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Abstract

We consider the max-weight integral multicommodity flow problem in trees. In this problem we are
given an edge-, arc-, or vertex-capacitated tree and weighted pairs of terminals, and the objective is to
find a max-weight integral flow between terminal pairs subject to the capacities. This problem is APX-
hard and a 4-approximation for the edge- and arc-capacitated versions is known. Some special cases are
exactly solvable in polynomial time, including when the graph is a path or a star.

We show that all three versions of this problems fit in a common framework: first, prove a counting
lemma in order to use the iterated LP relaxation method; second, solve a covering problem to reduce the
resulting infeasible solution back to feasibility without losing much weight. The result of the framework
is a 1 +O(1/µ)-approximation algorithm where µ denotes the minimum capacity, for all three versions.
A complementary hardness result shows this is asymptotically best possible. For the covering analogue
of multicommodity flow, we also show a 1+Θ(1/µ) approximability threshold with a similar framework.

When the tree is a spider (i.e. only one vertex has degree greater than 2), we give a polynomial-time
exact algorithm and a polyhedral description of the convex hull of all feasible solutions. This holds more
generally for instances we call root-or-radial.

1 Introduction

In the max-weight integral multicommodity flow problem (WMF), we are given an undirected supply graph
G = (V,E), terminal pairs (s1, t1), . . . , (sk, tk) where si, ti ∈ V , non-negative weights w1, . . . , wk and non-
negative integral capacities. We distinguish between three versions of the problem: in edge-WMF each edge
e ∈ E has a capacity ce; in arc-WMF each of the 2|E| directed arcs (u, v) with {u, v} ∈ E has a capacity
cuv; in vertex-WMF each vertex v ∈ V has a capacity cv. We allow si = ti only in the vertex-capacitated
setting, representing a path using just one vertex. The goal is to simultaneously route integral si-ti flows of
value yi, subject to the capacities, so as to maximize the weight

∑
wiyi.

The single-commodity versions (k = 1) of WMF is well-known to be solvable in polynomial time. If we
drop the integrality restriction the problem can be solved in polynomial time via linear programming for any
k. However, when integrality is required, even the 2-commodity unit-capacity, unit-weight arc- and edge-
versions are NP-complete — see Even, Itai, and Shamir [15]. Let n := |V |. Results [1, 20] on the edge-disjoint

paths problem show more strongly that arc-WMF is NP-hard to |E| 12−ε-approximate, and edge-WMF cannot

be approximated better than log
1

2
−ε(n) unless NP ⊂ ZPTIME(npolylog(n)).

An easier and significant special case of WMF is where the supply graph G is a tree, which we denote
by WMFT. Garg, Vazirani and Yannakakis [18] considered the unit-weight case of edge-WMFT and showed
APX-hardness even if G’s height is at most 3 and all capacities are 1 or 2; but on the positive side, they
gave a 2-approximate polynomial-time primal-dual algorithm. Garg et al. show that edge-WMFT can be
solved in polynomial time when G has unit capacity (using dynamic programming and matching) or is a
star (this problem is essentially equivalent to b-matching). The same methods show arc-WMFT with unit

∗A preliminary version appeared in Proc. 6th WAOA, pages 1–14, 2008.
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capacity, and all WMFTs on stars, are in P. The case where G is a path (so-called interval packing) is also
polynomial-time solvable [5, 8, 21], e.g. by linear programming since the natural LP has a totally unimodular
constraint matrix. Arc-WMF on unit-capacity bidirected trees admits a (53 + ε)-approximation algorithm
[13]. In general, the best result for edge- and arc-WMFT is a 4-approximation of Chekuri, Mydlarz and
Shepherd [8]. Vertex-WMFT has not been explicitly studied as far as we are aware, although we observe
that techniques of [8] yield a 5-approximation (see the appendix). Note that edge-WMF can be reduced to
vertex-WMF by subdividing each edge, moving that edge’s capacity onto the new vertex, and setting all
other vertex capacities to be infinite.

Results. Our first important technical contribution is to show that the iterated relaxation method [25,
34, 3, 16, 24, 4]) can be applied, yielding an integral solution with optimal value or better but exceeding edge
capacities additively — by +2 for edge-WMFT and by +6 for arc-WMFT and vertex-WMFT. A counting
lemma is what we use to show that iterated relaxation applies. In the words of Chekuri et al. [8] we show
for edge-WMFT that the “c-relaxed integrality gap” is 1 for c = 2; they conjectured it would hold for some
constant c.

We will use µ to denote the minimum capacity in the WMFT instance. When the minimum capacity µ
is Ω(log |V |), randomized rounding [12, 31] gives a 1 + O(log |V |/µ)-approximation for WMFT. Chekuri et
al. [8] anticipated moreover that WMFT becomes easier to approximate as the minimum capacity increases;
by plugging our iterated relaxation results into [8, Cor. 3.5] we get a 1+O(1/

√
µ)-approximation. Our first

main result improves the best approximation ratio for edge-WMFT when µ ≥ 2.

Theorem 1. For edge-WMFT, there are polynomial-time algorithms achieving (a) approximation ratio 3
for µ ≥ 2, and (b) approximation ratio (1 + 4/µ+ 6/(µ2 − µ)) for general µ ≥ 2.

Theorem 1 starts from the iterated relaxation method. Then, we decrease the additively-violating solution
towards feasibility, without losing too much weight. In particular for part (a) we use a theorem of Cheriyan,
Jordán and Ravi [9] which basically states that we can reduce the load of any tree flow by a factor of 2, while
keeping at least 1/3 of the weight. Part (b) relies on an auxiliary covering problem; every feasible cover,
when subtracted from the +2-violating edge-WMFT solution, results in a feasible edge-WMFT solution.
Jain’s iterated rounding algorithm [22] gives a 2-approximation for the auxiliary problem. Moreover, we use
a crucial property of Jain’s algorithm: its cost is even at most twice the best fractional solution; call this
property LP-relative1. Together, these pieces give the 1 +O(1/µ)-approximation algorithm.

The same framework is flexible enough to work in the settings of arc- or vertex-capacities:

Theorem 2. For arc-WMFT and vertex-WMFT, there are polynomial-time 1 + O(1/µ)-approximation al-
gorithms.

This theorem needs more involved counting lemmas. For the auxiliary covering problem we cannot use Jain’s
algorithm precisely, nonetheless we can use the counting lemmas a second time to show that iterated rounding
gives the needed LP-relative O(1)-approximation. Concurrently with preparation of this manuscript, a
max{2, 3− 2

µ}-approximation was found for arc-WMFT when all arcs have capacity exactly µ [28].
Rearranging our tools somewhat, we show that a similar phenomenon holds for WMFT-cover, which is

the problem of finding integral si-ti flows of value yi so as to minimize
∑

iwiyi and so that the amount of
flow through each edge/arc/vertex is at least its capacity.

Theorem 3. For WMFT-cover, with either edge, arc, or vertex capacities, there is a polynomial-time
1 +O(1/µ)-approximation algorithm.

It is natural to ask if the above results are best possible, asymptotically with respect to µ. We show that
this is indeed the case by extending Garg et. al’s proof that edge-WMFT is APX-hard.

Theorem 4. For some fixed ε > 0, for all µ ≥ 1, it is NP-hard to approximate WMFT or WMFT-cover
with edge, arc, or vertex capacities within ratio 1 + ε/µ, on instances with minimum capacity µ.

1The term “LP-relative” should depend on which LP relaxation we choose but in this paper we always mean the naive LP.
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Along the way, we show arc-WMFT and all three WMFT-cover problems are APX-hard even for unit
capacities.

Finally we extend the known frontier of tractable WMFT instances. A root-or-radial instance is one
in which, for some fixed root vertex, each commodity path either goes through the root, or has one of its
endpoints an ancestor of the other with respect to the root. For example, every spider instance, where only
one node has degree greater than 2, is root-or-radial.

Theorem 5. Root-or-radial edge-WMFT instances can be solved in strongly polynomial time.

Our proof of Theorem 5 is via a combinatorial reduction to bidirected flow [11]; the reduction also yields
a polyhedral characterization of the feasible solutions for root-or-radial instances. It is natural to ask if the
other variants we study behave similarly for root-or-radial instances and indeed, Theorem 5 holds for all 6
combinations of {arc, vertex, edge} capacities and {WMFT, WMFT-cover}. The case of arc capacities is
simple since the näıve LP is totally unimodular. The specific result that arc-WMFT ∈ P for spiders was
noted already by Erlebach & Vukadinović [14].

