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The Steiner Tree Problem

 Input: graph (R⊎N, E) with edge costs ce,
 R: required vertices or terminals 
 N: optional vertices or Steiner nodes

 Output: subgraph (R⊎N, F) connecting R
 Objective: min Σe∈Fce

 NP-hard, APX-hard.
 Best approx alg has

ratio 1.39 [BGRS10]
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Summary
 Study LPs for the Steiner tree problem using 

full components as building blocks
 Give a new LP based on partitions
 It has same value as some previous LPs
 Directed cut and subtour formulations

 Show all are equivalent to bidirected cut 
formulation on quasibipartite instances

 Integrality gap bound of √3 ~ 1.73
 Also 73/60 ~ 1.22 on “uniformly quasi-bipartite”



Steiner Trees as Hypergraphs

Steiner
tree

Hypergraph w/
4 hyperedges (subsets of R)

Steiner
tree

Decomposed into
4 full components

 Equivalent views of 
same structure

 What type of hypergraph 
is a Steiner tree?



Full Component ~ Hyperedge,
Steiner Tree ~ Hyper-Spanning Tree
 Steiner trees are hyper-

graphs that are
 acyclic, connected, span R
 called hyper-spanning trees

 Overall approach:
 ∀ K⊂R let CK be cheapest full component on K
 Then Steiner tree problem becomes special 

case of Min Cost Hyper-Spanning Tree
 Motivates hypergraph-based LPs

hyper-spanning tree



LPs Old and New
Hypergraphic Steiner

tree relaxation
MST special case
(size-2 full comps)

Subtour Relaxation [Warme 97]
• equality constraint
• every subset of R is fractionally acyclic

Matroid / Subtour LP
[Edmonds 1970]

Directed Cut Relaxation [P-VD 03, B+10] 
• direct full components
• every nontrivial cut fractionally spanned

Bidirected cut LP
[Edmonds 1967]

Partition Relaxation [here, KPT09]
• every partition π is fractionally spanned 
rank(π)-1 times, counting multiplicity

Partition LP
[Fulkerson 1971]



Partitions

 Partition of R: family {V1, V2, …, Vr} of disjoint 
nonempty subsets of R (parts) with ∪iVi = R

 r: rank of π (number of parts)

 How do partitions, hyper-spanning trees interact?

Rank-5 partition of R

parts



Rank Contribution

 For hyperedge K⊂V the rank-contribution

 (Equal to rank
lost by π if we
merge all its parts
intersecting K)

 For any hyper-
spanning tree T,



Hyperedge/Partition LP ( P )

Variable xK in [0,1] for each hyperedge K⊂R
Inequality for each partition π of V:

Objective: minimize ΣCKxK

 Main results:
 integrality gaps by dual fitting and MST-exactness
 equivalence theorems by partition uncrossing



Partition Uncrossing

 Prop. If constraints for partitions π, σ hold 
with equality, same holds for their meet & join

Meet: intersect parts 
of π with parts of σ in 
all possible ways

Join: transitively join 
parts of π with parts 
of σ



Partition Uncrossing
 Proving Prop looks easy in that ( P ) resembles a 

lattice polyhedron… but typical uncrossing 
approach fails on small examples

 We use a new partition uncrossing technique; it 
shows extreme duals are supported
by a chain (non-crossing set)

 Implies extreme primal solutions
have at most |R|-1 nonzeroes
 Spanning trees show |R|-1 is tight

2 partitions that 
do not cross



LP Equivalences



 immediate from hypergraph orientation  
results by Frank, Kiraly, Kiraly 2003



Quasibipartite Equivalence

 One LP equivalence still surprises me a lot
 In a quasibipartite instance, there are no 

edges connecting two Steiner nodes
 The bidirected cut relaxation for Steiner tree:
 introduce a variable xa for each arc a (two per 

undirected edge in the input)
 pick any terminal as root (doesn’t matter which)
 require all cuts from root to any other Steiner 

node to be crossed by x-value of ≥ 1



Quasibipartite Equivalence

 Previously studied hypergraphic LPs known 
to strengthen bidirected cut [P-VD 03] 

 Thm. In quasi-bipartite instances, both LPs 
have the same value

 We found two proofs:
 implicit, using theorem about total unimodularity
 explicit algorithmic proof

 Both “lift” duals. Is there a more direct proof?



Integrality Gap ( P ) ≤ √3 ~ 1.73

 In other words, there is always a Steiner tree 
T with cost(T) ≤ √3 · OPT( P )

 Integrality gap of 2 is trivial but until recently 
no better bound was known for any LP
 [BGRS10] got a 1.55 bound first via RZ algorithm
 We noticed different techniques give an “online” 

√3 bound. Give 2√2 – 1 ~ 1.82 in talk.
 Techniques: cost reduction [CDV08] and 

MST-exactness



MST-Exactness

 Suppose that for some Steiner tree instance, 
the minimum spanning tree MST(G[R]) of the 
terminal-induced subgraph is an optimal 
Steiner tree. (An MST-exact instance.)

 Thm. This tree is optimal for the LP ( P );
i.e. OPT( P ) is the optimal Steiner cost.

 Algorithmic leverage: reduce some costs to 
get an MST-exact instance; gives lower 
bound on LP value of original instance.



2√2 – 1 integrality gap 
algorithm

1. Divide all terminal-terminal costs by √2
2. Calculate initial MST(G[R])
3. For each full component K, in any order
 Contract terminal subset K to single pseudonode

and pay CK, if MST cost would drop by > CK

 Analysis idea: contracted instance at end 
of algorithm is MST-exact

 Also use fact MST ≤ 2 · OPT( P ) in final 
contracted instance



Better Bound in a Special Case

 A uniformly quasi-bipartite instance is one in 
which for every Steiner node, all
incident edges have the same cost

 For this special case the best approx algo
known has ratio 73/60 [Gröpl et al. ‘00]

 We get a 73/60 integrality gap bound
 Somewhat simpler proof of a stronger result
 Only class of instances where best known 

integrality gap matches best known approx ratio

c c
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Proof of the 73/60 bound

Cost-per-connection algorithm of Gröpl et al:
1. For each K in increasing order of CK/(|K|-1), 

A. If K forms no hypercycle w/ previous purchases,
 Purchase K.

 Analysis: Define a natural dual solution with 
cost equal to the algorithm’s output

 Dual is not feasible, but can prove it 
becomes feasible if scaled down by 73/60



Illustration of Proof Idea

 Algorithm selects bcde (has
min cost per connection, 20)

 Then it selects ab (c.p.c. 28)
 Dual solution in proof assigns

value 20 to {a, b, c, d, e} and
value 8 to {a, bcde}

 Dual load on full component K := abc is

b

cost 14
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cost 15
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Future Work

 Apply LP technology for approx algorithms?
 Degree-bounded Steiner tree, Steiner forest,

prize-collecting Steiner tree, k-Steiner tree, … 
 Funny technical point in quasi-bipartite case:
 Forget usual “r-restricted full component” trick
 Can compute OPT of bidir and hence OPT ( P )
 Can we compute explicit primal opt of ( P ) ?
 Would save ε in quasibipartite approx ratio of [BGRS10]

 Better direct understanding of bidirected cut?
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