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Abstract

Generalized polymatroids are a family of polyhedra with several nice properties and
applications. One property of generalized polymatroids used widely in existing literature
is “total dual laminarity;” we make this notion explicit and show that only generalized
polymatroids have this property. Using this we give a polynomial-time algorithm to check
whether a given linear program defines a generalized polymatroid, and whether it is integral
if so. Additionally, whereas it is known that the intersection of two integral generalized
polymatroids is integral, we show that no larger class of polyhedra satisfies this property.

1 Introduction

The joint history of matroids and linear programming dates back to the late 1960s. Edmonds [6]
found an explicit inequality description for the independent set polytope of matroids, and showed
that its dual linear program is “uncrossable.” Building on this, he proved [5] a combinatorial
min-max theorem for the maximum weight of a common independent set of two matroids.

Edmonds [5] observed that his techniques and results immediately extended from indepen-
dent set polytopes to the more general class of polymatroids — a packing linear program (LP)
with a submodular upper bound, roughly corresponding to removing the subcardinality restric-
tion from the rank function of matroids. The techniques of [5] also extend in a straightforward
way when we replace one or both of the polymatroids by a contrapolymatroid — a covering
LP with a supermodular lower bound. The notion of generalized polymatroids (g-polymatroids
for short) was introduced in [8] to unify objects like polymatroids, contra-polymatroids, base-
polyhedra, and submodular polyhedra. To define them, for arbitrary set-functions p, b with
p : 2[n] → R ∪ {−∞} and b : 2[n] → R ∪ {+∞}, let Q(p, b) denote the packing-covering polyhe-
dron

Q(p, b) := {x ∈ Rn | ∀S ⊆ [n] : p(S) ≤ x(S) ≤ b(S)}. (1)

Note that infinities mean absent constraints. In this paper, we treat ±∞ as “integers” for
convenience.

Definition 1.1 (Paramodular, g-polymatroid). The pair (p, b) is defined to be paramodular if
p is supermodular, b is submodular, p(∅) = b(∅) = 0, and the “cross-inequality” b(S)− p(T ) ≥
b(S \ T ) − p(T \ S) holds for all S, T ⊆ [n]. A g-polymatroid is either ∅, or any polyhedron
Q(p, b) where (p, b) is paramodular.

Any g-polymatroid defined by a paramodular pair was shown in [8] to be non-empty, and
∅ is included just for convenience. Figure 1 shows two examples of g-polymatroids, and one
non-example.

Several properties of polymatroids were proved to hold also for g-polymatroids in [8]. A
g-polymatroid is integral if and only if p and b are integral (a polyhedron is integral if each
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Figure 1: Left: an illustration of a g-polymatroid. Its vertices are all ordered distinct 3-tuples
from {0, 1, 2, 3}. Its facet-defining inequalities are

(|S|
2

)
≤ x(S) ≤ 3|S| −

(|S|
2

)
for each nonempty

S ( [3]. The facet defined by x1 + x2 + x3 ≤ 6 is highlighted in blue. Center and right: the
polytopes obtained by increasing the right-hand side of the constraint x1 + x2 + x3 ≤ 6 to 6.5
and 7.2 respectively. The center polytope is still a g-polymatroid, but the rightmost is not.

face contains an integral point; equivalently [7], every integral objective function yields an
integer optimal value). Moreover, even the linear system {pi(S) ≤ x(S) ≤ bi(S) for every S ⊆
[n], i = 1, 2} describing the intersection of two g-polymatroids is totally dual integral, and hence
the intersection is integral (a linear system is totally dual integral (TDI) if for each integral
primal objective with finite optimal value, some optimal dual solution is integral). See also the
surveys [11, 12] and the books [10, 14] as references.

A further important property proved in [8] is that distinct paramodular pairs define distinct
g-polymatroids, or in other words, a non-empty g-polymatroid uniquely determines its defining
paramodular pair. However, Q(p, b) may be a g-polymatroid even if (p, b) is not paramod-
ular. In fact, there are various relaxations of the notion of paramodularity that still define
g-polymatroids, for example intersecting paramodularity. These kinds of weaker forms are im-
portant in several applications because they help recognizing polyhedra given in specific forms
to be g-polymatroids. The main question we are led to consider is: what exactly is necessary
and sufficient to define a g-polymatroid? Also, does there exist a polynomial algorithm that
given a linear system, decides if the polyhedron described by it is a(n integral) g-polymatroid?
We will answer these questions in Section 4.

Consider a packing-covering polyhedron, where every constraint is of the form x(S) ≥ β or
x(S) ≤ β: it is of the form Q(p, b) for some p, b. In LP duality each such constraint gives rise to
a dual variable corresponding to S. Let yℓ resp. yu be the dual variable vector corresponding
to the lower resp. upper bound constraints. If in the primal problem we want to maximize cx
over Q(p, b), then the dual is:

{min yub− yℓp | yu, yℓ ≥ 0, (yu − yℓ)χ = c}, (2)

where χ denotes the matrix whose rows are the characteristic vectors χS of the subsets S of [n].
As a technicality, when b(S) = +∞ (or likewise p(S) = −∞) for some S, the dual variable yuS
does not really exist, but the notation (2) still accurately represents the dual provided that yuS
is fixed at 0 and the constant yuSb(S) term in the objective is ignored — all duals we deal with
will have finite objective value, so yuS = 0 is without loss of generality.
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1.1 Results

The support of a dual solution is the set system consisting of all sets for whom at least one dual
variable is nonzero. A set system is laminar if for every two sets Si, Sj in it, either Si ⊆ Sj, or
Sj ⊆ Si, or Si ∩ Sj = ∅. A dual solution is laminar if its support is laminar.

Definition 1.2 (TDL). The pair (p, b) is totally dual laminar (TDL) if for every primal objective
with finite optimal value, some optimal dual solution to (2) is laminar.

The TDL property is already ubiquitous in the literature, but we think it is useful to make
it explicit and give it an idiomatic name.

One of our main results, Theorem 2.2, is to show that if (p, b) is totally dual laminar, then
the polyhedron Q(p, b) is a g-polymatroid. If in addition p and b are integral, then Q(p, b) is
an integral g-polymatroid. This characterizes g-polymatroids as the set of all polyhedra that
have at least one TDL formulation. As a negative result, we show in Section 2.4 that testing if
a given system is TDL is NP-hard.

In Section 4 we show that there is a polynomial-time algorithm, which for a given system of
linear inequalities, determines whether the polyhedron it describes is a g-polymatroid (Theorem
4.1). Despite that testing for TDL is NP-hard, the proof uses Theorem 2.2, uncrossing methods,
and a decomposition theorem for non-full-dimensional g-polymatroids. The method also gives
a polynomial-time algorithm to tell whether a g-polymatroid is integral, see Theorem 4.16. In
contrast, testing an arbitrary polyhedron for integrality [18] or TDI-ness is coNP-complete [4],
the latter even for cones [17].

One might ask for a g-polymatroid P if it is true that every (p, b) such that Q(p, b) = P
satisfies that (p, b) is TDL? This is, in fact, false, as Example 4.12 shows. But it is a consequence
of Theorem 4.4 that it holds in the special case when P is full-dimensional.

Edmonds’ polymatroid intersection theorem was shown in [8] to extend to integral g-
polymatroids as well. In Theorem 5.1 we prove the following converse statement: if the in-
tersection of a polyhedron P with each integral g-polymatroid is integral, then P is an integral
g-polymatroid. By combining this with the g-polymatroid intersection theorem, one obtains
that a polyhedron P is an integral g-polymatroid if and only if its intersection with every inte-
gral g-polymatroid is integral. In other words, the family of integral g-polymatroids is maximal
subject to integral pairwise intersections.

In Section 6 we give a relaxation of paramodularity, called truncation-paramodularity, that
guarantees total dual laminarity, and can be verified in polynomial time if the finite values of
the functions are given as an input. This relaxation enables us to give a short proof of a mild
generalization of Schrijver’s supermodular colouring theorem. The relations that we obtain
between truncation-paramodularity and related versions of paramodularity are summarized in
Figure 2 on page 4.

Recently there have been several interesting studies of a class of polyhedra called generalized
permutahedra [1, 2, 19, 20]. By slightly extending this line of work we get one more interesting
characterization, illustrated in Figure 3 on page 4. Let χi denote the ith standard unit basis
vector, χ0 the origin, and for S ⊆ {0} ∪ [n], let △S denote conv.hull{χi | i ∈ S}.
Theorem 1.3. A polyhedron P is a nonempty bounded g-polymatroid if and only if there is an
equality of Minkowski sums

P +
ℓ∑

i=1

λi△Li
=

r∑

j=1

ρj△Rj

for some choice of positive multipliers λ, ρ and nonempty subsets Li, Rj of {0} ∪ [n]. Moreover,
each nonempty bounded g-polymatroid P has exactly one such representation (up to order) such
that the Li and Rj are mutually distinct and the trivial △{0} is not used.
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(p, b) paramodular ∈ P

⇓
(p, b) intersecting paramodular ∈ P

⇓
(p, b) near paramodular ∈ P

⇓
(p, b) truncation paramodular ∈ P

⇓

equivalent if Q(p, b)
is full-dimensional





(p, b) TDL NP-hard
⇓

Q(p, b) integer g-polymatroid ∈ P

⇓
Q(p, b) g-polymatroid ∈ P

Figure 2: Summarizing most of our results, where (p, b) is an integer-valued pair whose fi-
nite values are given explicitly as an input. The pre-existing notions of intersecting and near
paramodularity are defined in Section 2.2 and Section 6, respectively.
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Figure 3: Illustrating Theorem 1.3 for the g-polymatroid shown in the center of Figure 1, where
+ indicates the Minkowski sum. The 4 coloured points denote the origin (black) and three
standard unit basis vectors. The polyhedron in the right of Figure 1 does not admit such a
decomposition.