Related Work. Edge-WMFT appears in the literature under a variety of names including cross-free-cut
matching [18] in the unit-capacity case and packing of a laminar family [9]. One generalization is the demand
version [8] in which each commodity i is given a requirement ri and we require yi ∈ {0, ri} for each feasible
solution.

Arc- and edge-WMFT with unit capacities are equivalent to the weighted edge-disjoint paths (EDP)
problem on trees. The hardness results we mentioned of [1, 20] are in fact hardness results for EDP. For
fixed k, edge-EDP with at most k commodities is polynomial-time solvable by results of the graph minors
project. See e.g. [32, §70.5] for further discussion.

The extreme points of the natural LP for edge-WMFT arise frequently in the literature of LP-based
network design [8, 9, 13, 16, 17, 19, 22, 25, 34]. From this perspective, edge-WMFT is a natural starting
point for an investigation of how large capacities/requirements affect the difficulty of weighted network design
problems.

1.1 Formulation

For edge-WMFT, we define the commodities by a set of demand edges D = {{s1, t1}, . . . , {sk, tk}} on vertex
set V with a weight wd assigned to each demand edge d ∈ D; this is without loss of generality since the
supply graph and demand edges are undirected. (In the arc-capacitated case, D is a set of arcs.) Since we
discuss WMF only on trees, each commodity has a unique path along which flow is sent. For each demand
edge d, let its demand path pd be the unique path in G joining the endpoints of d. We thus may represent
a multicommodity flow by a vector {yd}d∈D where yd is the amount of commodity d that is routed (along
pd). Then a flow y is feasible for edge-WMFT if it satisfies y ≥ 0 and it meets the capacity constraints

∀e ∈ E :
∑

d:e∈pd

yd ≤ ce. (1)

The objective of edge-WMFT is to find a feasible integral y that maximizes w · y.
Later we will use the natural analogues of the above integer program for vertex- or arc-capacities, and

for WMFT-cover.

1.2 Overview of Paper

In Section 2 we give the general framework, which is needed to understand most of the rest of the paper,
and prove Theorem 1. In Section 3 we generalize to arc- or vertex-capacities, proving Theorem 2. In Section
4 we generalize to covering problems, proving Theorem 3. In Section 5 we give the proof of Theorem 4, the
matching hardness result. In Section 6 we prove Theorem 5, showing that root-or-radial instances are in P.
Concluding remarks and open problems appear in Section 7.
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2 Framework and Edge-WMFT Approximation

In this section we obtain a min{3, 1+4/µ+6/(µ2−µ)}-approximation algorithm for edge-WMFT, assuming
ce ≥ µ ≥ 2 for each edge e. The algorithm uses the iterated rounding paradigm [22] and its extension to
iterated relaxation [25]. We evolve the natural LP over iterations and ultimately develop an integral solution
which has weight at least as large as that of an optimal feasible fractional solution, but is infeasible due
to violating capacity constraints, albeit in a limited way. In Sections 2.1 and 2.2 we show how to compute
high-weight feasible solutions from this +2-violating solution.

The natural LP relaxation of edge-WMFT, which we denote by (F), is as follows:

maximize w · y over y ∈ R
D
≥0 subject to the capacity constraints (1). (F)

Any integral vector y is feasible for (F) iff it is a feasible multicommodity flow. We will use OPT to denote the
optimal value of the linear program (F). This program has a linear number of variables and constraints, and
thus can be solved in polynomial time. We now give a beginning ingredient of iterated rounding/relaxation.

Lemma 6. Let y∗ be an optimal solution to (F), define OPT = w · y∗, and suppose y∗d ≥ t for some d ∈ D
and some integer t ≥ 1. Reduce the capacity of each edge e ∈ pd by t and let OPT′ denote the new optimal
value of (F). Then OPT′ = OPT− twd.

Proof. Let z denote the vector such that zd = t and zd′ = 0 for each d′ 6= d. Then it is easy to see that
y∗ − z is feasible for the new LP, and hence OPT′ ≥ w · (y∗ − z) = OPT− twd. On the other hand, where
y′ denotes the optimal solution to the new LP, it is easy to see that y′ + z is feasible for the original LP; so
OPT ≥ OPT′ + twd. Combining these inequalities, we are done.

We now explain our approach in general terms. It is helpful if we can assume yd ≤ 1 holds for each
demand edge d, since this will give a good bound on the number of iterations. Indeed, this is without loss
of generality using the proof of Lemma 62. Hence we use (F1) from now on in place of (F):

maximize w · y over y ∈ [0, 1]D subject to the capacity constraints (1). (F1)

We iteratively build an integral solution to (F1) with value at least equal to OPT. The first step in each
iteration is to solve (F1), obtaining solution y∗. If y∗d = 0 for some demand edge d, then we can discard d
without affecting the optimal value of (F1). If y∗d = 1 for some d, then we can route one unit of flow along
pd and update capacities accordingly. By Lemma 6, the optimal LP value will drop by an amount equal to
the weight of the flow that was routed. If neither of these cases applies, we use the following lemma, whose
proof appears in Section 2.3.

Lemma 7. Suppose that y∗ is an extreme point solution to (F), and that 0 < y∗d < 1 for each demand edge
d ∈ D. Then there is an edge e ∈ E so that |{d ∈ D : e ∈ pd}| ≤ 3.

Our algorithm discards the capacity constraint (1) for e from our LP. We call this contracting e because the
effect is the same as if we had merged the two endpoints of e in the tree G. Pseudocode for our algorithm,
denoted IteratedFlowSolver, is given below.

Procedure IteratedFlowSolver

1: Set ŷ = 0

2: If D = ∅ terminate and return ŷ
3: Let y∗ be an optimal extreme point solution to (F1)
4: For each d such that y∗d = 0, discard d
5: For each d such that y∗d = 1, increase ŷd by 1, decrease ce by 1 for each e ∈ pd, and discard d
6: If neither step 4 nor 5 applied, find e as specified by Lemma 7 and contract e
7: Go to step 2

2In detail, start by computing an optimal y, then route bydc units of each commodity d and reduce the capacities accordingly.

The LP drop equals the profit of the routed flow, and the new LP has an optimum with y < 1.
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Assuming Lemma 7, we now prove the main properties of our iterated rounding algorithm: it runs in
polynomial time, it exceeds each capacity by at most 2, and it produces a solution of value at least OPT.

Property 8. IteratedFlowSolver runs in polynomial time.

Proof. In each iteration we decrease |D| + |E|, so polynomially many iterations occur. Since (F) and (F1)
can be solved in polynomial time, the result follows.

Property 9. The integral solution computed by IteratedFlowSolver violates each capacity constraint
(1) by at most +2.

Proof. Consider what happens to any given edge e during the execution of the algorithm. In each iteration
(and in the preprocessing of (F) to (F1)) the flow routed through e equals the decrease in its residual
capacity. If in some iteration, e’s residual capacity is decreased to 0, all demand paths through e will be
discarded in the following iteration. Thus if e is not contracted, its capacity constraint (1) will be satisfied
by the final solution.

The other case is that we contract e in step 6 of some iteration because e lies on at most 3 demand paths.
The residual capacity of e is at least 1, and at most one unit of flow will be routed along each of these 3
demand paths in future iterations. Hence the final solution violates (1) for e by at most +2.

Property 10. The integral solution computed by IteratedFlowSolver has objective value at least equal
to OPT.

Proof. When we contract an edge e we just remove a constraint from (F1), which cannot decrease the optimal
value of (F1) since it is a maximization LP. In every other iteration and in preprocessing, Lemma 6 implies
that the LP optimal value drops by an amount equal to the increase in w · ŷ. When termination occurs, the
optimal value of (F1) is 0. Thus the overall weight of flow routed must be at least as large as the initial
value of OPT.

2.1 Minimum Capacity µ = 2

As per Property 9, our iterated solver may exceed some of the edge capacities. When ce ≥ 2 for each edge
e we invoke the following theorem to produce a high-weight feasible solution.

Theorem 11. Suppose that ŷ is a nonnegative integral vector so that for each edge e, the constraint (1) is
violated by at most a multiplicative factor of 2 by ŷ. Then in polynomial time, we can find an integral vector
y′ with w · y′ ≥ (w · ŷ)/3, with 0 ≤ y′ ≤ ŷ, and such that y′ satisfies all constraints (1).

