but typical uncrossing approach fails on small examples
- We use a new partition uncrossing technique; it shows extreme duals are supported by a chain (non-crossing set)
- Implies extreme primal solutions have at most |R|-1 nonzeroes
 - Spanning trees show |R|-1 is tight

LP Equivalences

immediate from hypergraph orientation results by Frank, Kiraly, Kiraly 2003

Quasibipartite Equivalence

- One LP equivalence still surprises me a lot
- In a *quasibipartite instance*, there are no edges connecting two Steiner nodes
- The bidirected cut relaxation for Steiner tree:
 - introduce a variable x_a for each arc a (two per undirected edge in the input)
 - pick any terminal as root (doesn't matter which)
 - require all cuts from root to any other Steiner node to be crossed by x-value of ≥ 1

Quasibipartite Equivalence

- Previously studied hypergraphic LPs known to strengthen bidirected cut [P-VD 03]
- Thm. In quasi-bipartite instances, both LPs have the same value
- We found two proofs:
 - implicit, using theorem about total unimodularity
 - explicit algorithmic proof
- Both "lift" duals. Is there a more direct proof?

Integrality Gap $(\mathcal{P}) \leq \sqrt{3} \sim 1.73$

- In other words, there is always a Steiner tree T with cost(T) $\leq \sqrt{3} \cdot OPT(\mathcal{P})$
- Integrality gap of 2 is trivial but until recently no better bound was known for any LP
 - [BGRS10] got a 1.55 bound first via RZ algorithm
 - We noticed different techniques give an "online" $\sqrt{3}$ bound. Give $2\sqrt{2} 1 \sim 1.82$ in talk.
- Techniques: *cost reduction* [CDV08] and *MST-exactness*

MST-Exactness

- Suppose that for some Steiner tree instance, the minimum spanning tree MST(G[R]) of the terminal-induced subgraph is an optimal Steiner tree. (An *MST-exact* instance.)
- Thm. This tree is optimal for the LP (9); i.e. OPT(9) is the optimal Steiner cost.
- Algorithmic leverage: reduce some costs to get an MST-exact instance; gives lower bound on LP value of original instance.

$2\sqrt{2} - 1$ integrality gap algorithm

- 1. Divide all terminal-terminal costs by $\sqrt{2}$
- 2. Calculate initial MST(G[R])
- 3. For each full component K, in any order
 - Contract terminal subset K to single pseudonode and pay C_K , if MST cost would drop by > C_K
- Analysis idea: contracted instance at end of algorithm is MST-exact
- Also use fact MST ≤ 2 · OPT(𝒫) in final contracted instance

Better Bound in a Special Case

- A uniformly quasi-bipartite instance is one in which for every Steiner node, all incident edges have the same cost
- For this special case the best approx algo known has ratio 73/60 [Gröpl et al. '00]
- We get a 73/60 integrality gap bound
 - Somewhat simpler proof of a stronger result
 - Only class of instances where best known integrality gap matches best known approx ratio

Proof of the 73/60 bound

Cost-per-connection algorithm of Gröpl et al:

- 1. For each K in increasing order of $C_K/(|K|-1)$,
 - A. If K forms no hypercycle w/ previous purchases, Purchase K.
- Analysis: Define a natural dual solution with cost equal to the algorithm's output
- Dual is not feasible, but can prove it becomes feasible if scaled down by 73/60

Illustration of Proof Idea

- Algorithm selects bcde (has min cost per connection, 20)
- Then it selects ab (c.p.c. 28)
- Dual solution in proof assigns value 20 to {a, b, c, d, e} and value 8 to {a, bcde}

• Dual load on full component K := abc is

$$\sum_{\pi} y_{\pi} \operatorname{rc}_{K}^{\pi} = 20 \cdot 2 + 8 \cdot 1 = 48 < \frac{73}{60} C_{K} = \frac{73}{60} 42$$

Future Work

- Apply LP technology for approx algorithms?
 - Degree-bounded Steiner tree, Steiner forest, prize-collecting Steiner tree, k-Steiner tree, …
- Funny technical point in quasi-bipartite case:
 - Forget usual "*r*-restricted full component" trick
 - Can compute OPT of bidir and hence OPT (9)
 - Can we compute explicit primal opt of (9)?
 - Would save ε in quasibipartite approx ratio of [BGRS10]
- Better direct understanding of bidirected cut?