Preliminary definitions. The direct product or Cartesian product of two polyhedra P ⊆ RA

and Q ⊆ RB is P × Q := {(x, y) ∈ RA∪B | x ∈ P, y ∈ Q} (we assume A and B are disjoint).
A subpartition of a set X is a family of pairwise disjoint nonempty subsets of X; i.e. it is a
partition of a subset of X. The 1-norm ‖v‖1 of a vector v is the sum of the absolute values of
its co-ordinates, ‖v‖1 =

∑
i |vi|.

1.2 Related Work

Why are natural characterizations of g-polymatroids important? Many other general classes of
polyhedra with somewhat esoteric definitions have been studied: e.g. lattice polyhedra [15], sub-
modular flow polyhedra [7], bisubmodular polyhedra [24, §49.11d], and M -convex functions [16].
In some cases the definitions are chosen to be precisely as general as possible while allowing the
proof techniques to go through, e.g. Schrijver’s framework for total dual integrality with cross-
free families [24, §60.3c][21]. Simpler characterizations of such classes are more likely to arise
naturally, and can be easier to understand. Relations amongst these complex classes are known:
Schrijver [22] showed that P is a submodular flow polyhedron iff P is a lattice polyhedron for a
distributive lattice; and Frank and Tardos [12] showed that P is a submodular flow polyhedron
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iff P is the projection along coordinate axes of the intersection of two g-polymatroids.
A few characterizations of g-polymatroids are known. One uses base polyhedra, which gen-

eralize the convex hull of the bases of a matroid. A base polyhedron is a set {x ∈ Rn | ∀S ⊂
[n], x(S) ≤ b(S);x([n]) = b([n])} where b is submodular with b(∅) = 0. So each base polyhedron
is a subset of the hyperplane x([n]) = c for some constant c. An important relation, whose proof
is short and originally due to Fujishige [13], is:

Theorem 1.4. B ⊆ {x : x([n]) = c} is a base polyhedron if and only if the projection
{(x1, . . . , xn−1) | x ∈ B} is a nonempty g-polymatroid.

To prove Theorem 5.1, we exploit another known characterization, implicitly by Tomizawa [28]
(see proof and discussion in [14, Thm. 17.1]):

Theorem 1.5. A polyhedron in Rn is a g-polymatroid if and only if for each x, its tangent cone
at x has a generating set which is a subset of {±χi | i ∈ [n]} ∪ {χi − χj | i, j ∈ [n]}.

A useful property [11, 12] is that for a g-polymatroid P defined by an unknown paramodular
pair, the minima and maxima

i(S) := min
x∈P

x(S) and a(S) := max
x∈P

x(S) (3)

yield the unique defining paramodular pair, i.e. P = Q(i, a). This implies that when (p, b) and
(p′, b′) are paramodular and distinct, Q(p, b) and Q(p′, b′) are also distinct.

The family of g-polymatroids is closed under translation, reflection of all coordinates, box-
intersection, taking faces, direct products, and many other operations [11, 12]. Linear optimiza-
tion over a bounded g-polymatroid is possible with a greedy algorithm [12]; conversely, bounded
P is a g-polymatroid iff for every objective max{c · x | x ∈ P}, the following greedy algorithm
is always correct: iteratively maximize the coordinates with positive c-coefficients in decreasing
c-order, minimize those with negative c-coefficients similarly, and interleave the maximizations
and minimizations arbitrarily [25].

One notable application of g-polymatroids is in network design. Two flavours of network
design problems are addressed in [9] using g-polymatroids — undirected pair-requirements and
directed uniform requirements. One obtains min-max relations and algorithms for edge connec-
tivity augmentation, even subject to degree bounds. In these applications, it is important that
g-polymatroids can be defined by skew-submodular or intersecting-submodular functions. Total
dual laminarity is the typical property used to show that such functions define g-polymatroids:
it is therefore natural that we try to properly understand this property.

Given a set function p, consider the problem of k-colouring the ground set so that each set
S gets at least p(S) different colours. When p is supermodular, this “supermodular colouring”
problem can be attacked with g-polymatroids, and one can show that a colouring exists except
if one of the obvious obstructions f(S) > |S| or f(S) > k holds for some S. This was proven by
Schrijver [23], simplified by Tardos [27] and Schrijver [24], and a variant was proven by Király
(as described in [3]). We will prove a more general version of this theorem, as an example of
how TDL can be used in a proof.

The n-permutahedron is a classical polytope, defined as the convex hull of the n! permuta-
tions of (1, 2, . . . , n). For example, the g-polymatroid in the left part of Figure 1 on page 2 is
essentially the 4-permutahedron. In 2005 Postnikov [19] defined generalized permutahedra as
“deformations” of the permutahedron:

Definition 1.6. Let Πn denote the set of all n-permutations. A generalized permutahedron
is any polytope conv.hull{xπ | π ∈ Πn} such that the xπ satisfy, for all π and all neighbour
transpositions (i i+ 1), that xπ − xπ◦(i i+1) is a nonnegative multiple of χπ[i] − χπ[i+1].
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The focus of Postnikov’s paper [19] is computing the volumes and integer volumes (Ehrhart
theory) of generalized permutahedra. Note the similarity between Definition 1.6 and Tomizawa’s
theorem. In fact, the following theorem can be proven using Tomizawa’s theorem as a starting
point:

Theorem 1.7. The class of generalized permutahedra is the same as the class of bounded base
polyhedra.

This result was also mentioned in [2, Thm. 2.1]. Postnikov et al. [20] proved that the vertex
deformation used in Definition 1.6 can be rephrased in other equivalent ways. For example P
is a base polytope if and only if its normal fan refines that of the permutahedron.

2 Total dual laminarity

As a general application of Edmonds’ methods, two key steps in [8] were proving that every
paramodular pair is TDL, and that the intersection of two TDL systems is totally dual integral.

Theorem 2.1 ([8]). 1. If the pair (p, b) is paramodular pair then it is TDL.
2. If (p1, b1) and (p2, b2) are TDL pairs, then the linear system

{x ∈ Rn : pi(S) ≤ x(S) ≤ bi(S) for every S ⊆ [n], i = 1, 2}

is totally dual integral.

The core of the second statement is the fact that the incidence matrix of the union of two
laminar families is totally unimodular. In this section we prove that only g-polymatroids can be
described by TDL systems, we give short TDL-based proofs of several g-polymatroid properties,
and we show that testing TDL is NP-hard.

2.1 All TDL Systems define Generalized Polymatroids

Theorem 2.2. If (p, b) is totally dual laminar, then the polyhedron Q(p, b) is a g-polymatroid.
If in addition p and b are integral, then Q(p, b) is an integral g-polymatroid.

Proof. We assume Q(p, b) is nonempty. Define i and a as in Equation (3) where P = Q(p, b).
Observe that Q(p, b) = Q(i, a). We will prove the theorem by showing that (i, a) is paramodular.

An important special kind of laminar family is a chain family: a chain is a set family where
for any two sets in the family, one contains the other.

Overview. The proof’s heart has a combinatorial flavour similar to traditional dual uncross-
ing arguments: we gradually make an optimal dual solution in (2) more and more structured.
First we show every optimal y = (yu, yℓ) with supp(yu) ∪ supp(yℓ) laminar can be transformed
into one such that supp(yu) and supp(yℓ) are two laminar families on disjoint ground sets.
Then, we transform the laminar families into chain families on disjoint ground sets, so-called
“dichain duals”. Crucially, for every c, exactly one dichain dual is feasible, and so an optimal
dual can be easily computed. By comparing it to other duals we get inequalities proving that
(i, a) is paramodular. Now we give the details.

To begin with, we normalize the form of the program; we call the (p, b) formulation (1) and
(2) the old primal and dual, whereas {x | ∀S ⊂ [n], i(S) ≤ x(S) ≤ a(S)} is the new primal.
The new primal LP in matrix form is {max cx | x ∈ Rn, i ≤ χx ≤ a} and its dual is

{min yua− yℓi | yu ≥ 0, yℓ ≥ 0, (yu − yℓ)χ = c}. (4)
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Claim 2.3. For every feasible c, the new dual (4) has an optimum Y = (Y u, Y ℓ) such that
supp(Y u) ∪ supp(Y ℓ) is a laminar family, i.e. (i, a) is also TDL.

Proof. We know by the hypothesis of the theorem that the old dual has such an optimum
Y = (Y u, Y ℓ) whose combined support is laminar. It suffices to observe that for every old
primal constraint getting positive dual in Y , that same constraint remains in the new primal,
since therefore Y is an optimal solution of the new dual. To see this for a packing constraint
x(S) ≤ b(S) getting positive dual, obviously a(S) ≤ b(S), but also by complementary slackness
an optimal primal x satisfies x(S) = b(S), so a(S) ≥ b(S). The covering case is similar.