Proof. We use the following theorem from [9, Thm. 6], which we restate in our notation:

Theorem 12 (Cheriyan, Jordán, Ravi). Consider a tree T = (V,E) with nonnegative integral capacities
{ce}e∈E. Let I be a collection of paths in the tree so that for each edge e ∈ E, at most 2ce paths from I use
e. Let {wi}i∈I be nonnegative weights. Then there is an algorithm CJR with running time O(|V ||I|) to find
a set I ′ ⊆ I with w(I ′) ≥ w(I)/3, and such that for each edge e ∈ E, at most ce paths from I ′ use e.

Consider the special case of Theorem 11 when ŷ is 0-1. Let I = {d | ŷd = 1}, run CJR, and let y′ be the
characteristic vector of I ′. This proves Theorem 11 in this special case.

In general, break ŷ into two parts, an even part ŷ0 = 2bŷ/2c and an odd part ŷ1 = ŷ− ŷ0; and break the
capacities into two parts, c0e =

∑
d:e∈pd

ŷ0d, c
1
e = ce − c0e. For input (ŷ1, c1) to Theorem 11 we can efficiently

find the desired y′1 using the previous paragraph; for input (ŷ0, c0) to Theorem 11 we can simply take
y′0 = ŷ0/2; and one sees that y′ = y′0 + y′1 is a valid output for the original input (ŷ, c).

We now prove part (a) of Theorem 1.
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Proof of Theorem 1(a). Let ŷ be the output of IteratedFlowSolver. Since ce ≥ 2 for each edge e, and
since by Property 9 each edge’s capacity is additively violated by at most +2, Theorem 11 applies. Thus
y′ is a feasible solution to the edge-WMFT instance with objective value w · y′ ≥ w · ŷ/3 ≥ OPT/3, using
Property 10. Finally, since (F) is an LP-relaxation of the edge-WMFT problem, OPT is at least equal to
the optimal edge-WMFT value, and so y′ is a 3-approximate feasible integral solution.

2.2 Arbitrary Minimum Capacity

Given the infeasible solution ŷ produced by IteratedFlowSolver, we want to reduce ŷ so as to attain
feasibility, while losing as little weight as possible. For each edge e let fe = max{0,∑d:e∈pd

ŷd − ce}, i.e. fe
is the amount by which ŷ violates the capacity of e. By Property 9, f ≤ 2. Note now that a reduction z
with 0 ≤ z ≤ ŷ makes ŷ− z a feasible (integral) edge-WMFT solution if and only if z is a feasible (integral)
solution to the following linear program.

minimize w · z over z ∈ R
D
≥0 subject to z ≤ ŷ and ∀e ∈ E :

∑

d:e∈pd

zd ≥ fe. (Fc)

Notice that (Fc) is a covering analogue of (F) with upper bounds. Furthermore, Jain’s iterated rounding
framework [22] gives an LP-relative 2-approximation algorithm to find an optimal integral solution.

Theorem 13 (Jain [22]). There is a polynomial-time algorithm which, when (Fc) is feasible, returns an
integral feasible solution ẑ such that w · ẑ ≤ 2 ·OPT(Fc).

Proof sketch. Jain’s algorithm takes a set family and uncrosses it to get a laminar family, which has a tree
structure. Here, we have the tree structure directly. We sketch some of the remaining details. In each
iteration, we obtain an extreme point optimal solution z∗ to the linear program (Fc). We increase ẑ by
the integer part of z∗ and accordingly decrease the requirements f . If z∗d = 0, d is discarded. Finally if
0 < z∗ < 1, a lemma of Jain (see also a shorter proof in [26]) shows that some d∗ ∈ D has z∗d∗ ≥ 1/2. In
this case we increase ẑd∗ by 1 and update the requirements accordingly.

Here is how we use Theorem 13 to approximate edge-WMFT instances on trees.

Proof of Theorem 1(b). Notice that z = 2
µ+2 ŷ is a feasible fractional solution to (Fc) by the definition of f .

Hence, the optimal value of (Fc) is at most 2
µ+2 ŷ ·w. Thus the solution ẑ produced by Theorem 13 satisfies

ẑ ·w ≤ 4
µ+2 ŷ ·w, so ŷ− ẑ is a feasible solution to the edge-WMFT problem, with w · (ŷ− ẑ) ≥ (1− 4

µ+2 )ŷ ·w ≥
(1− 4

µ+2 )OPT. This gives us a 1/(1− 4
µ+2 ) = 1+ 4/µ+O(1/µ2) approximation algorithm for edge-WMFT.

To obtain the exact bound claimed in Theorem 1(b), we refine this slightly by taking a two-round
approach. In the first round we set fe to be the characteristic vector of those edges which ŷ violates by
+2, obtaining ŷ′ := ŷ − ẑ. Then ŷ′ has only +1 additive violation, and the same reasoning as before shows
ŷ′ · w ≥ (1 − 2

µ+2 )OPT. The second round analogously extracts from ŷ′ a solution with +0 violation, i.e. a

feasible solution, with weight at least (1− 2
µ+1 )ŷ

′ ·w. This gives approximation ratio 1/(1− 2
µ+2 )(1− 2

µ+1 ) =

1 + 4/µ+ 6/(µ2 − µ), as desired.

2.3 Proof of Lemma 7

First, we need the following simple inequality.

Lemma 14. Let T be a tree with n vertices and let ni denote the number of its vertices that have degree i.
Then n1 > (n− n2)/2.

Proof. Using the handshake lemma and the fact that T has n − 1 edges, we have 2(n− 1) =
∑

i i · ni. But∑
i i · ni ≥ n1 + 2n2 + 3(n − n1 − n2) = 3n − 2n1 − n2 and hence 2n − 2 ≥ 3n − 2n1 − n2. Solving for n1

gives n1 ≥ (n− n2 + 2)/2 as needed.
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Proof of Lemma 7. Since y∗ is a basic solution with 0 < y < 1, it follows that there exists a set E∗ ⊂ E of
edges with |E∗| = |D| such that y∗ is the unique solution to

∑

d∈D:e∈pd

yd = ce ∀e ∈ E∗. (2)

In particular, the characteristic vectors of the sets {d : e ∈ pd} for e ∈ E∗ are linearly independent.
Contract each edge of E\E∗ in (V,E), resulting in the tree T ′ = (V ′, E∗); call elements of V ′ nodes. We

now use a counting argument to establish the existence of the desired edge e within E∗. We call the two
ends of each d ∈ D endpoints and say that node v′ ∈ V ′ owns k endpoints when the degree of v′ in (V ′, D)
is k.

First, consider any node v′ ∈ V ′ that has degree 2 in T ′; let e1, e2 be its incident edges in T ′. If v′ owns
no endpoints then {d : e1 ∈ pd} = {d : e2 ∈ pd}, contradicting linear independence. If v′ owns exactly one
endpoint, the symmetric difference {d : e1 ∈ pd}4{d : e2 ∈ pd} consists of a single demand edge; but since
y∗ satisfies (2), 0 < y∗ < 1, and c is integral, this is a contradiction. Hence v′ owns two or more endpoints.

If there exists a leaf node v′ of T ′ that owns at most 3 endpoints then we are done, since this implies that
the edge of E∗ incident to v′, viewed in the original graph, lies on a most 3 demand paths. Otherwise, we
apply a counting argument to T ′, seeking a contradiction. Let ni denote the number of nodes of T ′ of degree
i. Then our previous arguments establish that the total number of endpoints is at least 4n1 + 2n2. Lemma
14 then shows that the total number of endpoints is more than 2(|V ′| − n2) + 2n2 = 2|V ′| > 2|E∗| = 2|D|.
This is the desired contradiction, since there are only 2|D| endpoints in total.

We remark that Lemma 7 is tight in the following sense: if we replace the bound |{d ∈ D : e ∈ pd}| ≤ 3
with |{d ∈ D : e ∈ pd}| ≤ 2, the resulting statement is false. An example of an extreme point solution for
which the modified version fails, due to Cheriyan et al. [9], is given in Figure 1.

Figure 1: An extreme point solution to (F). There are 9 edges in the supply graph, shown as thick lines;
each has capacity 1. There are 9 demand edges, shown as thin lines; the solid ones have value 1/2, and the
dashed ones have value 1/4. This is a tight example for Lemma 7 because each edge lies on at least three
demand paths.

