Hypergraphic LP Relaxations for

 Steiner Trees
IPCO 2010

Deeparnab Chakrabarty,
Jochen Könemann, wäeielio
David Pritchard

The Steiner Tree Problem

- Input: graph $(R \uplus N, E)$ with edge costs C_{e},
- R: required vertices or terminals
- N : optional vertices or Steiner nodes
- Output: subgraph ($\mathrm{R} \uplus \mathrm{N}, \mathrm{F}$) connecting R
- Objective: $\min \Sigma_{e \in F} \mathrm{C}_{\mathrm{e}}$
- NP-hard, APX-hard.
- Best approx alg has ratio 1.39 [BGRS10]

Summary

- Study LPs for the Steiner tree problem using full components as building blocks
- Give a new LP based on partitions
- It has same value as some previous LPs
- Directed cut and subtour formulations
- Show all are equivalent to bidirected cut formulation on quasibipartite instances
- Integrality gap bound of $\sqrt{ } 3 \sim 1.73$
- Also 73/60 ~ 1.22 on "uniformly quasi-bipartite"

Steiner Trees as Hypergraphs

4 hyperedges (subsets of R)

Full Component ~ Hyperedge,

 Steiner Tree ~ Hyper-Spanning Tree- Steiner trees are hypergraphs that are
- acyclic, connected, span R
- called hyper-spanning trees
- Overall approach:
- $\forall K \subset R$ let C_{K} be cheapest full component on K
- Then Steiner tree problem becomes special case of Min Cost Hyper-Spanning Tree
- Motivates hypergraph-based LPs

LPs Old and New

Hypergraphic Steiner tree relaxation

Subtour Relaxation [Warme 97]

- equality constraint
- every subset of R is fractionally acyclic

Directed Cut Relaxation [P-VD 03, B+10]

- direct full components
- every nontrivial cut fractionally spanned

Partition Relaxation [here, KPT09]

- every partition π is fractionally spanned rank(π)-1 times, counting multiplicity

MST special case

(size-2 full comps)
Matroid / Subtour LP
[Edmonds 1970]

Bidirected cut LP
[Edmonds 1967]

Partition LP
[Fulkerson 1971]

Partitions

- Partition of R : family $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{r}}\right\}$ of disjoint nonempty subsets of R (parts) with $U_{i} V_{i}=R$
- r: rank of π (number of parts)

- How do partitions, hyper-spanning trees interact?

Rank Contribution

- For hyperedge KV the rank-contribution

$$
\operatorname{rc}_{K}^{\pi}:=\mid\{\text { parts of } \pi \text { met by } K\} \mid-1
$$

- (Equal to rank lost by π if we merge all its parts intersecting K)
- For any hyper-

Solid partition π and dashed set K have $\mathrm{rc}_{K}^{\pi}=2$

$$
\sum_{K \in T} \mathrm{rc}_{K}^{\pi} \geq r(\pi)-1
$$

Hyperedge/Partition LP (\mathscr{P})

Variable x_{K} in $[0,1]$ for each hyperedge $K \subset R$ Inequality for each partition π of V :

$$
\sum_{K} x_{K} \mathrm{rc}_{K}^{\pi} \geq r(\pi)-1
$$

Objective: minimize $\Sigma C_{K} x_{K}$

- Main results:
- integrality gaps by dual fitting and MST-exactness
- equivalence theorems by partition uncrossing

Partition Uncrossing

- Prop. If constraints for partitions π, σ hold with equality, same holds for their meet \& join

Meet: intersect parts of π with parts of σ in all possible ways

Join: transitively join parts of π with parts of σ

Partition Uncrossing

- Proving Prop looks easy in that (\mathscr{P}) resembles a lattice polyhedron... but typical uncrossing approach fails on small examples
- We use a new partition uncrossing technique; it shows extreme duals are supported by a chain (non-crossing set)
- Implies extreme primal solutions have at most |R|-1 nonzeroes
- Spanning trees show $|\mathrm{R}|-1$ is tight