From now on we only work with the new primal/dual, so we just call them the primal/dual.

Claim 2.4. For every feasible c, the dual (4) has an optimum Y such that supp(Y u) and
supp(Y ℓ) are laminar families on disjoint ground sets.

Proof. Let Y = (Y u, Y ℓ) represent the dual guaranteed by Claim 2.3, so L = supp(Y u) ⊎
supp(Y ℓ) is laminar (possibly with repeats). Fix a tree representation of L, meaning a forest of
rooted trees on node set L so that each child is a subset of its parent, and the roots are disjoint;
it is unique up to ordering of the repeats. Each set in L has a u sign if it came from supp(Y u)
and an ℓ sign if it came from supp(Y ℓ).

If every set in L has the same sign as its parent, we are done. Otherwise, take an inclusion-
maximal parent-child pair P ⊇ C whose signs differ. Suppose P has sign u and C has sign ℓ,
the other case is similar. Let δ = min{Y u

P , Y
ℓ
C}, and define Ỹ to be the same as Y except

Ỹ u
P := Y u

P − δ; Ỹ ℓ
C := Y ℓ

C − δ; Ỹ u
P\C := Y u

P\C + δ.

We claim that Ỹ is still an optimal dual solution whose support is laminar. First, the support
is still laminar since L ∪ {P \ C} is laminar and supp(Ỹ ) is this family minus C and/or P .
Second, Ỹ is feasible since (Ỹ u− Ỹ ℓ)χ = (Y u−Y ℓ)χ+δ(−χP +χP\C +χC) = c+0. To show Ỹ
is still optimal it is necessary and sufficient to show that the change in objective, which equals
δ(−a(P ) + i(C) + a(P \ C)), is nonpositive. In other words we need a(P ) ≥ a(P \ C) + i(C);
to see this consider any x∗ achieving the maximum in the definition of a(P \ C), i.e. such that
a(P \ C) = x∗(P \ C) = maxx∈Q(p,b) x(P \ C). Then a(P ) ≥ x∗(P ) = x∗(P \ C) + x∗(C) ≥
a(P \ C) + i(C), by definition of i(C).

To show this argument can terminate, suppose we chose the original Y to have minimal 1-
norm ‖Y ‖1 — we can define this Y with a linear program which ensures the infimum is achieved.
Observe the transformation Y 7→ Ỹ decreases the 1-norm by δ. Consequently for this extremal
Y , no parent-child pair has opposing signs, and this Y is what Claim 2.4 asked for.

Claim 2.5 (Optimal dichain duals exist). For every feasible c, the dual (4) has an optimum Y
such that supp(Y u) and supp(Y ℓ) are chain families on disjoint ground sets (a dichain dual).

Proof. The argument is very similar to the previous claim but simpler and so is just sketched.
Start with the Y = (Y u, Y ℓ) guaranteed by Claim 2.4. In the laminar family supp(Y u) (Y ℓ is
analogous), if it is laminar but not a chain, it has a pair of disjoint sets; let S, T be a pair of
such sets with maximal combined size. Then we increase Y u

S∪T and decrease Y u
S and Y u

T until
one of them becomes zero. This operation preserves laminarity of supp(Y u), retains feasibility
and optimality of Y (here we use that a(S ∪ T ) ≤ a(S) + a(T )), decreases its 1-norm, and does
not change the ground set of the laminar family supp(Y u).

Claim 2.6 (Feasible dichain duals are unique). For every c, there is at most one dichain dual
(Y u, Y ℓ) such that (Y u − Y ℓ)χ = c.
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Proof. In fact there is always exactly one such dual: i.e. cj = {∑S:j∈S Y
u
S − Y ℓ

S}j is a bijection
between dichain duals Y and real vectors c ∈ Rn. The kth largest positive value in {cj | j ∈ [n]}
corresponds to the kth inclusion-smallest set Lk in supp(Y u), and the dual value Y u

Lk
equals the

difference between the kth largest and (k + 1)th largest values in {0} ∪ {cj | j ∈ [n]}. We deal
with negative values and Y ℓ similarly. A short computation with telescoping sums confirms
(Y u − Y ℓ)χ = c, and a standard proof by induction on k gives uniqueness.

Combining the previous two claims, we get the following.

Corollary 2.7. For every c, any feasible dichain dual to (4) is optimal.

Proof. This is immediate if the optimum is finite. Otherwise the optimal value is −∞, and the
dichain dual must also have value −∞ by weak duality.

Now we are in good shape to complete the proof. First we show a is submodular, i.e. for any
P,Q ⊆ [n] that a(P ∪Q)+ a(P ∩Q) ≤ a(P ) + a(Q). Let c assign value 2 to elements of P ∩Q,
value 1 to elements of the symmetric difference of P and Q, and 0 to all other elements of [n].
Since c = χP∪Q + χP∩Q, one feasible dual Y is to set Y u

P∪Q = Y u
P∩Q = 1 and zero elsewhere; it

is a dichain dual and hence by Corollary 2.7 the optimal LP value is a(P ∪Q) + a(P ∩Q). On
the other hand, another feasible dual is Y u

P = Y u
Q = 1 and zero elsewhere, hence its objective

value a(P ) + a(Q) is at least the optimum a(P ∪Q) + a(P ∩Q) and we are done.
The proof that i is supermodular is similar; and to show the cross-inequality a(P )− i(Q) ≥

a(P \Q)−i(Q \ P ) for all P,Q ⊂ [n] we repeat the argument with c = χP −χQ = χP\Q−χQ\P ,

by comparing the feasible dual Y u
P = Y ℓ

Q = 1 to the optimal dual Y u
P\Q = Y ℓ

Q\P = 1 (and zeroes

elsewhere). This completes the proof of the first part of Theorem 2.2.
The second part follows easily, since by Theorem 2.1, the system (1) is TDI for a TDL pair

(p, b).

2.2 Intersecting Paramodularity

We mention one well-known theorem that follows easily from Theorem 2.2. Two sets S and T
conflict if all of S ∩ T, S \ T, T \ S are nonempty; note that a set system is laminar iff it has no
conflicting pair of sets.

Definition 2.8. A pair (p : 2[n] → R∪{−∞}, b : 2[n] → R∪{+∞}) is intersecting paramodular
if the supermodular, submodular, and cross-inequalities hold for every pair of conflicting sets.
That is, for any conflicting S and T , we require b(S ∩ T ) + b(S ∪ T ) ≤ b(S) + b(T ), p(S ∩ T ) +
p(S ∪ T ) ≥ p(S) + p(T ), and b(S \ T )− p(S \ T ) ≤ b(S)− p(T ).

The values of p(∅) and b(∅) have no effect on whether (p, b) is intersecting paramodular.

Theorem 2.9. When (p, b) is intersecting paramodular, Q(p, b) is a g-polymatroid.

The original proof of this theorem [12, Prop. 2.5] uses the “truncation” method.

Proof. By Theorem 2.2 it will suffice to show (p, b) is totally dual laminar. We may assume
Q(p, b) 6= ∅. Fix any primal maximization objective c for which the primal is bounded. Along
the lines of standard uncrossing arguments, let y be an optimal dual solution to (2), and
moreover one for which y · µ :=

∑
S(y

u
S + yℓS)(n− |S|)2 is minimal among all optima. We claim

this y has laminar support. If not, there are two positive dual variables for two conflicting
sets S, T . In the case that yuS, y

u
T > 0, consider decreasing yuS, y

u
T by ǫ := min{yuS , yuT } and

increasing yuS∪T , y
u
S∩T by ǫ; this would maintain dual feasibility, maintain dual optimality since

the submodular inequality holds for b on S and T , and strictly decrease y · µ, a contradiction.
The other two cases are similar, establishing that y has laminar support as needed.
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2.3 Intersections with Boxes and Planks

A classical property of g-polymatroids that we will use is the following.

Theorem 2.10 ([8]). The family of g-polymatroids is closed under intersecting with planks
{x | ℓ0 ≤ ‖x‖1 ≤ u0} and boxes {x | ℓ ≤ x ≤ u}.

Proof. In the TDL framework, the crux is the following:

Observation 2.11. If L is laminar on ground set [n], then so is L ∪ {[n]}, and L ∪ {{i}} for
any i ∈ [n].

Consider taking a g-polymatroid P and adding a box upper bound constraint; the other cases
are similar. Let Q(p, b) = P be a TDL formulation and add the constraint xi ≤ ui. Whereas
the dual of (1) is (2), adding xi ≤ ui to the primal gives the dual

{min yub− yℓp+ yνui | y ≥ 0, (yu − yℓ)χ+ yνχi = c}. (5)

The new program is TDL for the following reason. Take any a dual optimum (Y u, Y ℓ, Y ν) for
(5). Let (Zu, Zℓ) be a dual optimum for the original dual (2) under cost vector c′ = c − Y νχi,
such that supp(Z) = L is laminar. Then (Zu, Zℓ, Y ν) is an optimal dual for (5), and it has
laminar support by Observation 2.11.

2.4 Hardness of Total Dual Laminarity

Theorem 2.12. Deciding whether a given system is TDL is NP-hard.