2.4 Extreme Point Structure for Covering Problems

Later on, we will need to deal more explicitly with the covering LP relaxation (Fc). Hence at this point, we
show that the counting lemma for the packing problem (F) implies the same type of counting lemma for the
covering analogue.

Corollary 15 (Counting Corollary for Covers). Suppose that 0 < z∗ < 1 is a extreme point solution to
(Fc). Then there is an edge e ∈ E so that |{d ∈ D : e ∈ pd}| ≤ 3.

Proof. Being an extreme point is the same as saying that z∗ is uniquely defined by its support together
with a linearly independent set of tight edges whose capacity-covering constraints are satisfied exactly. Now
consider z∗ as a solution to the packing problem with the same capacities for tight edges, and non-tight
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capacities set to +∞. The same set of edges still have their capacity-packing constraints satisfied exactly,
these constraints remain linearly independent, and z∗ is clearly feasible (since for each constraint, it is either
tight, or it is a packing constraint with capacity +∞). Thus z∗ is an extreme point solution to (F) for the
new WMFT instance. Using Lemma 7 on this instance, we are done.

3 Vertex-WMFT and Arc-WMFT

The natural LP relaxation for edge-WMFT, given in Section 1.1, admits straightforward analogues for vertex-
and arc-WMFT: we replace constraint (1) with a vertex- or arc-capacity constraint. Let us denote these LPs
by vertex-(F) and arc-(F). Analogously to the methods of Section 2, the crux of our work can be performed
under the assumption that yd ≤ 1 for each d, so we similarly define vertex-(F1) and arc-(F1).

The key in our approaches to arc-WMFT and vertex-WMFT are analogues of Lemma 7. We defer their
proofs to Section 3.1 and Section 3.2.

Lemma 16 (Vertex-WMFT Counting Lemma). Suppose that y∗ is an extreme point solution to vertex-(F),
and that 0 < y∗d < 1 for each demand edge d ∈ D. Then there is a vertex v so that |{d ∈ D : v ∈ pd}| ≤ 7.

Lemma 17 (Arc-WMFT Counting Lemma). Suppose that y∗ is an extreme point solution to arc-(F), and
that 0 < y∗d < 1 for each demand edge d ∈ D. Then there is an arc a so that |{d ∈ D : a ∈ pd}| ≤ 7.

As with Corollary 15, these imply counting lemmas for the analogous covering LPs. Analogous to the
proof of Property 9, iterated relaxation yields:

Corollary 18. There is a polynomial-time algorithm which, when given a vertex-WMFT or arc-WMFT
instance, produces y such that w · y is at least as large as the optimum for the instance, and such that the y
is feasible when each capacity is increased by 6.

In order to proceed with our framework, we need an “LP-relative” O(1)-approximation for arc-WMFT-
cover and vertex-WMFT-cover (in place of Jain’s 2-approximation algorithm).

Corollary 19 (LP-Relative WMFT-Cover Approximations). There is a polynomial-time algorithm which,
when vertex-(Fc) is feasible, returns an integral feasible solution z such that w · z ≤ 7 · OPT(vertex-(Fc)),
and similarly for the arc-version.

Proof. The proof is analogous to the proof of Theorem 13, using Jain’s iterated rounding framework. It
suffices (say, for vertex-WMFT-cover) to show that any nonzero extreme point solution z∗ to vertex-(Fc)
has z∗d ≥ 1/7 for some d. If some z∗d ≥ 1 we are done. Otherwise by the vertex-analogue of Corollary 15,
some tight vertex v is on at most 7 demand paths; by tightness

∑
d:v∈pd

z∗d = fv ≥ 1. Thus some d with
v ∈ pd has z∗d ≥ 1/7, as needed.

We are almost at the main result of 1 + O(1/µ)-approximation algorithms for arc-WMFT and vertex-
WMFT. In particular for small µ, we will need a constant-factor approximation algorithm for vertex-WMFT.
In fact, an LP-relative 5-approximation can be obtained by adapting the 4-approximation algorithm for edge-
WMFT of Chekuri et al. [8]; we give details in the appendix. (Recall [8] also gives a 4-approximation for
arc-WMFT.) With this, we have the main result of this section; the proof is analogous to Theorem 1(b) but
we give a brief review for clarity.

Theorem 2. There are 1 + O(1/µ)-approximation algorithms for arc-WMFT and vertex-WMFT, for all
µ ≥ 1.

Proof. We prove the vertex-WMFT version; the arc version is analogous. We do not attempt to optimize
the constants. As in the proof of Theorem 1, it is no loss of generality to assume the additional constraints
yd ≤ 1, hence we work with vertex-(F1) instead of vertex-(F).

Corollary 18 gives us a solution y to vertex-(F1) with w · y ≥ OPT and such that y violates each vertex
capacity by at most +6. Let fv equal the amount by which the capacity for v is violated, or 0 if the capacity
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is not violated. Apply Corollary 19 to vertex-(Fc) for this choice of f and ŷ = y; we get a z such that
w · z ≤ 7 ·OPT(vertex-(Fc)). Moreover, y − z is feasible for vertex-(F1).

Just as before, it is easy to verify that 6
µ+6y is a feasible solution to vertex-(Fc). Hence we have

w · (y − z) ≥ w · y − 7 ·OPT(vertex-(Fc)) ≥ w · y − 7
6

µ+ 6
w · y ≥

(
1− 42

µ+ 6

)
OPT(vertex-(F1)).

For large µ, this implies that y is an 1+O(1/µ)-approximately optimal solution to the vertex-WMFT instance.
For small µ, we use the 5-approximation mentioned above. Combining these facts, we are done.

3.1 Counting Lemma for Vertex Capacities

Proof of Lemma 16. Call a vertex tight if
∑

d∈D:v∈pd
y∗d = cv. Using that y∗ is basic and 0 < y < 1, it

follows that there exists a set V ∗ ⊂ V of tight vertices with |V ∗| = |D| such that y∗ is the unique solution to

∑

d∈D:v∈pd

yd = cv ∀v ∈ V ∗. (3)

In particular, the characteristic vectors of the sets {d : v ∈ pd} for v ∈ V ∗ are linearly independent.
We now introduce several properties that hold without loss of generality (that is to say, without affecting

the fact that y∗ is the unique solution to Equation (3)). First, for each demand edge d = yz, we may assume
both y and z are tight, since otherwise we can replace d by y′z′ where y′ is the closest tight vertex to y on
pd and z′ is defined similarly (note, possibly y′ = z′). Second, every degree-1 vertex is tight, since we can
iteratively delete degree-1 vertices that are non-tight. Now, if v is a degree-2 vertex with neighbours u and
w, define contracting the vertex v to mean removing v from the graph and making u, w adjacent. Third,
every degree-2 vertex is tight, since we can iteratively contract degree-2 vertices that are non-tight.

Now we will apply a counting argument. Let ti denote the number of tight vertices of degree i, and ui

denote the number of non-tight vertices of degree i. So u1 = u2 = 0 and all other values are non-negative.
We give the high-level argument and then fill in the details. Say an edge uv of the supply graph is special
if both u and v are degree-2 (tight) vertices, and let s be the total number of special edges. We re-use the
notion from the proof of Lemma 7 that each demand edge d = yz has two endpoints, one owned by y and
the other owned by z. (I.e. the number of endpoints owned by v is equal to its degree in (V,D) where a loop
counts twice to the degree.) Let t≥3 =

∑
i≥3 ti and define u≥3 similarly.

Claim 20. The degree-2 tight vertices own at least 2s endpoints.

Claim 21. s ≥ t2 − (u≥3 + t1 + t≥3 − 1).

Claim 22. t1 > t≥3 + u≥3.

Given these claims, we combine them as follows. Count the number w of endpoints owned by degree-1
(tight) vertices; this value satisfies

w ≤ 2|V ∗| − 2s by Claim 20 and since |D| = |V ∗|
= 2(t1 + t2 + t≥3)− 2s

≤ 2(t1 + t2 + t≥3)− 2(t2 − (u≥3 + t1 + t≥3 − 1)) by Claim 21

= −2 + 4t1 + 4t≥3 + 2u≥3

< 8t1 − 2. by Claim 22

So w < 8t1, in particular there is some degree-1 tight vertex v which owns at most 7 endpoints. Clearly
|{d ∈ D : v ∈ pd}| ≤ 7, which completes the proof of Lemma 16. We now move on to the supporting claims.
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Proof of Claim 20. By definition of “special edge,” note that the special edges can be partitioned into
inclusion-maximal paths. Let v0, v1, . . . , vk be the vertices of one such path, i.e. suppose the edges vi−1vi
are special for 1 ≤ i ≤ k, so each vi is a degree-2 tight vertex. We will show that the vertices of the path
own at least 2k endpoints; then by adding over all paths it follows that the set of all degree-2 vertices own
at least 2s endpoints.

