Algorithms \& LPs for k-Edge Connected Spanning Subgraphs

David Pritchard (f)f
 ÉCOLE POLYTECHNIQUE
 FÉDÉRALE DE LAUSANNE

September 102010

k-Edge Connected Graph

- k edge-disjoint paths between every u, v
- at least k edges leave S, for all $\varnothing \neq S \subsetneq \vee$
- even if ($k-1$) edges fail, G is still connected

k-ECSS \& k-ECSM Optimization Problems

k-edge connected spanning subgraph problem (k-ECSS): given an initial graph (maybe with edge costs), find kedge connected subgraph including all vertices, $\mathrm{w} /|E|$ (or cost) minimal
k-ecs multisubgraph problem (k-ECSM): can buy as many copies as you like of any edge

G

multisubgraph of G, |E|=9

Question

What is the approximability of min-cost k-edge-connected spanning subgraph and k-edge-connected spanning multisubgraph?

- How does it depend on k?
- Also look at important unit-cost special case:
[GGTW05] for unit-cost k-ECSS
$\forall \mathrm{k}$, ratio $1+{ }^{2} / \mathrm{k}$ is possible by LP methods; $\forall \mathrm{k}>1$, ratio $1+{ }^{0.0001} / \mathrm{k}$ impossible unless $\mathrm{P}=\mathrm{NP}$

Menu

Appetizer
Conjecture: k-ECSM with general costs can be apx within $1+O(1 / k) \&$ doable via LP

Entrée

 integrality gap 1to(1/k)For k-ECSS with general costs, we prove: $\forall k$, ratio 1.003 is not possible unless $P=N P$

Dessert
Discovered new complexities of LP relaxation

Appetizer

- Conjecture: k-ECSM admits approx. ratio $1+O(1 / k)$, and same integrality gap
- Bang-Jensen \& Yeo ‘01 "Splitting Conjecture" - Is there a constant C such that $\forall t$, every $(2 t+C)$ -edge-connected graph can be decomposed into two edge-disjoint t-edge-connected subgraphs?
- We prove that if the answer is yes the integrality gap is indeed at most $1+\mathrm{C} / \mathrm{k}$

Proof Ideas (1/2)

- LP:
- variable $x_{e} \geq 0$ for each edge e
- for every nonempty $\mathrm{S} \subsetneq \mathrm{V}$, $x(\delta(S)) \geq k$

- Take a feasible x and scale it up by a factor μ to become integral, we have a k μ-edgeconnected graph;
- or scale up by $\mu \mathrm{t} \Rightarrow \mathrm{k} \mu \mathrm{t}$-edge-connected

Proof Ideas (2/2) - Splitting

Splitting Conj. $\forall t$, every ($2 \mathrm{t}+\mathrm{C}$)-edgeconnected graph contains 2 edgedisjoint t-edge-connected subgraphs

$(4 t+3 C)-c o n$

(2t+C)-con

$(2 t+C)-c o n$
t-con
t-con
t-con

Implies $\forall t \forall x$, any $\left(2^{x t}+\left(2^{x}-1\right) C\right)$)-edgeconnected graph contains 2^{x} edgedisjoint t-edge-connected subgraphs

Another Intriguing Question

- Company has a k-edge-connected network
- Want to sell a spanning tree and retain as much edge-connectivity as possible
- How much edge-connectivity can we keep by a judicious choice of tree to sell? =: r(k) Nash-Williams/Tutte
Best known bounds: $k-3 \geq r(k) \geq$ floor(k/2)-1 Splitting Conjecture implies $\mathrm{r}(\mathrm{k}) \geq \mathrm{k}-\mathrm{O}(\log \mathrm{k})$

Entrée

Approximation Hardness

For the k-ECSM (multisubgraph) problem, we may assume edge costs are metric, i.e.

$$
\operatorname{cost}(u v) \leq \operatorname{cost}(u w)+\operatorname{cost}(w v)
$$

since replacing uv with uw, wv maintains k-EC

What's Hard About Hardness?

A $2-V C S S$ is a $2-E C S S$ is a $2-E C S M$.
vertex-connected
For metric costs, can split-off conversely, e.g.

All of these are APX-hard [via $\{1,2\}-\mathrm{TSP}$]

What's Hard About Hardness?

$1+\varepsilon$ hardness for $2-\mathrm{VCSS}$ implies $1+\varepsilon$ hardness for $k-V C S S$, for all $k \geq 2$

But this approach fails for k-ECSS, k-ECSM

Hardness of k-ECSS (slide 1/2) $\exists \varepsilon>0, \forall k \geq 2$, no $1+\varepsilon$-apx if $P \neq N P$

Reduce APX-hard TreeCoverByPaths to k-ECSS Input: a tree T, collection X of paths in T

A subcollection Y of X is a cover if the union of $\{E(p) \mid p$ in $Y\}$ equals $E(T)$

Goal: min-size subcollection of X that is a cover

Hardness of k-ECSS (slide 2/2)
 $\exists \varepsilon>0, \forall k \geq 2$, no $1+\varepsilon$-apx if $P \neq N P$

- Replace each edge e of T by k-1 zero-cost parallel edges; replace each path p in X by a unit-cost edge connecting endpoints of p

$\ldots \min |X|$ to cover $T=k$-ECSS optimum.

Dessert Extreme Points of the LP

- $L P[x(\delta(S)) \geq k]$ is a scaled version of:
- Held-Karp relaxation of TSP
- Undirected cut relaxation of Steiner tree
- Has "Parsimonious Property" [GB93]
- LP-based approx. algorithm for k-ECSM gives "for free" an algorithm for subset k-ECSM
- Nice structural properties are key for LP-based algorithms (e.g.GGTW). What ugliness exists?

Extremely Extreme Extreme Point

- Edge values of the form
$\mathrm{Fib}_{\mathrm{i}} / \mathrm{Fib}_{\mathrm{IV} / / 2}$ and 1 - $\mathrm{Fib}_{\mathrm{i}} / \mathrm{Fib}_{\mathrm{VV} \mid / 2}$ (exponentially small in $|\mathrm{V}|$)
- Maximum degree |V|/2

Digestif
 One is open, one is false

$\exists \mathrm{k}$, each k-ctronolvondrononnnected digraph has 2 dis, OPEN [B-J Y 01] eected subdigraphs

ヨk, every k-edge-nannontod hmonaraph has 2 disjoint conned FALSE[B-JTHI

Thanks for Attending!

Small Extreme Examples

$n=6$, denom=2 $n=7, \Delta=4$
$\mathrm{n}=8$, denom=3

$\mathrm{n}=9, \Delta=5$
$n=9$, denom=4 $n=10$, denom $=\Delta=5$

Previously Known Constructions

[BP]: minimum nonzero value of x^{*} can be $\sim 1 /|V|$
[C]: max degree can be $\sim|\mathrm{V}|^{1 / 2}$