2 partitions that do not cross

LP Equivalences

immediate from hypergraph orientation results by Frank, Kiraly, Kiraly 2003

Quasibipartite Equivalence

- One LP equivalence still surprises me a lot
- In a quasibipartite instance, there are no edges connecting two Steiner nodes
- The bidirected cut relaxation for Steiner tree:
- introduce a variable x_{a} for each arc a (two per undirected edge in the input)
- pick any terminal as root (doesn't matter which)
- require all cuts from root to any other Steiner node to be crossed by x-value of ≥ 1

Quasibipartite Equivalence

- Previously studied hypergraphic LPs known to strengthen bidirected cut [P-VD 03]
- Thm. In quasi-bipartite instances, both LPs have the same value
- We found two proofs:
- implicit, using theorem about total unimodularity
- explicit algorithmic proof
- Both "lift" duals. Is there a more direct proof?

Integrality Gap $(\mathscr{P}) \leq \sqrt{ } 3 \sim 1.73$

- In other words, there is always a Steiner tree T with $\operatorname{cost}(\mathrm{T}) \leq \sqrt{ } 3 \cdot \mathrm{OPT}(\mathscr{P})$
- Integrality gap of 2 is trivial but until recently no better bound was known for any LP
- [BGRS10] got a 1.55 bound first via RZ algorithm
- We noticed different techniques give an "online" $\sqrt{ } 3$ bound. Give $2 \sqrt{ } 2-1 \sim 1.82$ in talk.
- Techniques: cost reduction [CDV08] and MST-exactness

MST-Exactness

- Suppose that for some Steiner tree instance, the minimum spanning tree MST(G[R]) of the terminal-induced subgraph is an optimal Steiner tree. (An MST-exact instance.)
- Thm. This tree is optimal for the LP (\mathscr{P}); i.e. $\operatorname{OPT}(\mathscr{P})$ is the optimal Steiner cost.
- Algorithmic leverage: reduce some costs to get an MST-exact instance; gives lower bound on LP value of original instance.

$2 \sqrt{ } 2-1$ integrality gap algorithm

1. Divide all terminal-terminal costs by $\sqrt{ } 2$
2. Calculate initial MST(G[R])
3. For each full component K , in any order

Contract terminal subset K to single pseudonode and pay C_{K}, if MST cost would drop by $>\mathrm{C}_{\mathrm{K}}$

- Analysis idea: contracted instance at end of algorithm is MST-exact
- Also use fact MST $\leq 2 \cdot \mathrm{OPT}(\mathscr{P})$ in final contracted instance

Better Bound in a Special Case

- A uniformly quasi-bipartite instance is one in which for every Steiner node, all incident edges have the same cost
- For this special case the best approx algo known has ratio 73/60 [Gröpl et al. ‘00]
- We get a 73/60 integrality gap bound
- Somewhat simpler proof of a stronger result
- Only class of instances where best known integrality gap matches best known approx ratio

Proof of the 73/60 bound

Cost-per-connection algorithm of Gröpl et al:

1. For each K in increasing order of $\mathrm{C}_{K} /(|\mathrm{K}|-1)$, If K forms no hypercycle w/ previous purchases, Purchase K.

- Analysis: Define a natural dual solution with cost equal to the algorithm's output
- Dual is not feasible, but can prove it becomes feasible if scaled down by $73 / 60$

Illustration of Proof Idea

- Algorithm selects bcde (has min cost per connection, 20)
- Then it selects ab (c.p.c. 28)
- Dual solution in proof assigns value 20 to $\{a, b, c, d, e\}$ and value 8 to $\{a, b c d e\}$

- Dual load on full component $\mathrm{K}:=\mathrm{abc}$ is
$\sum_{\pi} y_{\pi} \mathrm{rc}_{K}^{\pi}=20 \cdot 2+8 \cdot 1=48<\frac{73}{60} C_{K}=\frac{73}{60} 42$

Future Work

- Apply LP technology for approx algorithms?
- Degree-bounded Steiner tree, Steiner forest, prize-collecting Steiner tree, k-Steiner tree, ...
- Funny technical point in quasi-bipartite case:
- Forget usual "r-restricted full component" trick
- Can compute OPT of bidir and hence OPT (\mathscr{P})
- Can we compute explicit primal opt of (\mathscr{P}) ?
- Would save ε in quasibipartite approx ratio of [BGRS10]
- Better direct understanding of bidirected cut?