Proof. We reduce the 3-dimensional perfect matching problem to it, which is known to be NP-
complete. Let H = (V1, V2, V3; E) be an instance of the 3-dimensional perfect matching problem,
that is, a 3-uniform hypergraph on vertex set V1 ∪ V2 ∪ V3 (where V1, V2 and V3 are disjoint
and equal in size) and edge set E ⊆ V1 × V2 × V3, where the goal is to find a matching M ⊆ E
which covers all vertices. For convenience we assume that the edges cover V3. We construct the
following linear system consisting only of homogeneous equalities.

{x ∈ RV1∪V2∪V3 | x(e) = 0 ∀e ∈ E , x(v) = 0 ∀v ∈ V1 ∪ V2}.

The dual system is

{y ∈ RE∪V1∪V2 |∑

e:v∈e

ye = cv ∀v ∈ V3,

yv +
∑

e:v∈e

ye = cv ∀v ∈ V1 ∪ V2}.

We claim that this system is TDL if and only if H has a perfect matching. Since V3 is
covered, a dual solution always exists, and all are optimal, thus the system is TDL if and only if
for every objective function c there is a dual solution y ∈ RE∪V1∪V2 for which supp(y) is laminar.

Suppose that the system is TDL, and take such a y for c = 1. Now every vertex in V3 has
to be covered with an edge e with positive dual variable ye, and these have to be disjoint. In
other words, supp(y) has to contain a perfect matching.

For the other direction, suppose that M is a perfect matching in H, and let c be an objective
function. Let us define y by
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ye :=

{
cv3 if e = {v1, v2, v3} ∈ M,

0 if e /∈ M,

yv := cv − ye if v ∈ e ∈ M,v ∈ V1 ∪ V2.

The support of y is laminar and y is an optimal dual solution, so we are done.

3 Decomposition of Generalized Polymatroids

Recall that in n dimensions, a base polyhedron is contained within a hyperplane and thus
has dimension at most (n − 1). If this holds with equality, we call the base polyhedron max-
dimensional.

Theorem 3.1. Every g-polymatroid Q is the direct product of at most one full-dimensional
g-polymatroid and some (possibly zero) max-dimensional base-polyhedra.

Equivalently, every non-max-dimensional base polyhedron is the direct product of several
max-dimensional base polyhedra.

Proof. Let (p, b) be a paramodular pair which defines Q. First let us prove that the affine hull of
Q is of the form {x ∈ Rn : x(Ai) = ai, i ∈ [t]} for some subpartition A = {A1, A2, . . . At} of [n].
We know that the affine hull is the intersection of the implicit equalities (from the system). An
equality x(S) = b(S) is implicit if and only if p(S) = b(S) if and only if the equality x(S) = p(S)
is implicit. Let us call such a set fixed-sum.

If S and T are fixed-sum, then so are S ∩ T and S ∪ T :

b(S ∩ T ) + b(S ∪ T ) ≤ b(S) + b(T ) = p(S) + p(T ) ≤ p(S ∩ T ) + p(S ∪ T ) ≤ b(S ∩ T ) + b(S ∪ T ).

Also, if S and T are fixed-sum, then S \ T and T \ S are also fixed-sum:

b(S \ T )− p(T \ S) ≤ b(S)− p(T ) = p(S)− b(T ) ≤ p(S \ T )− b(T \ S) ≤ b(S \ T )− p(T \ S).

It follows that the inclusion-minimal fixed-sum sets form a subpartition, and that every other
fixed-sum set is a disjoint union of them. So they form the desired subpartition A.

The empty set is trivially fixed-sum, and if no other set is fixed-sum, then Q is full-
dimensional and we are done. If the only fixed-sum sets are the empty set and [n], then Q
is a max-dimensional base polyhedron and we are done again. Otherwise, take a fixed-sum set
A other than [n] and ∅. We claim that Q = Q1 ×Q2, where Q1 is a base polyhedron on A and
Q2 is a g-polymatroid on [n] \ A, then we are done by induction. The following lemma implies
this claim.

Lemma 3.2. For paramodular (p, b), if p(T ) = b(T ) (i.e. T is fixed-sum), then for any X ⊆ [n]
we have b(X) = b(X ∩ T ) + b(X \ T ) and p(X) = p(X ∩ T ) + p(X \ T ).

Proof. We derive four inequalities from the cross-inequality and submodularity:

b(X ∩ T ) + b(X \ T ) ≥ b(X) + b(∅)

b(X ∪ T )− p(T \X) ≥ b(X)− p(∅)

b(X) + b(T ) ≥ b(X ∩ T ) + b(X ∪ T )

b(X) − p(T ) ≥ b(X \ T )− p(T \X).
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The sum of the four inequalities has the same left- and right-hand side, once we use the fact
that b(T ) = p(T ) and b(∅) = p(∅) = 0. So all four inequalities hold with equality. The first
one gives the first half of the lemma. By switching the role of p and b, we get the second half
of the lemma.

This completes the proof of Theorem 3.1.

4 Recognizing Generalized Polymatroids

In this section we give a polynomial-time algorithm that decides whether a given LP of the form
(1) describes a g-polymatroid. Here the inequalities where b(S) = +∞ or p(S) = −∞ are not
part of the input.

Theorem 4.1. There is a polynomial-time algorithm, which on input (A, b), determines whether
the polyhedron {x | Ax ≤ b} is a g-polymatroid.

First we deal with the case that the polyhedron is full-dimensional, in which case we char-
acterize the linear systems that define g-polymatroids; afterwards, we show how to reduce the
general case to the full-dimensional one with the help of Theorem 3.1.

We can always make the following assumption:

Assumption 4.2. The input polyhedron is minimally described in the sense that deleting any
inequality would yield a strictly larger polyhedron.

This is without loss of generality because we can convert an arbitrary description to a minimal
one in polynomial time using linear programming.

4.1 The Full-Dimensional Case

For full-dimensional polyhedra, the minimal description is known to be unique up to scaling
inequalities by a positive scalar; also, every inequality in the minimal description defines a facet.
Moreover, by definition, a g-polymatroid’s facet-defining inequalities are of the form x(S) ≥ β
or x(S) ≤ β for some S and β. So by scaling we assume all input inequalities are represented
by the following families B and P.

Definition 4.3. Let B be the family of all S where x(S) ≤ b(S) is part of the input (i.e. b(S) 6=
+∞). Similarly let P be the family of all S where x(S) ≥ p(S) is part of the input.

Our proof method will use the functions i(S) and a(S) described by (3), where P = Q(p, b)
is the input polyhedron. Note that for any particular set S, i(S) and a(S) can be computed in
polynomial time. Moreover, note by minimality that i(S) = p(S) for all S ∈ P and similarly
for B. The core of our approach is the following new characterization:

Theorem 4.4. Suppose that for a pair (p, b), the polyhedron Q(p, b) is full-dimensional and
minimally described. Then Q(p, b) is a g-polymatroid if and only if

(i) for every S, T ∈ B, a(S ∪ T ) + a(S ∩ T ) ≤ b(S) + b(T ) holds,

(ii) for every S, T ∈ P, i(S ∪ T ) + i(S ∩ T ) ≥ p(S) + p(T ) holds, and

(iii) for every S ∈ B and T ∈ P, a(S \ T )− i(T \ S) ≤ b(S)− p(T ) holds.

The theorem yields our polynomial-time algorithm (the full-dimensional special case of The-
orem 4.1): simply iterate through every pair of sets in the input, and check these conditions.
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Proof. The “only if” direction is the easy one. If Q(p, b) is a g-polymatroid, then (i, a) is
paramodular and Q(p, b) = Q(i, a). Since a(X) ≤ b(X) for all sets X, and a is submodular, we
have a(S ∪ T ) + a(S ∩ T ) ≤ a(S) + a(T ) ≤ b(S) + b(T ). The other cases are similar.

To prove the “if” part, we will show that (p, b) is TDL, that is, for every objective function
c ∈ RV for which a dual optimal solution exists, there is a laminar one. Using Theorem 2.2 it
follows that Q(p, b) is a g-polymatroid.

Let MB and MP be the matrices whose rows are indexed by B and P respectively, and where
the rows are the characteristic vectors of their indices. Let M denote the matrix

( MB

−MP

)
.

For every set S ⊆ [n] with a(S) = maxx∈Q(p,b) S(x) finite, let (β
S , πS) ∈ RB∪P

+ be an optimal
dual, i.e. one that satisfies

χS = (βS , πS)M (6)

a(S) = (βS , πS)(b,−p). (7)

Likewise when i(S) = minx∈Q(p,b) S(x) is finite, let (β
−S , π−S) ∈ RB∪P

+ be an optimal dual,

− χS = (β−S , π−S)M (8)

−i(S) = (β−S , π−S)(b,−p). (9)

For certain sets S and T we define a vector in RB∪P , which will be used for modifying the
dual. Let eS denote the vector with 1 in the S component and 0 elsewhere — it lies in RB or
RP depending on context. Then,

• if S, T ∈ B conflict and a(S) and a(T ) are bounded, define u(S, T ) to be

u(S, T ) = −(eS ,0)− (eT ,0) + (βS∪T , πS∪T ) + (βS∩T , πS∩T ); (10)

• if S, T ∈ P conflict and i(S) and i(T ) are bounded, define v(S, T ) to be

v(S, T ) = −(0, eS)− (0, eT ) + (β−S∪T , π−S∪T ) + (β−S∩T , π−S∩T ); (11)

• if S ∈ B and T ∈ P conflict and a(S) and i(T ) are bounded, define w(S, T ) to be

w(S, T ) = −(eS ,0) − (0, eT ) + (βS\T , πS\T ) + (β−T\S , π−T\S). (12)

Claim 4.5. For the vectors defined above, the following properties hold:

(a) The vectors u(S, T ), v(S, T ), w(S, T ) are always nonzero.