Define v−1 to be the neighbour of v0 which is not equal to v1 and define vk+1 similarly. For 1 ≤ i ≤ k,
say that a demand edge d = yz has a “left endpoint at vi” if one of y, z is equal to vi and vi−1 6∈ pd; define
right endpoints similarly. Notice that the number of endpoints owned by {vi | 0 ≤ i ≤ k} equals the total
number of left and right endpoints therein.

For each 1 ≤ i ≤ k, since the constraints (3) for tight vertices vi−1 and vi are linearly independent, there
is at least one demand path pd containing exactly one of vi−1 and vi. Since the vertex capacities are integral
and both are tight, in fact there are at least 2 demand paths containing exactly one of vi−1 or vi. Thus the
number of right endpoints at vi−1 plus the number of left endpoints at vi is at least 2. Adding over all k,
we are done.

Proof of Claim 21. Define T ′ to be the tree obtained from T by contracting all degree-2 tight vertices;
viewing this process in reverse, T can be obtained from T ′ by subdividing its edges. For each edge of T ′, if it
is subdivided x ≥ 1 times, that corresponds to a path of x− 1 special edges in T . Note T ′ has u≥3+ t1+ t≥3

vertices and thus u≥3 + t1 + t≥3 − 1 edges. Hence the number of special edges is at least

s ≥ t2 − (u≥3 + t1 + t≥3 − 1).

Proof of Claim 22. Using the handshake lemma (as in the proof of Lemma 14) we know that t1 = 2 +∑
i≥3(i − 2)(ti + ui), and the desired result follows.

(End of proof of Lemma 16.)

3.2 Counting Lemma for Arc Capacities

Proof of Lemma 17. Let |A∗| denote a maximum size linearly independent set of tight arcs, so |D∗| = |A∗|.
Whenever both uv and vu are non-tight, we contract the edge {u, v}. Furthermore, for each edge {u, v} such
that both uv and vu are tight, subdivide uv with a new vertex w so that cuw = cuv, cvw = cvu, and consider
uw and vw as tight instead of uv and vu. What results is a directed tree where every edge is tight in exactly
one direction. Its vertex set V ∗ satisfies |V ∗| = |A∗|+ 1.

In (V ∗, A∗) let n1 be the number of degree-1 vertices, n2 the number of degree-2 vertices, and n≥3 the
number of vertices of degree at least 3. Define an edge to be special if both endpoints have degree 2, as in
the proof of Lemma 16. Analogously to Claim 21, the number of special edges satisfies s ≥ n2−n1−n≥3+1.
Analogously to Claim 20, we have n1 > n≥3. We will show moreover that the degree-2 vertices own at most
2s endpoints; then we will be done since the number of endpoints owned by degree-1 vertices is at most

2|A∗| − 2s = 2(n1 + n2 + n≥3 − 1)− 2s ≤ 4n1 + 4n≥3 − 4 < 8n1.

To show that the degree-2 vertices own at least 2s endpoints, we proceed along the lines of the proof of
Claim 20. Take a sequence of vertices v0, v1, . . . , vk+1 in (V ∗, A∗) such that δ(vi) = 2 iff 1 ≤ i ≤ k. Call the
set of arcs between them P ; it is a path when ignoring directions, but P is not in general a dipath since the
orientations of arcs on P need not be consistent. The set P contains k − 1 special edges, and k + 1 edges
in total. We will show that the vertices {v1, . . . , vk} own at least 2k − 2 endpoints; then by adding over all
such P we will have shown that the degree-2 vertices own at least 2s endpoints.

For convenience we call arcs in P of the form vivi−1 leftwards, and other arcs rightwards. Now for any
demand arc d ∈ D∗ such that pd intersects P , either pd intersects only leftwards arcs or rightwards arcs; thus
call pd a leftwards or rightwards demand path correspondingly. Let there be r rightwards arcs and k+1− r
leftwards arcs in P . We will show, using linear independence arguments similar to ones made previously,
that {v1, . . . , vk} own at least 2r − 2 endpoints of rightward demand arcs and at least 2k − 2r endpoints of
leftward demand arcs, giving the desired result.
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Let vivi+1 and vjvj+1 with k ≥ j > i ≥ 0 be rightwards arcs of P such that all intermediate arcs of P
are leftwards (i.e., “consecutive” rightwards arcs). By linear independence there is at least one rightwards
demand path using exactly one of vivi+1 or vjvj+1; in fact since both arcs are tight with integral capacities
and y∗ is fractional, there are at least two such rightwards demand paths. This implies that the vertices
{vu}ju=i+1 own at least 2 endpoints of rightwards demand paths. By considering all possible choices of i, j it
follows that {v1, . . . , vk} own at least 2r− 2 endpoints of rightwards demand paths; an analogous argument
works for leftwards demand paths.

4 Approximating WMFT-Cover

Recall that edge-WMFT-cover is the problem of minimizing w ·z over z ∈ R
D
≥0 so that

∑
d:e∈pd

zd ≥ fe for all
e. Let µ denote the minimum covering requirement mine fe. Our framework also shows that edge-WMFT-
cover can be approximated within ratio 1 + O(1/µ) (and the same idea works for arc- and vertex-versions,
with worse constants). Note: WMFT-cover has no upper bounds on variables (unlike (Fc) for example)
and in fact it is not hard to see (using hardness results from the next section) such upper bounds would
preclude (1 +O(1/µ))-approximability.

Theorem 3. There is a (1 + 2/µ)-approximation algorithm for edge-WMFT-cover.

Proof. First, we need an iterated relaxation algorithm for edge-WMFT-cover. Let the naive relaxation of
edge-WMFT-cover be denoted by (F)-cover.

Corollary 23. There is a polynomial-time algorithm which produces z ≥ 0 such that w · z ≤ OPT(F)-cover
and ∀e ∈ E :

∑
d:e∈pd

zd ≥ fe − 2.

Proof. We use an analogue of IteratedFlowSolver together with the counting corollary for covers, Corol-
lary 15. In each iteration, if some yd = 0 or some yd ≥ 1, we reduce the problem. Otherwise some tight
edge lies on at most 3 demand paths. Since yd < 1 for each d, fe ≤ 2. We reset fe = 0 (i.e., discard the
constraint) and continue iterating. The usual analysis completes the proof.

To obtain Theorem 3, define f ′
e := fe+2 for each edge e and run the just-mentioned algorithm on f ′. The

output z is a feasible solution to the original instance. Moreover, if z∗ is an optimal solution to the original
(F)-cover, then (1 + 2/µ)z∗ is a feasible fractional solution to the new LP. Hence w · z, which is at most the
optimum of the new (F)-cover, is at most (1 + 2/µ) times the optimum of the original (F)-cover.

5 Hardness of Approximation

The goal of this section is to establish that no approximation ratio asymptotically better than 1+O(1/µ) is
possible for the arc, vertex, or edge-versions of WMFT (resp. WMFT-cover) even if all profits (resp. costs)
are unit; we use MFT in place of WMFT to indicate that all weights/profits are unit. All of our reductions
are modeled closely off of a construction of Garg et al. [18, Thm. 4.2], which they used to show that edge-
MFT is APX-hard. Since we use and adapt it so much, it is useful to review it here, in a slightly simpler
form.

Theorem 24 (Garg, Vazirani & Yannakakis [18]). Edge-MFT is APX-hard.

Proof. The reduction is from 3-bounded maximum three-dimensional matching (MAX 3DM–3); an instance
consists of three disjoint sets X,Y, Z and a family S ⊂ X × Y × Z of triples such that each element is in at
most 3 triples. The objective is to find a maximum-size disjoint set of triples from S. We let n = |S| and it
is not hard to see |X |, |Y |, |Z| ≤ n without loss generality.

Kann [23] showed that MAX 3DM–3 is MAXSNP-complete, hence by the PCP theorem, for some δ > 0
it is NP-hard to approximate it within a ratio of 1 + δ. A greedy argument easily shows the optimal value
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of MAX 3DM–3 is always at least n/7. Hence it is NP-hard to additively approximate MAX 3DM–3 within
nδ/7.

