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The Steiner Tree Problem

 Input: graph (R⊎N, E) with edge costs ce,
 R: required vertices or terminals 
 N: optional vertices or Steiner nodes

 Output: subgraph (R⊎N, F) connecting R
 Objective: min Σe∈Fce

 NP-hard, APX-hard.
 Best approx alg has

ratio 1.39 [BGRS10]
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Summary
 Study LPs for the Steiner tree problem using 

full components as building blocks
 Give a new LP based on partitions
 It has same value as some previous LPs
 Directed cut and subtour formulations

 Show all are equivalent to bidirected cut 
formulation on quasibipartite instances

 Integrality gap bound of √3 ~ 1.73
 Also 73/60 ~ 1.22 on “uniformly quasi-bipartite”



Steiner Trees as Hypergraphs

Steiner
tree

Hypergraph w/
4 hyperedges (subsets of R)

Steiner
tree

Decomposed into
4 full components

 Equivalent views of 
same structure

 What type of hypergraph 
is a Steiner tree?



Full Component ~ Hyperedge,
Steiner Tree ~ Hyper-Spanning Tree
 Steiner trees are hyper-

graphs that are
 acyclic, connected, span R
 called hyper-spanning trees

 Overall approach:
 ∀ K⊂R let CK be cheapest full component on K
 Then Steiner tree problem becomes special 

case of Min Cost Hyper-Spanning Tree
 Motivates hypergraph-based LPs

hyper-spanning tree



LPs Old and New
Hypergraphic Steiner

tree relaxation
MST special case
(size-2 full comps)

Subtour Relaxation [Warme 97]
• equality constraint
• every subset of R is fractionally acyclic

Matroid / Subtour LP
[Edmonds 1970]

Directed Cut Relaxation [P-VD 03, B+10] 
• direct full components
• every nontrivial cut fractionally spanned

Bidirected cut LP
[Edmonds 1967]

Partition Relaxation [here, KPT09]
• every partition π is fractionally spanned 
rank(π)-1 times, counting multiplicity

Partition LP
[Fulkerson 1971]



Partitions

 Partition of R: family {V1, V2, …, Vr} of disjoint 
nonempty subsets of R (parts) with ∪iVi = R

 r: rank of π (number of parts)

 How do partitions, hyper-spanning trees interact?

Rank-5 partition of R

parts



Rank Contribution

 For hyperedge K⊂V the rank-contribution

 (Equal to rank
lost by π if we
merge all its parts
intersecting K)

 For any hyper-
spanning tree T,



Hyperedge/Partition LP ( P )

Variable xK in [0,1] for each hyperedge K⊂R
Inequality for each partition π of V:

Objective: minimize ΣCKxK

 Main results:
 integrality gaps by dual fitting and MST-exactness
 equivalence theorems by partition uncrossing



Partition Uncrossing

 Prop. If constraints for partitions π, σ hold 
with equality, same holds for their meet & join

Meet: intersect parts 
of π with parts of σ in 
all possible ways

Join: transitively join 
parts of π with parts 
of σ



Partition Uncrossing
 Proving Prop looks easy in that ( P ) resembles a 

lattice polyhedron… but typical uncrossing 
approach fails on small examples

 We use a new partition uncrossing technique; it 
shows extreme duals are supported
by a chain (non-crossing set)

 Implies extreme primal solutions
have at most |R|-1 nonzeroes
 Spanning trees show |R|-1 is tight

2 partitions that 
do not cross



LP Equivalences



 immediate from hypergraph orientation  
results by Frank, Kiraly, Kiraly 2003



Quasibipartite Equivalence

 One LP equivalence still surprises me a lot
 In a quasibipartite instance, there are no 

edges connecting two Steiner nodes
 The bidirected cut relaxation for Steiner tree:
 introduce a variable xa for each arc a (two per 

undirected edge in the input)
 pick any terminal as root (doesn’t matter which)
 require all cuts from root to any other Steiner 

node to be crossed by x-value of ≥ 1



Quasibipartite Equivalence

 Previously studied hypergraphic LPs known 
to strengthen bidirected cut [P-VD 03] 

 Thm. In quasi-bipartite instances, both LPs 
have the same value

 We found two proofs:
 implicit, using theorem about total unimodularity
 explicit algorithmic proof

 Both “lift” duals. Is there a more direct proof?



Integrality Gap ( P ) ≤ √3 ~ 1.73

 In other words, there is always a Steiner tree 
T with cost(T) ≤ √3 · OPT( P )

 Integrality gap of 2 is trivial but until recently 
no better bound was known for any LP
 [BGRS10] got a 1.55 bound first via RZ algorithm
 We noticed different techniques give an “online” 

√3 bound. Give 2√2 – 1 ~ 1.82 in talk.
 Techniques: cost reduction [CDV08] and 

MST-exactness



MST-Exactness

 Suppose that for some Steiner tree instance, 
the minimum spanning tree MST(G[R]) of the 
terminal-induced subgraph is an optimal 
Steiner tree. (An MST-exact instance.)

 Thm. This tree is optimal for the LP ( P );
i.e. OPT( P ) is the optimal Steiner cost.

 Algorithmic leverage: reduce some costs to 
get an MST-exact instance; gives lower 
bound on LP value of original instance.



2√2 – 1 integrality gap 
algorithm

1. Divide all terminal-terminal costs by √2
2. Calculate initial MST(G[R])
3. For each full component K, in any order
 Contract terminal subset K to single pseudonode

and pay CK, if MST cost would drop by > CK

 Analysis idea: contracted instance at end 
of algorithm is MST-exact

 Also use fact MST ≤ 2 · OPT( P ) in final 
contracted instance



Better Bound in a Special Case

 A uniformly quasi-bipartite instance is one in 
which for every Steiner node, all
incident edges have the same cost

 For this special case the best approx algo
known has ratio 73/60 [Gröpl et al. ‘00]

 We get a 73/60 integrality gap bound
 Somewhat simpler proof of a stronger result
 Only class of instances where best known 

integrality gap matches best known approx ratio

c c

cc



Proof of the 73/60 bound

Cost-per-connection algorithm of Gröpl et al:
1. For each K in increasing order of CK/(|K|-1), 

A. If K forms no hypercycle w/ previous purchases,
 Purchase K.

 Analysis: Define a natural dual solution with 
cost equal to the algorithm’s output

 Dual is not feasible, but can prove it 
becomes feasible if scaled down by 73/60



Illustration of Proof Idea

 Algorithm selects bcde (has
min cost per connection, 20)

 Then it selects ab (c.p.c. 28)
 Dual solution in proof assigns

value 20 to {a, b, c, d, e} and
value 8 to {a, bcde}

 Dual load on full component K := abc is

b
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cost 15
edges

a

a

a

b

a

a

c

a

d

e



Future Work

 Apply LP technology for approx algorithms?
 Degree-bounded Steiner tree, Steiner forest,

prize-collecting Steiner tree, k-Steiner tree, … 
 Funny technical point in quasi-bipartite case:
 Forget usual “r-restricted full component” trick
 Can compute OPT of bidir and hence OPT ( P )
 Can we compute explicit primal opt of ( P ) ?
 Would save ε in quasibipartite approx ratio of [BGRS10]

 Better direct understanding of bidirected cut?
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