(b) u(S, T )M = v(S, T )M = w(S, T )M = 0.

(c) u(S, T ), v(S, T ) and w(S, T ) are weakly improving directions for the objective function
(b,−p).

Proof. (a) If u(S, T ) were 0, then supp((βS∪T , πS∪T )+ (βS∩T , πS∩T )) = {S, T}. But, using the
fact that S and T conflict, it is easy to see that no dual can meet condition (6) in the definition
of (βS∩T , πS∩T ) and also have support that is a subset of {S, T}. The arguments for v(S, T )
and w(S, T ) are similar.

(b) u(S, T )M = −χS − χT + χS∪T + χS∩T = 0, and similarly for the other cases.
(c) u(S, T )(b,−p) = −b(S) − b(T ) + a(S ∪ T ) + a(S ∩ T ) ≤ 0, this was condition (i). The

other cases follow likewise from conditions (ii) and (iii).
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Let C be the cone generated by these vectors,

C := cone({u(S, T ) : S, T ∈ B conflict} ∪ {v(S, T ) : S, T ∈ P conflict}
∪ {w(S, T ) : S ∈ B, T ∈ P conflict}).

Claim 4.6. The cone C is pointed, i.e. it does not contain any line.

Proof. For some number N , let (N + µ) be the vector whose value in the coordinate indexed
by each set S is N + (n − |S|)2. We claim that for N sufficiently large, (N + µ) has positive
scalar product with all the generators of C, which will complete the proof. To see this, one part
is to observe that 1 · (βX , πX) ≥ 1 for any nonempty X, with equality iff (βX , πX) = (eX ,0);
and similarly for −X. It follows that 1 · u(S, T ) is nonnegative, with equality only when
(βS∪T , πS∪T ) = (eS∪T ,0) and (βS∩T , πS∩T ) = (eS∩T ,0). Furthermore in this case, (N + µ) ·
u(S, T ) = (n− |S ∪ T |)2 + (n− |S ∩ T |)2 − (n− |S|)2 − (n− |T |)2 > 0, since S and T conflict.
The other details are similar.

Claim 4.7. If for a dual solution y the affine cone y+C intersects the dual polyhedron only in
y, then supp(y) is laminar.

Proof. Write y = (yu, yℓ). Suppose in contradiction of the claim that there are two conflicting
sets S, T ∈ B, for which yuS and yuT are positive; the other cases are similar. Then for sufficiently
small ǫ > 0, y′ := y+ ǫu(S, T ) lies in y+C and has y′ ≥ 0. Moreover, y′ is dual feasible because
of part (b) of Claim 4.5, and y′ 6= y because of part (a). This contradicts the assumption of the
claim.

Due to the above claim it is enough to give an optimal dual solution y for which the inter-
section of y + C and the dual polyhedron is {y}. The existence of such a vector follows from
the next two claims.

Claim 4.8. If P is a bounded polytope and C is a pointed cone, then there exists a vector y ∈ P
such that (y + C) ∩ P = {y}.

Proof. Since C is pointed, there is a vector c with which every vector in C has positive scalar
product. Let y be maximal in P for the objective c. Then (y + C) ∩ P = {y}.

Claim 4.9. If a linear program with no all-zero rows defines a full-dimensional polyhedron,
then the optimal face of the dual is bounded.

Proof. Write Ax ≤ b for the linear program. Suppose otherwise that the optimal dual face
contains a ray. This implies that there is a dual combination y ≥ 0 of primal inequalities, y 6= 0,
such that yA = 0 and (by optimality) yb = 0. Consequently the negative of some constraint can
be obtained as a nonnegative combination of other constraints, so this constraint always holds
with equality, contradicting full-dimensionality (using that the constraint is not all-zero).

The claims combine as follows: since Q(p, b) is full-dimensional, Claim 4.9 implies the opti-
mal face of its dual is bounded. Apply Claim 4.8 to the optimal face, obtaining an optimal y
such that the only optimal point of y + C is y. Further, by part (c) of Claim 4.5, any feasible
point of y +C is optimal, so y is the only feasible point of y +C. So Claim 4.7 applies and the
proof of Theorem 4.4 is complete.

This implies a test for max-dimensional base polyhedra, which will be useful later.

Corollary 4.10. Let P = Q(p, b)∩{x | x([n]) = c} be of dimension n− 1. Then we can test in
polynomial time whether P is a base polyhedron.

13



Proof. We know that P is a base polyhedron if and only if, by projecting away some variable
xn, we get a g-polymatroid in n − 1 dimensions. Notice that this projection is given explicitly
by Q(p′, b′) ∈ Rn−1 where for all S ⊆ [n− 1],

p′(S) = max{p(S), c − b([n] \ S)} and b′(S) = min{b(S), c − p([n] \ S)}.

We can test whether this is an (n− 1)-dimensional g-polymatroid by Theorem 4.4.

The proof of Theorem 4.4 implies the following.

Corollary 4.11. If Q(p, b) is a full-dimensional g-polymatroid, then (p, b) is TDL.

4.2 The General Case

The proof method of Theorem 4.4 does not work directly in the non-full-dimensional case,
because the system is not necessarily TDL, as the following example shows.

Example 4.12. Consider the LP with 6 constraints {xi + xj ≥ 1, xi + xj ≤ 1}i,j∈[3],i 6=j. It

defines a g-polymatroid (the single point (12 ,
1
2 ,

1
2 )), but it is not totally dual laminar.

We use the decomposition from Theorem 3.1 to get around this obstacle.

Proof of Theorem 4.1. It is useful to first check whether the affine hull has the correct form.

Claim 4.13. For a g-polymatroid, the affine hull is of the form {x | ∀i, x(Ai) = ci} for some
subpartition A = {Ai}i of [n].

Proof. This follows from the proof of Theorem 3.1, then noting that the affine hull of a full-
dimensional g-polymatroid is all of its ambient space, and the analogue for max-dimensional
base polyhedra.

Our algorithm begins by checking whether the polyhedron’s affine hull has the form in Claim
4.13. Notice that an inequality aix ≤ bi is an implicit equality if the minimum of aix is bi, and
in this way we can compute a system A=x = b= of linear equalities defining the affine hull.

Claim 4.14. In polynomial time we can check whether P = {x | A=x = b=} is of the form
{x | ∀i, x(Ai) = ci} for some subpartition A = {Ai}i of [n], and find A, c if so.

Proof. We may assume that P has this form, and concentrate on the problem of finding A, c.
This is because we can run such an algorithm on any P , and then merely check that the output
of the algorithm (if it does not crash) satisfies {x | A=x = b=} = P , which is a matter of seeing
if each equality defining one system is implied by the other system, which can be done using a
subroutine to compute matrix ranks.

We start identifying parts of the subpartition. For I ⊆ [n] let PI be the projection of P on
to the variables {xi}i∈I . We can check in polynomial time whether PI has full dimension |I|,
by testing whether there is any vector y such that yA= is zero on all coordinates of [n] \ I, and
nonzero on at least one coordinate of I.

Observe that dim(PAi
) < |Ai|, and moreover that dim(PI) < |I| if and only if I contains

some Ai. To begin with, if dim(P ) = n then P = Rn and the algorithm returns “yes,” with
A = c = ∅. Otherwise, initialize I = [n], then for each element j ∈ I in turn, delete j from
I unless it would cause the new I to satisfy dim(PI) = |I|. We may set A1 equal to this final
I. Similarly, if dim(P[n]\A1

) = n − |A1| then we are done, otherwise we let A2 be an inclusion-
minimal subset of [n] \ A1 with dim(PA2

) < |A2|. Iterating this gives A, then computing c is
easy.
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Now that we have the subpartition we want to check whether Q is a direct product of some
polyhedra on the sets in A and on [n] \ ∪A. Using the following lemma we can compute the
linear systems describing these polyhedra if they exist. We denote the ith row of a matrix M
by mi and the ith coordinate of a vector v by vi.

Lemma 4.15. If a polyhedron P = {x ∈ Rn | Ax ≤ b} is a direct product of two polyhedra
P = P1 × P2 where P1 ⊆ RI and P2 ⊆ R[n]\I , then P1 is described by the system {x ∈ RI |
A′x ≤ b′} and P2 by the system {x ∈ R[n]\I | A′′x ≤ b′′}, where A′ and A′′ are the submatrices
of A restricted to I and [n] \ I respectively and the right hand sides are b′i := maxx∈P a′ix and
b′′i := maxx∈P a′′i x.