Here is the reduction. On input X,Y, Z, S our tree has a root r, a first level of nodes adjacent to r in
bijection with X ∪ Y ∪ Z, and a second level of size 2n. We abuse notation and let x ∈ X stand both for
an element of X and the corresponding node in the first level of the tree, and similarly for Y, Z. Then,
denoting3 the triples S as {si = (xi, yi, zi)}ni=1, for each i the tree has two nodes pi, qi adjacent to node
yi. The edges between r and Y have capacity 2 and all other edges have capacity 1. Finally, the set of
demands is D = {(xi, pi), (pi, qi), (qi, zi) | 1 ≤ i ≤ n}. This completes the edge-MFT instance description;
we illustrate in Figure 2.

r

1

x

1

x′

2

y

2

y′

1

z

1

z′

1

p1

1

q1

1

p2

1

q2

1

p3

1

q3

Figure 2: Illustration of the reduction; here X = {x, x′} (similarly for Y, Z) and the triples are
(x, y, z), (x, y′, z′), (x′, y′, z′). The tree is denoted by thick edges with capacities shown on each edge, whereas
the demands are dashed thin lines.

Claim 25. We can convert a set of t disjoint triples in S to a feasible multicommodity flow of value n+ t
in polynomial time, and vice-versa.

Thus the optimal value of the MFT instance is n more than the optimal value of the 3DM instance.

Proof. First, consider a set of disjoint triples, denoted {si | i ∈ I} for some I ⊂ {1, . . . , n}. For i ∈ I assign
unit flow to demands (xi, pi) and (qi, zi); for i 6∈ I assign unit flow to demand (pi, qi); assign zero to all other
flows. Then it is easy to verify the resulting multicommodity is feasible, and since it assigns a total amount
2|I|+ (n− |I|) = n+ |I| of flow, giving the forwards direction of the proof.

Now we consider the reverse direction, converting an optimal multicommodity flow to a disjoint collection
of triples. For each i, since the edges incident to pi and qi have unit capacity, the demands given a unit of flow
are either a subset of {(xi, pi), (qi, zi)}, or (pi, qi). In case at most one of these three commodities is routed,
we can change it to just (pi, qi) without violating any edge capacities. Hence WOLOG the routed demands
for triple i are either (xi, pi) and (qi, zi), or just (pi, qi). Then the argument of the previous paragraph can
be reversed, completing the proof.

3In our notation, xi is simply the member of X in the ith triple, so xi = xj does not imply i = j.
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With Claim 25 we are now basically done. We know it is NP-hard to additively approximate MAX 3DM–
3 within nδ/7, and consequently that the edge-MFT instance is NP-hard to additively approximate within
the same threshold. Moreover, the edge-MFT optimum is at most 2n. So it is NP-hard to multiplicatively
approximate edge-MFT within ratio 1 + δ/14.

Now we give the trick to treat asymptotic hardness of edge-MFT depending on minimum capacity; we
deal with the other problems afterwards.

Theorem 26. For some ε > 0, for all positive integers µ, it is NP-hard to approximate edge-MFT with ratio
1 + ε/µ, even restricted to instances where all capacities are at least µ.

Proof. Let (V,E) denote the tree in the construction of the proof of Theorem 24; it satisfies |E| = |X | +
|Y |+ |Z|+2n ≤ 5n. To obtain a lower bound µ on capacity, we perform the following for each edge uv ∈ E:
(1) add a new leaf u′ and a new edge uu′ to the tree; (2) add a new demand edge u′v to D; (3) increase the
capacity of uv by µ and set the capacity of uu′ to be µ.

Any solution y to the modified MFT instance can be altered so that yu′v = µ for each new demand edge
u′v, without reducing its objective value: repeatedly increase yu′v by 1 and reduce the value of any other flow
through uv by 1. It then follows that the optimal value of the modified instance is t+n+µ|E|. Furthermore,

since t+n+µ|E| ≤ (5µ+2)n, approximating the MFT instance to a ratio less than 1+ nδ/7
(5µ+2)n = 1+Θ(1/µ)

is NP-hard.

As claimed in the introduction, the same result as Theorem 26 holds for covering variants, and/or with
arc- or vertex-capacities. In the rest of the section we show the ideas needed to prove all of these variants.

Vertex-MFT. Hardness follows immediately from the edge-MFT hardness, using the subdividing trick
in the introduction, and giving non-subdivision nodes infinite capacity.

Whereas edge-WMFT and vertex-WMFT are polynomial-time solvable [18] if all c are equal to 1, our
reductions for the other four versions will show they are APX-hard for c = 1.

Arc-MFT. To get APX-hardness we use the same construction as before, except now the directed de-
mands are {(xi, pi), (qi, pi), (qi, zi)}i, and all capacities are unit. As before, any flow can be converted without
loss into one which either routes (qi, pi) or both of (xi, pi), (qi, zi). The trick to get 1 + Ω(1/µ) hardness is
basically the same as before except we add a new leaf u′ for each arc, not just for each edge.

Edge-MFT-Cover. Here we reduce from 2-regular minimum three-set cover : given a collection of triples
on a ground set X , where each x ∈ X appears in exactly 2 triples, find a min-size subcollection whose union
is the whole ground set. This problem is the same as vertex cover in cubic graphs, for which a 100

99 hardness
ratio is known [10]. The neighbours of the root in the tree correspond the ground set; and for the ith triple
{xi, x

′
i, x

′′
i } we add two children pi, qi to x′

i, with D = {(xi, pi), (pi, qi), (qi, x
′′
i )}i. We then use the same sort

of arguments as before to get APX-hardness (details also appear in [29]) and 1 + Ω(1/µ)-hardness for all
µ ≥ 1.

Vertex-MFT-Cover. To get APX-hardness with unit capacities, we use edge-MFT-cover hardness, and
simply subdivide each edge by a new node. The case of higher µ is straightforward, by giving each vertex a
new twin, and adding a commodity joining each vertex to its twin.

Arc-MFT-Cover. This reduction is somewhat different than the others so we express in more detail;
we could not find any extremely simple proof. A graph is properly 3-edge-coloured if we are given a map
E → {red, green, blue} with at most one edge of each colour incident at each vertex.

Proposition 27. The following problem is APX-hard: find a minimum vertex cover in a properly 3-edge-
coloured graph.

Proof. We start from APX-hardness of vertex cover in cubic graphs. Every cubic graph (V,E) has an
improper 3-edge-colouring with at most 2 edges per colour at each vertex (e.g., take a greedy proper 5-
edge-colouring and coalesce colour classes). Let U ⊂ V denote those vertices which are improper under this
colouring. For each vertex v ∈ U , replace it via the transformation depicted in Figure 3. This gives a new
properly 3-edge-coloured graph G′.
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v

red blue blue red blue blue

green red

v2 v3

v1

Figure 3: In (a) we see a node where the 3-edge-colouring is not proper. We replace it with the configuration
in (b). It can be used for APX-hardness reduction since any vertex cover of the new graph can be modified
without a size increase to either contain just v1, or v2 and v3, out of the vi’s.

If τ denotes the minimum size of a vertex cover, we claim τ(G)+ |U | = τ(G′). To see this, first note that
for any vertex cover X ⊂ V of G, the set X ′ := X\U ∪ {v1 | v 6∈ U} ∪ {v2, v3 | v ∈ U} is a vertex cover of
G′. Likewise, for any vertex cover X ′ of G′, without increasing its size we may assume that for each v ∈ U ,
either X ′∩{v1, v2, v3} equals {v1} or it equals {v2, v3}; then the map X → X ′ can be reversed and it clearly
yields a vertex cover of G of size |X ′| − |U |.

Since the above reductions are polynomial-time, and since τ(G) ≥ |V |/3 ≥ |U |/3, we find that a (1 + ε)-
approximation algorithm for τ on the family of graphs G′ implies a (1 + 4ε)-approximation algorithm for τ
on the family of graphs G. By APX-hardness of the latter, we are done.

Now, the problem established as APX-hard in Proposition 27 is isomorphic to the following special case of
set cover: 3-dimensional (the ground set is 3-coloured as X]Y ]Z and no set contains two similarly-coloured
elements) 2-regular (every ground set element appears in exactly 2 sets) set cover with all sets of size 2 or
3. From here we will proceed very similarly to the arc-MFT construction.