Proof. Let xI and x[n]\I denote the restrictions of x to I and [n] \ I respectively. Let P ′ := {x |
A′xI ≤ b′, A′′x[n]\I ≤ b′′}. It is clear that P ⊆ P ′ since P ′ consists of inequalities that are valid
for P . For the other direction, it is enough to show each ai ≤ bi is valid for P ′. Let x1 and x2

maximize a′i and a′′i respectively in P , then the vector (x1I , x
2
[n]\I) ∈ P maximizes both a′i and

a′′i (it is in P because P is a direct product). Thus

b′i + b′′i = a′i(x
1
I , x

2
[n]\I) + a′′i (x

1
I , x

2
[n]\I) = ai(x

1
I , x

2
[n]\I) ≤ bi.

which shows aix ≤ bi is implied by the two inequalities a′ixI ≤ b′i and a′′i x[n]\I ≤ b′′i that define
P ′.

With these tools, our algorithm goes as follows. First, check whether the affine hull could
be the affine hull of a g-polymatroid, using Claim 4.14, and compute the subpartition A. Next
we check whether Q is the direct product of some polyhedra on the sets Ai and on [n] \ ∪A:
using Lemma 4.15 we compute the possible linear descriptions of the factors Qi and then check
whether their direct product is Q. We then seek to use Theorem 4.4 (resp. Corollary 4.10) to
check whether Qi is a g-polymatroid (resp. base polyhedron).

4.3 Recognizing Integral Generalized Polymatroids

We can also decide whether a given linear system of the form (1) describes an integer g-
polymatroid. Again, there is a difference between the full-dimensional case and the non-full-
dimensional case. Suppose p and b are integral. If Q(p, b) is a full-dimensional g-polymatroid,
then it is an integral one, since the proof of Theorem 4.4 gave that the system is TDL, thus
TDI. But Q(p, b) may be a non-integral g-polymatroid when it is non-full-dimensional, see the
example at the start of Section 4.2.

Nonetheless, we now describe an algorithm to determine whether an arbitrary polyhedron
is an integral g-polymatroid. Assume without loss of generality that the system is given by a
minimal description, and as in the proof of Theorem 4.1 we may assume the description is as
in (1). Note p and b must be integral in order for Q(p, b) to be integral. In the full-dimensional
case we are done by the above remark. In the case that Q(p, b) is a max-dimensional base
polyhedron with x([n]) = c, it is additionally necessary that c is integral, but also sufficient
by considering the correspondence between base polyhedra and g-polymatroids. Finally, in the
general case, by Theorem 3.1 and Lemma 4.15 we can compute the description of some full-
dimensional g-polymatroids and base polyhedra, whose direct product is our g-polymatroid,
and with the above method we can check whether these are integer polyhedra. Since the direct
product of several g-polymatroids is integral if and only if each individual one is integral, this
answers whether our g-polymatroid is integral.

Note that we change the system during the algorithm, so we may ask whether there is a
necessary and sufficient condition in terms of p and b. The answer is positive:
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Theorem 4.16. Suppose that Q(p, b) is a g-polymatroid, and that it is minimally described.
Then Q(p, b) is an integer g-polymatroid if and only if p and b are integral and on every fixed-
sum set, the sum is integer.

Proof. The conditions are clearly necessary, because of minimality. For sufficiency suppose that
p and b are integral and on every fixed-sum set the sum is integer. It is enough to show that the
full dimensional g-polymatroid resp. max dimensional base polyhedra according to Theorem
3.1 have integral describing systems, because then by the above argument they are integer
polyhedra and so is Q(p, b). We use the following claim.

Claim 4.17. Let Q be a polyhedron for which Q = Q1 × Q2 where Q1 ⊆ RI and Q2 ⊆ R[n]\I .
Suppose that aix ≤ bi is an inequality in a system of Q which is not redundant and let a′ix ≤ b′i
and a′′i x ≤ b′′i be the inequalities for Q1 resp. Q2 according to Lemma 4.15. Then one of them
is an implicit equality.

Proof. Let dim(Q) = d. Because aix ≤ bi is not redundant, the face F := {x ∈ Q | aix = bi}
has dimension at least d−1. Let F ′ and F ′′ be the faces of Q given by F ′ = {x ∈ Q | a′ixI = b′i}
and F ′′ = {x ∈ Q | a′′i x[n]\I = b′′i }. Then F ⊆ F ′ ∩ F ′′. Suppose that a′ix ≤ b′i and a′′i x ≤ b′′i
are not implicit equalities. Then there exists a vector x1 ∈ Q1 such that a′ix

1 < b′i. Let x2 be
a vector in F ′′ (which is nonempty since F is nonempty). Then x3 := (x1, x2) is in F ′′ \ F ′.
Similarly there exists a vector x4 ∈ F ′ \F ′′. But there can not be two different faces of Q which
strictly contain its d− 1 dimensional face F .

Since every implicit equality is integer in the system with right hand p and b, by the above
claim, the systems that we get using Lemma 4.15 have also integer right hand side and it
remains true that implicit equalities are integer. By iterating this, we get describing systems
with integer right hand side for the terms in the decomposition according to Theorem 3.1. This
completes the proof of Theorem 4.16.

4.4 Oracle Model

Since we came up with a polynomial-time algorithm to recognize g-polymatroids when they are
presented explicitly, it is also interesting to consider whether the same could be accomplished
when the input polyhedron is given in an implicit form. Say that a linear optimization oracle
for a polyhedron P takes a cost-function c as input, and returns a point on P which maximizes
c · x. Then, the following information-theoretic argument shows that we cannot recognize g-
polymatroids with any number of queries polynomial in n. Recall the permutahedron

Π := {x ∈ Rn | x([n]) =
(
n+1
2

)
;∀S ⊂ [n], x(S) ≥

(
|S|+1

2

)
}

which is a “generic” max-dimensional base polytope, whose vertices are the permutations of
[n]. One may show that, when n ≡ 2 (mod 4), if we delete any one constraint for some S with
|S| = n/2, the modified polyhedron, call it ΠS , is no longer a g-polymatroid. Furthermore,
one may show that if a query can distinguish Π from ΠS , then that query cannot distinguish
Π from ΠS′ , where S′ is any other (n/2)-subset of [n]. Therefore, no deterministic algorithm
can recognize g-polymatroids with fewer than

(
n

n/2

)
= Ω(2n/

√
n) queries, and likewise any

randomized algorithm that is correct 2/3 of the time on all inputs needs Ω(2n/
√
n) queries.

5 Intersection Integrality

Theorem 5.1. Let P be a polyhedron whose intersection with each integral g-polymatroid is
integral. Then P is an integral g-polymatroid.
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Proof. Suppose that the nonempty polyhedron P is not an integer g-polymatroid. We want to
give an integral g-polymatroid Q for which P ∩Q is not integral. We can assume that P is an
integral polyhedron since if not, then Q1 = Rn will do.

Assume that P is bounded and integer. Then Theorem 1.5 implies that there is an edge of
P whose direction v is not in E := {χi : i ∈ [n]} ∪ {−χi : i ∈ [n]} ∪ {χi −χj : i, j ∈ [n]}. Let z
be an integer point on this edge. The cube z+ [−1, 1]n is a g-polymatroid, thus we can assume
that its intersection with P is integer. This implies that v can be chosen {0, 1,−1}n and z + v
is in P . Since v /∈ E, there are two coordinates of v which are the same, both 1 or −1, we can
assume that v1 = v2 = 1. Then the g-polymatroid Q2 defined by the paramodular pair

p(S) :=

{
z1 + z2 + 1 if S = {1, 2},
−∞ otherwise,

b(S) :=

{
z1 + z2 + 1 if S = {1, 2},
∞ otherwise,

is the affine hyperplane z + {x ∈ Rn : x1 + x2 = 1} which intersects the edge z + tv in a
noninteger vector z + 1

2v. Thus Q2 intersects P in a noninteger polyhedron, too.
Assume now that P is an unbounded integer polyhedron. By Theorem 1.5, there is a vector

z such that the tangent cone of P at z is not generated by vectors in the set E. Since P is
integral, we can choose z to be an integral vector. Let C be the cube z + [−1, 1]n. Then P ∩C
is a bounded polyhedron which is — again by Theorem 1.5 — not a g-polymatroid, since the
tangent cone at z did not change. Thus we can use the bounded case, which implies that there
is a polymatroid Q3 for which P ∩ C ∩Q3 is non-integer. Since the intersection of an integral
g-polymatroid with an integral box is again an integral g-polymatroid [12], C∩Q3 is an integral
g-polymatroid which intersects P in a non-integer polyhedron.

The pseudo-recursive characterization in Theorem 5.1 can be refined to ones less dependent
on external definitions:

Corollary 5.2. The polyhedron P ⊆ Rn is an integral g-polymatroid if and only if it has integral
intersection with each polyhedron Q of the following form: Q has some fixed integral coordinates
{ci}i∈F , optionally two distinct coordinates j, k /∈ F with fixed integral sum c, and the remaining
coordinates free, i.e.

Q = {x ∈ Rn | xi = ci,∀i ∈ F ; xj + xk = c} or Q = {x ∈ Rn | xi = ci,∀i ∈ F}. (13)

Proof. To prove the easy ⇒ direction of the proof, it is enough to verify that each such Q is an
integral g-polymatroid. This follows from standard constructions [11, Thm. 2.8]: Q is a direct
sum of copies of R, integer singleton sets, and possibly the plank xj + xk = c.

So now we focus on the ⇐ direction: given a polyhedron P which is not an integral g-
polymatroid, find an integral g-polymatroid Q of the desired form such that P∩Q is non-integral.
According to the proof of Theorem 5.1, there is an integer g-polymatroid Q — either Rn, or an
integer box, or the intersection of an integer box with the integer plank {x | xj + xk = c} — so
that P ∩ Q has a non-integer vertex z. In the third case, direct computation shows that Q is
either an (n − 2)-dimensional box with two fixed integer coordinates, or the direct product of
an (n− 2)-dimensional box with a line segment of the form {x | xi + xj = c, ℓ ≤ xi ≤ u}.

Next, let Q′ be the minimal face of Q containing z, and let Q′′ be the affine hull of Q′. Now
z is a vertex of P ∩Q′ since Q′ ⊆ Q. Also, z is a vertex of P ∩Q′′ since Q′ and Q′′ are identical
in a neighbourhood of z (by our choice of Q′).
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We claim Q′′ is the desired integral g-polymatroid. This is accomplished by the straightfor-
ward verification that no matter which of the three cases we are in, and no matter which face
of Q is Q′, we can describe Q′′ in the desired form. This completes the proof.

Corollary 5.3. The polyhedron P ⊆ Rn is an integral g-polymatroid if and only if, for every Q
which is an integer translate of a matroid independent set polytope, P ∩Q is integral.

Proof. Let Q0 be the polyhedron guaranteed by Corollary 5.2. The proof of Corollary 5.2
guarantees that P ∩Q0 has a non-integer vertex z. We consider two cases depending on which
of the two equations in (13) defines Q0. In the first case, Q0 has a constraint xj + xk = c. The
second case will turn out to be just a simpler version of the first, so we omit its proof.

Let Q′
0 be obtained from Q0 by replacing the equality constraint xj+xk = c by the inequality

xj + xk ≤ c. We claim z is still a vertex of Q′
0 ∩ P , which is evident since any expression as z

as a strictly convex sum of two points in Q′
0 ∩P would have both of these two points satisfying

xj + xk = c, contradicting that z is a vertex of Q0 ∩ P . Then, let Q′′
0 be obtained from

Q′
0 as Q′′

0 := {x ∈ Q′
0 | ⌊z⌋ ≤ x ≤ ⌈z⌉} (here floor and ceiling act component-wise). Since

z ∈ Q′′
0 ⊆ Q′

0, we still have that z is a vertex of P ∩Q′′
0 . Moreover, Q′′

0 − ⌊z⌋ is easily verified
to be the independent set polytope of a matroid on [n] where elements {i | zi integer} are
loops, elements j and k are parallel, and all other elements are co-loops. So Q = Q′′

0 proves the
corollary.

Corollary 5.3 directly implies the following description of g-polymatroids as an axiomatic
generalization of matroids:

Corollary 5.4. Let C be an inclusion-maximal class of polyhedra such that (i) C includes all ma-
troid independent set polytopes, (ii) C is closed under integer translation, and (iii) the intersec-
tion of any two polyhedra in C is integral. Then C equals the class of all integral g-polymatroids.

6 Truncation-paramodularity

In this section, we introduce truncation paramodularity, a new notion implying total dual lami-
narity. As illustrated by the diagram in the introduction, truncation paramodularity is implied
by the notion of near paramodularity from [10, 11].

Definition 6.1 (separation, near paramodularity [10, 11]). We call a set S b-separable from
below if there is a non-trivial partition {Si : i ∈ [t]} of S for which

∑
b(Si) ≤ b(S). Similarly,

S is p-separable from above if there is a non-trivial partition {Si : i ∈ [t]} of S for which∑
p(Si) ≥ p(S). We omit “from above/below” when the context is clear.
The pair (p, b) is near paramodular if it satisfies the following:

(i) b satisfies the submodular inequality for non-b-separable conflicting sets,

(ii) p satisfies the supermodular inequality for non-p-separable conflicting sets,

(iii) the cross-inequality b(S) − p(T ) ≥ b(S \ T ) − p(T \ S) holds for every conflicting non-b-
separable S and non-p-separable T .

It is clear from the definition that an intersecting paramodular pair is also near paramodular.
Next, we introduce the weaker notion of truncation paramodularity.
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Definition 6.2 (truncation, truncation paramodularity). The upper truncation of a set function
p : 2[n] → R ∪ {−∞} is defined by

p∧(S) = max{
∑

Z∈F

p(Z) | F is a partition of S},

where the trivial partition {S} is also allowed. Similarly, the lower truncation of a set function
b : 2[n] → R ∪ {+∞} is

b∨(S) = min{
∑

Z∈F

b(Z) | F is a partition of S}.

The pair (p, b) is truncation paramodular when (p∧, b∨) is near paramodular.

Claim 6.3. Near paramodularity implies truncation paramodularity.

Proof. There are two useful observations to make here (along with analogues for p): (i), that
b-separability is identical to b∨-separability; (ii), that every non-b-separable set S has b∨(S) =
b(S). This gives an alternate definition of truncation paramodularity, that every conflicting
pair of non-separable sets should satisfy paramodular inequalities like p∧(S ∪ T ) + p∧(S ∩ T ) ≥
p(S) + p(T ) and analogues. Using that definition along with b∨ ≤ b and p∧ ≥ p, the result
follows.

We now show the new notion is still strong enough to imply total dual laminarity:

Theorem 6.4. If the pair (p, b) is truncation-paramodular, then it is TDL.

Proof. We have to show that for any integral objective function c, there is a laminar optimal
dual solution. We can assume that there is an integral optimal dual solution since if y is an
arbitrary rational optimal dual solution, and N is the lowest common denominator of y, then
for the objective function Nc, Ny is an integral optimal dual solution and the set of possible
support systems did not change.

Let us order the subsets of [n] in such a way that if X ⊂ Y then X comes first, that is,
we take a linear extension of the poset (2[n],⊆). Let y = (yℓ, yu) be the integral optimal dual
solution for which yℓ is lexicographically maximal in the above order, and with respect to this,
yu is lexicographically maximal.

We claim that no set in supp(yℓ) is p-separable and no set in supp(yu) is b-separable. Suppose
indirectly that for a partition {Xi : i ∈ [t]} of X ∈ supp(yℓ),

∑
p(Xi) ≥ p(X) holds. Then by

decreasing yℓ on X by one and increasing it on each Xi by one, we get an integral optimal dual
solution for which the first part is lexicographically larger than yℓ, a contradiction. The other
part is similar.

Now we claim that supp(yℓ) ∪ supp(yu) is laminar. Suppose first that there are conflicting
sets X,Y in supp(yℓ). Since X and Y are not p-separable, inequality p∧(X ∩Y )+ p∧(X ∪Y ) ≥
p(X) + p(Y ) holds, with partitions F∩ and F∪ giving the upper truncation values. Thus if
we decrease yℓ on X and Y by 1 and increase it on the elements of F∩ and F∪ by 1, we get
again an integral optimal dual solution for which the first part is lexicographically larger than
yℓ, a contradiction. We can prove similarly that supp(yu) is laminar. Now suppose that for
X ∈ supp(yu) and Y ∈ supp(yℓ), X and Y are conflicting. Since X is not b-separable and
Y is not p-separable, inequality b(X) − p(Y ) ≥ b∨(X \ Y ) − p∧(Y \X) holds, with partitions
F1 and F2 giving the upper truncation values. Thus if we decrease yℓ on X and Y by 1 and
increase it on the elements of F1 and F2 by 1, we get again an integral optimal dual solution
for which the first part is lexicographically larger than yℓ, a contradiction. This proves total
dual laminarity.
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6.1 An application: the supermodular coloring theorem

The following colouring theorem is an extension of Schrijver’s supermodular coloring theo-
rem [23], and of the skew-supermodular colouring theorem in [3]. Our proof is a descendant of
Schrijver’s proof [24, §49.11c]. We show that it is a consequence of Theorem 6.4.

Theorem 6.5. Let k be a positive integer and let f1 and f2 be nonnegative integer-valued set
functions on ground set [n], which satisfy the following properties:

(i) max{f1(S), f2(S)} ≤ min{k, |S|} for each S ⊆ [n],

(ii) for every conflicting S, T ⊂ [n], there exist U ⊆ S∪T and I ⊆ S∩T such that f(U)+f(I) ≥
f(S) + f(T ).

Then [n] can be coloured with k colours so that every set S ⊆ [n] contains at least max{f1(S), f2(S)}
colours. Moreover there is such a colouring where each colour is used ⌊n/k⌋ or ⌈n/k⌉ times.

Proof. We can assume w.l.o.g. that f1 and f2 have value 1 on every singleton. We use induction
on k; the claim is evident for k = 1. For the inductive step, we want to define the k-th color
class C so that f ′

i(S) := max{fi(S),maxX⊆C fi(S ∪ X) − 1} (i = 1, 2) fulfill the criteria on
ground set [n] \ C with k − 1 colors. Equivalently, C has to satisfy pi(S) ≤ |C ∩ S| ≤ bi(S)
(i = 1, 2) for every set S ⊆ [n], where

pi(S) :=

{
1 if S is minimal such that fi(S) = k,

−∞ otherwise ,

bi(S) := |S| − fi(S) + 1.