Specifically, define the nodes r, xi, yi, zi, pi, qi as before (sets of size 2 not containing a Y element do not
entail nodes pi, qi). For a set {xi, yi, zi} of size 3 the commodities are {(xi, pi), (qi, pi), (qi, zi)}i as before; for
sets of size 2 the commodities are respectively {(xi, zi)}, or {(xi, pi), (qi, pi), (qi, r)}, or {(r, pi), (qi, pi), (qi, zi)}
when there is no element from Y , or Z, or X . Additionally, since none of these commodities can cover the
arcs of the forms (r, xi), (yi, qi), (pi, yi), (zi, r) we also introduce one commodity for each such arc. Finally,
standard analysis establishes that arc-MFT-cover is APX-hard on this family of instances (in particular it’s
important that the last set of commodities has linear cardinality in proportion to the optimum, which is due
to the O(1)-regularity). Finally, from here 1 + Ω(1/µ)-hardness for minimum capacity µ follows from the
standard argument.

6 Exact Solution for Spiders

In this section we show that edge-WMFT can be exactly solved in polynomial time when the supply graph is
a spider. (A spider is a tree with exactly one vertex of degree greater than 2.) Call the vertex of degree ≥ 3
the root of the spider. Call each maximal path having the root as an endpoint a leg of the spider. Observe
that in edge-WMFT when (V,E) is a spider, each demand path pd either goes through the root, or else lies
within a single leg. We generalize this observation into the following definition.

Definition 28. Consider an instance of edge-WMFT on graph (V,E). With respect to a chosen root vertex
r ∈ V , a demand edge d is said to be

root-using, if r is a vertex of pd;
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radial, if it is not root-using and one endpoint of d is a descendant of the other with respect to root r.

The instance is root-or-radial if there exists a choice of r ∈ V for which every demand edge is either root-
using or radial.

So for example spider instances are always root-or-radial. Nguyen [27] showed that edge-WMFT instances
where all demand paths are root-using can be solved via matching.

We will give a general framework to exactly solve WMFT and its variants on root-or-radial instances. We
first treat the simpler case of arc capacities. Note, Erlebach & Vukadinović [14] already proved the special
case of Proposition 29 for arc-WMFT in spiders, using the same reduction; we discovered this fact only after
re-discovering the reduction independently.

Proposition 29. Arc-WMFT and arc-WMFT-cover for root-or-radial instances can be solved exactly in
polynomial time.

Proof sketch. We make two copies of the the tree, one directed out from r, and one directed in to r. For
v ∈ V (T ) let vin, vout be its respective copies, and merge rin and rout; note the original bidirected tree’s arcs
correspond to the arcs of the new directed tree T ′. Now we build a circulation instance. For definiteness say
we are solving an arc-WMFT instance; arc-WMFT-cover is similar. Each old arc retains its capacity as an
upper bound, with no cost and lower bound 0. If d = (u, v) is root-using, introduce an arc from vout to uin.
For a radial demand edge, say from u to v with u an ancestor of v (the other case is similar), we introduce
an arc from vout to uout. We illustrate in Figure 4.

r r r

Figure 4: Left: the undirected tree for the instance. Center: the bidirected tree Tb. Right: the tree T ′.
The arcs of Tb and T ′ are coloured to show their bijection to one another. We show an out-radial demand
(dashed) and a root-using demand (dotted), which correspond to dipaths in T ′.

In either case the new arc gets cost wd, no upper bound and lower bound 0. Then it is easy to see a
max-cost circulation corresponds to a maximum flow in the original instance.

We observe that the same reduction makes it clear that the näıve LP relaxation is a network matrix and
hence totally unimodular [32, §13.3].

We now move on to the more challenging case of edge-capacities; vertex-capacities will be similar but
a little more complex. Bidirected flows were introduced by Edmonds and Johnson [11] and are a common
generalization of matching and flow. Bidirected flow problems can be solved via a combinatorial reduction to
b-matching (e.g., see [32]) which increases the instance size by a constant factor. We now present a reduction
from root-or-radial edge-WMFT to bidirected flow.

A bidirected graph is an undirected graph together with, for each edge e and each of its endpoints v ∈ e,
a sign σv,e ∈ {−1,+1}. Thus an edge can have two negative ends, two positive ends, or one end of each type;
these are respectively called negative edges, positive edges, and directed edges. We will speak of directed
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edges as having the +1 end as their head and −1 end as their tail. An instance of max-weight bidirected
flow (with upper and lower bounds) is an integer program of the following form.

maximize
∑

e∈E

πexe (4)

∀v ∈ V : av ≤
∑

e3v

σv,exe ≤ bv (5)

∀e ∈ E : `e ≤ xe ≤ ue (6)

x integral (7)

When a = b = 0 and all edges are directed, (4)–(7) becomes a max-weight circulation problem; when all
edges are positive and a = 0, (4)–(7) becomes a b-matching problem. We now describe the reduction.

Proof of Theorem 5. Let r denote the root vertex, i.e., assume every demand edge is either radial or root-
using with respect to r. We construct a bidirected graph whose underlying undirected graph is (V,E ∪D).
Make each edge e ∈ E directed, with head pointing towards r in the tree (V,E). We make each root-using
d ∈ D a positive edge; we make each radial d ∈ D a directed edge, with head pointing away from r. See
Figure 5 for an illustration.

r

Figure 5: A root-or-radial edge-WMFT instance. The tree graph (V,E) is depicted using thick lines, and
the demand edges D are thin. Radial demand edges are dashed and root-using demand edges are solid. The
root is r. An arrowhead denotes a positive endpoint, while the remaining endpoints are negative; these signs
correspond to the reduction in the proof of Theorem 5.

Set ar = −∞, br = +∞ and av = bv = 0 for each v ∈ V \{r} in the bidirected flow problem (4)–(7),
i.e. we conserve flow except at r. For each demand edge d ∈ D, call C(d) := {d}∪ pd the demand cycle of d.
For a set F let χF denote the characteristic vector of F . Our choices of signs for the endpoints ensure that
for each demand cycle C(d), its characteristic vector x = χC(d) satisfies the flow conservation constraint (5).
Moreover, any linear combination of these vectors is easily seen to satisfy (5), and the following converse
holds.

Claim 30. Any x satisfying (5) is a linear combination of characteristic vectors of demand cycles.

Proof. Let x′ = x−∑
d xdχ

C(d), and observe that x′ also satisfies (5). Moreover, as each particular demand

edge d∗ occurs only in one demand cycle, namely C(d∗), we have x′
d∗ = xd∗ −∑

d xdχ
C(d)
d∗ = xd∗ − xd∗ = 0

for each d∗ ∈ D. In other words, x′ vanishes on D.
Now consider any leaf v 6= r of G and its incident edge uv ∈ E. Since x′ satisfies (5) at v and x′ is zero

on every edge incident to v except possibly uv, we deduce that xuv = 0. By induction we can repeat this
argument to show that x′ also vanishes on all of E, so x′ = 0. Then x = x′ +

∑
d xdχ

C(d) =
∑

d xdχ
C(d),

which proves Claim 30.
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By Claim 30, we may change the variables in the optimization problem from x to instead have one
variable yd for each d ∈ D; the variables are thus related by x =

∑
d ydχ

C(d). In the bidirected optimization
problem, set `e = 0, ue = ce for each e ∈ E, and `d = 0, ud = +∞ for each d ∈ D. Rewriting (6) in terms
of the new variables gives precisely the capacity constraints (1) (and nonnegativity constraints). In other
words, feasible integral flows x correspond bijectively to feasible integral solutions y for the edge-WMFT
instance. Setting πd = wd for d ∈ D and πe = 0 for e ∈ E, the objective function of (4) represents the
weight for y, completing the reduction.

As mentioned earlier, this bidirected flow problem can in turn be reduced to a b-matching problem with
a constant factor increase in the size of the problem. Using the strongly polynomial b-matching algorithm
of Anstee [2], the proof of Theorem 5 is complete.

6.1 Edge-WMFT Polyhedron for Root-or-Radial Instances

The reduction used in the proof of Theorem 5 can also be used to derive the following polyhedral character-
ization; note that it is independent of which vertex is the root.

Theorem 31. The convex hull of all integral feasible solutions in a root-or-radial edge-WMFT problem has
the following description:

yd ≥ 0, ∀d ∈ D (8)
∑

e∈pd

yd ≤ ce, ∀e ∈ E (9)

∑

d∈D

ydb|pd ∩ F |/2c ≤ bc(F )/2c, ∀F ⊂ E with c(F ) odd (10)

Proof. It is obvious that constraints (8) and (9) are valid. To see that the constraint (10) is valid, notice
that it can be obtained as a Chvátal-Gomory cut: give coefficient 1/2 to each constraint (9) for e ∈ F . This
establishes necessity, and the rest of the proof will establish sufficiency of the constraints (8)–(10).