In other words χC ∈ Q(p1, b1)∩Q(p2, b2). In addition, we also require that ⌊n/k⌋ ≤ |C| ≤ ⌈n/k⌉.
We claim that (pi, bi) is a truncation-paramodular pair for i = 1, 2. First, pi clearly satisfies

(ii) of Definition 6.2, since the minimal sets on which fi is k are disjoint.
For some i, let S and T be conflicting and not bi-separable. There exist U ⊆ S ∪ T and

I ⊆ S ∩T such that fi(U)+ fi(I) ≥ fi(S)+ fi(T ). Using that bi is 1 on each singleton, we have

b∨i (S ∪ T ) ≤ bi(U) + |(S ∪ T ) \ U | = |S ∪ T | − fi(U) + 1 and

b∨i (S ∩ T ) ≤ bi(I) + |(S ∩ T ) \ I| = |S ∩ T | − fi(I) + 1,

hence

bi(S) + bi(T ) = |S|+ |T | − fi(S)− fi(T ) + 2

≥ |S ∪ T |+ |S ∩ T | − fi(U)− fi(I) + 2 ≥ b∨i (S ∪ T ) + b∨i (S ∩ T ).

Finally we show that (iii) of Definition 6.2 is trivially satisfied because there are no conflicting
sets S and T with that property. Let S be a minimal set such that fi(S) = k, and let T be a
conflicting set; we claim that T is bi-separable. Indeed, we know that there are sets U ⊆ S ∪ T
and I ⊆ S ∩ T such that fi(U) + fi(I) ≥ fi(S) + fi(T ). We have fi(U) ≤ k = fi(S), hence
fi(I) ≥ fi(T ). This gives bi(T ) ≥ bi(I) + |T \ I|, so the partition {I, {v : v ∈ T \ I}} shows that
T is bi-separable.

Since (pi, bi) is a truncation-paramodular, Q(pi, bi) is an integer g-polymatroid (i = 1, 2).
Thus the common intersection with a plank Q(p1, b1)∩Q(p2, b2)∩ {x : ⌊n/k⌋ ≤ 1x ≤ ⌈n/k⌉} is
integral. It is also non-empty, because the vector 1

k1 is an element. We can choose an arbitrary
set C whose characteristic vector is in the polyhedron, and get the remaining k−1 colour classes
by induction.
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Remark. If f is a skew-supermodular function, then we can construct a function f ′ by f ′(S) = 0
if f(S) ≤ 0 or there is a set T ( S such that f(T ) ≥ f(S), and f ′(S) = f(S) otherwise. The set
function f ′ satisfies the properties of Theorem 6.5, and a feasible colouring for f ′ is also feasible
for f . Thus Theorem 6.5 is a generalization of the skew-supermodular colouring theorem in [3].

6.2 Checking truncation-paramodularity in polynomial time

Can truncation-paramodularity of a pair (p, b) can be checked in polynomial time if the input
consists of the finite values of the two functions? The naive approach does not work — in-
deed, separability testing and computing p∨/b∧ are NP-hard, by reduction from 3-dimensional
matching. Nonetheless, in contrast to the hardness of checking total dual laminarity,

Theorem 6.6. Let p : 2[n] → Z ∪ {−∞} and b : 2[n] → Z ∪ {+∞} be set functions, given by
an explicit enumeration of their finite values. We can decide in polynomial time if (p, b) is a
truncation-paramodular pair.

Proof. Let B (resp. P) be the family of all sets where b (resp. p) is finite. We first show an
algorithm that decides if b∨ satisfies the submodular inequality for conflicting sets which are
non-b-separable, and at the same time identifies all non-b-separable sets in B.

We enumerate all sets in B and all conflicting pairs S, T ∈ B in one series A1, A2, . . . , Ak in
an order of increasing size, where the size of a pair is the size of the union. We consider the sets
in this order. Suppose that for a given index t we have already identified all non-b-separable
sets with index smaller than t, and we have established that the submodular inequality for b∨

holds for all conflicting non-b-separable pairs of index smaller than t.
Suppose first that At is a set S ∈ B.

Claim 6.7. For any T ( S, b∨(T ) = max{x(T ) | x(Z) ≤ b(Z) ∀Z ⊆ T}.

Proof. Let γ = max{x(T ) | x(Z) ≤ b(Z) ∀Z ⊆ T}. At this point of the algorithm we know that
the set function b∨ |Z:Z⊆T is submodular on conflicting non-b-separable pairs. Therefore the LP
max{x(T ) | x(Z) ≤ b(Z) ∀Z ⊆ T} has a laminar dual optimal solution y, which satisfies yb = γ
and yχ = χT . By laminarity, the inclusionwise maximal elements of supp(y) form a partition
F of T .

We claim that
∑

Z∈F b(Z) = γ. Indeed, let ǫ = min{yZ : Z ∈ F}. If
∑

Z∈F b(Z) > γ, then
we can construct a dual solution y′ of objective value smaller than γ by

y′Z =

{
yZ−ǫ
1−ǫ if Z ∈ F ,
yZ
1−ǫ if Z /∈ F .

This would contradict the optimality of y, thus b∨(T ) = γ.

Due to the claim we can test in polynomial time whether S is b-separable: we can compute
b∨(S \ T ) for every T ∈ B which is a subset of S. Then S is non-b-separable if and only if
b∨(S \ T ) + b(T ) > b(S) for any such T .

Suppose now that At is a conflicting pair S, T ∈ B. We have already checked if both are
b-separable; let us assume that they are. A proof similar to the proof of the above claim shows
that we can compute b∨(U) for any U ( S ∪ T . Thus we can compute b∨(S ∩ T ), and we can
also determine b∨(S ∪ T ) by computing b∨((S ∪ T ) \ U) for every U ∈ B which is a subset of
S ∪ T . Therefore we can decide whether b(S) + b(T ) ≥ b∨(S ∩ T ) + b∨(S ∪ T ) holds. This
concludes the description of the first algorithm.
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An analogous algorithm can be used to decide if p∧ satisfies the supermodular inequality
for conflicting sets which are not separable from above with respect to p, and to identify all
separable sets in P.

It remains to check whether the cross-inequality for p∧ and b∨ holds for conflicting non-b-
separable pairs. Since we have already identified the non-separable sets, and we can compute
p∧ and b∨ on any set by linear programming, this can be done in polynomial time.

Testing near paramodularity is likewise in P; the essential difference is that with near par-
modularity, we do not need to keep track of the values of p∨/b∧.

7 Minkowski Sum Characterization

In this section we use several results proven for generalized permutahedra, and the fact that
this class is equivalent to bounded base polyhedra (Theorem 1.7). The following was shown in
[1, Prop. 2.3]:

Theorem 7.1. If P is a bounded base polyhedron, then there exist nonnegative real coefficients
{λ−

I , λ
+
I }∅ 6=I⊆[n] such that

P +
∑

I

λ−
I △I =

∑

I

λ+
I △I (14)

where + means the Minkowski sum. Moreover, each bounded base polyhedron has such a repre-
sentation where either λ+

I or λ−
I is zero for all I, and this constrained representation is unique.

We observe that the following converse holds:

Observation 7.2. Only bounded base polyhedra can satisfy the representation in the statement
of Theorem 7.1.

Proof. As mentioned earlier, [20, Prop. 3.2] showed that P is a generalized permutahedron if and
only if its normal fan refines the normal fan of the permutahedron. So we need only show that
when the condition (14) holds, P satisfies this refinement condition. Unwrapping the definitions
of refinement, normal fans, and permutahedra, we must show that for all n-permutations π, all
objective functions c with cπ[1] ≥ cπ[2] ≥ · · · ≥ cπ[n] have a common maximizer xπ in P .

For any π, all its corresponding c have a common maximizer for the right-hand side of
(14), namely

∑
I λ

+
I χargmin{π[i]:i∈I}. The summand

∑
I λ

−
I △I has a similar maximizer. Then

the equality of Minkowski sums (14) implies that P has a common maximizer xπ =
∑

I(λ
+
I −

λ−
I )χargmin{π[i]:i∈I} for all such c, as needed.

Then Theorem 1.3 follows from Theorem 7.1, the observation above, and Theorem 1.4.

8 Open Questions

We showed that checking total dual laminarity is NP-hard. We can show that the problem
lies in coNP

NP = ΠP
2 : first we check for g-polymatroidality, and then for every combinatorial

order type of objective (i.e., every cone in the normal fan of generic g-polymatroids) we check
boundedness for those objectives, and if so, whether a dual laminar optimum exists. This still
leaves a gap: is testing TDL ΠP

2 -complete, NP-complete, or something else?
It would be interesting to come up with characterizations of other well-known general classes

of polyhedra. One example would be a clean characterization of polyhedra that can be obtained
as the intersection of two g-polymatroids, or a characterization of those set-families which equal
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the common independent sets of two matroids. Another example would be to characterize
lattice polyhedra.

There is some interesting recent work on what constitutes an obstacle to submodularity [26],
which seems to be relevant. We would be interested in progress on the following submodular
extension problem: given n and a collection of pairs {(Si ⊆ [n], vi)}i, determine whether there
is any submodular f so that f(Si) = vi for all i. It can be solved in exponential time by linear
programming on all 2n values of f , like in [26]. Is there a polynomial-time algorithm, or is this
problem NP-hard?
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