Our starting point is the following polyhedral characterization, which appears as Cor. 36.3a in Schrijver
[32], and deals with the special case of bidirected flow when a = b and ` = 0.

Proposition 32. Let σ denote the signs of a bidirected graph. The convex hull of the integer solutions to

∀e ∈ E : 0 ≤ xe ≤ ue ∀v ∈ V :
∑

e3v

σv,exe = bv (11)

(i.e. the convex hull of all feasible integral bidirected flows) is determined by Equation (11) together with the
constraints

x(δ(U)\F )− x(F ) ≥ 1− u(F ) (12)

where U ⊆ V and F ⊆ δ(U) with b(U) + u(F ) odd.

In order to apply Proposition 32 to the construction in the proof of Theorem 5, we set ar = br = 0 and
add a loop at r with both of its endpoints negative. Further, we change the definition of C(d) to include
this loop whenever d is a root-using demand edge; then it is not hard to show that, just as before, feasible
bidirected flows x correspond bijectively to feasible multicommodity flows y.

Now apply Proposition 32 to the construction. Recall that the edge set of the bidirected graph is D∪E.
Since ud = +∞ for d ∈ D, the constraint (12) is vacuously true unless F ⊂ E. Furthermore, recall that b
is the all-zero vector and ue = ce for e ∈ E. Rearranging, we obtain the following description of the convex
hull of all integral feasible bidirected flows:

∀e ∈ E : 0 ≤ xe ≤ ce ∀d ∈ D : 0 ≤ xd ∀v ∈ V :
∑

e3v

σv,exe = 0 and

x(F ) − x(δ(U))/2 ≤ (c(F )− 1)/2 for U ⊆ V, F ⊆ E ∩ δ(U), c(F ) odd
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Rewriting in terms of the y variables, and collecting like terms, yields

∀d ∈ D : 0 ≤ yd ∀e ∈ E :
∑

e∈pd

yd ≤ ce and (13)

∑

d

yd(|pd ∩ F | − |C(d) ∩ δ(U)|/2) ≤ (c(F )− 1)/2 for U ⊆ V, F ⊆ E ∩ δ(U), c(F ) odd (14)

For any fixed choice of F ⊆ E, let U∗
F ⊆ V be the unique set such that δ(U∗

F ) ∩ E = F and r 6∈ U∗
F . We

claim that for this F , constraint (14) is tightest for U = U∗
F . To see this, note first that |C(d) ∩ δ(U)|

is always even (since in traversing the cycle C(d), we enter U as many times as we leave); second, that
|C(d) ∩ δ(U∗

F )|/2 = d|pd ∩ F |/2e; third, that for any other U ′ such that F ⊆ δ(U ′), |C(d) ∩ δ(U ′)|/2 is an
integer greater than or equal to |pd ∩ F |/2.

Hence, there is no loss of generality in assuming U = U∗
F in constraint (14). Rewriting, it becomes

∑

d

yd(|pd ∩ F | − d|pd ∩ F |/2e) ≤ (c(F )− 1)/2 for c(F ) odd;

finally, since t = bt/2c+ dt/2e for all integers t, the theorem follows.

6.2 Covering and Vertex-Capacitated Variants

By using lower-bounds instead of upper-bounds on arcs, we can modify the above construction to get a
polynomial-time algorithm, and explicit LP, for edge-WMFT-cover. Moreover, vertex-WMFT and vertex-
WMFT-cover also fall in this framework. To see this, move the capacity of each node in V \{r} onto its parent
edge and move the capacity of r on to the loop at r. For each radial demand d = (u, v) if u is an ancestor of
v (resp. vice-versa), change the demand to (parent(u), v) (resp. (u, parent(v))). The key observation now is
that for each demand, the vertices that its demand path previously passed through correspond to the arcs
in C(d)\{d}.

6.3 Applications of Exact Formulations

Interestingly, results of Garg et al. [18, ICALP version] show that (8)–(10) is also integral in unit-capacity
edge-WMFT. In fact they show that an intermediate LP between the naive one and (8)–(10) is integral (one
requiring (10) only for subsets of edges forming a star of odd size). Tangentially, we observe their results
imply a good approximation for another special case of edge-WMFT.

Proposition 33. There is a 3/2-approximation algorithm for edge-WMFT when all edges have the same
capacity.

Proof. Let µ be the common capacity. Note that if we scale all the capacities down to unit, the optimal
fractional solution goes down by a µ factor. Moreover, any integral unit flow can be scaled up by a factor
µ to give a feasible flow for capacities µ. Thus, it is enough to show that for unit capacities, the optimal
integral flow has at least 2

3 the value of the optimal fractional flow, since unit-capacity instances can be
solved in polynomial time.

To prove this, we show that any fractional flow for unit capacities, when scaled down by 2
3 , gives a convex

combination of integral flows. In other words, we must show a solution meeting (8) and (9) can only violate
(10) by a 3

2 factor, when c = 1. First, (10) is vacuous for |F | = 1. For other odd |F | ≥ 3, (9) implies∑
d∈D ydb|pd ∩ F |/2c ≤ |F |/2. Since |F |

2 ≤ 3
2b

|F |
2 c for odd |F | ≥ 3, we are done.

It is possible to synthesize our Theorems 5 and 31 with corresponding results of [18] for the unit-capacity
case, by “gluing” root-or-radial instances at capacity-1 edges. Suppose for every pair of vertices with degree
≥ 3, their path contains a capacity-1 edge. Then we find again that (8)–(10) is integral. Since this result is
pretty esoteric we omit the details.

18



7 Closing Remarks

Caprara and Fischetti [6] gave a strongly polynomial-time algorithm to separate over the family (10) of
inequalities. Is the polyhedral formulation (8)–(10) useful in designing a better approximation algorithm for
edge-WMFT? One roadblock is that normal uncrossing techniques seem to fail on that LP.

There is a close relation between WMFT and its “demand” version where every flow variable is restricted
according to yd ∈ {0, rd} for some constants {rd}d∈D. E.g., combining IteratedFlowSolver and Cor.
3.5 of [8], we obtain a 1 + O(

√
rmax/µ) approximation for demand WMFT where rmax is the maximum

demand. Shepherd and Vetta [33] showed that when the tree is a star, the O(rmax)-relaxed integrality gap
of the demand analogue of (F) is 1, and this approach extends to an approximation algorithm with ratio
1+O(rmax/µ) [30] for demand WMFT on stars (also known as the demand matching problem [33]). It would
be interesting to investigate similar results on arbitrary trees.

Demand WMFT-cover falls in a general framework [7] wherein LP-relative approximation can be reduced
to LP-relative approximation of two special cases: the non-demand version, and the priority version.

When every edge has capacity 1, edge-WMFT is exactly solvable [18], and Theorem 1(a) gives a 3-
approximation when there are no capacity-1 edges. Can we combine these results to improve upon the
4-approximation by Chekuri et al. [8] for general instances?

A sensible generalization of the problems we have considered is {arc, vertex}-WMFT, where there are
capacities on both arcs and vertices. The method of Chekuri et al. [8] gives a constant-factor approximation
for this problem, however we were not able to derive a counting lemma (like Lemma 7) in this case, and
consequently we are not sure if a 1 +O(1/µ)-approximation exists.
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A Approximation for Vertex-WMFT

Proposition 34. There is a 5-approximation algorithm for vertex-WMFT.

Proof. We assume the reader is familiar with the approach in [8]. Now redefine Binned Tree Colouring so
that we must respect vertex capacities instead of edge capacities, and where we change the limit on the
number of bins at a leaf vertex v to nv ≤ cv.

Now we claim that [8, Thm. 2.2] holds with 5k colours instead of 4k. The main thing to check is that we
can complete the partial colouring returned by the recursive call — checking these details pertains to the
last paragraph of their proof. A demand edge e joining vi and vj cannot use

• any colour already assigned within e’s bin at vi, of which there are less than 2k

• any colour already assigned within e’s bin at vj , of which there are less than 2k

• any colour which is already assigned to cv edges passing through v, of which there are less than k,
since at most k · cv edges pass through v.

Hence one of the 5k colours is still available for colouring of e, as needed.
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