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Abstract

Ultrametrics model the pairwise distances between living species, where the distance is measured
by hereditary time. Reconstructing the tree from the ultrametric distance data is easy, but only if
our data is exact. We consider the NP-complete problem of finding the closest ultrametric to noisy
data, as modeled by multiplicative or additive total distortion, with or without a monotonicity
assumption on the noise.

We obtain approximation ratio O(log n) for multiplicative distortion where n is the number
of species, and O(1 + (ρ − 1)−1) for additive distortion where ρ is the minimum ratio of any two
distinct input distances. As part of proving our approximation bound for additive distortion,
we give the first constant-factor approximation algorithm for a previously-studied problem called
Cluster Deletion.
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1. Introduction

Given a set of points V , a metric on V is a non-negative symmetric function m satisfying the
triangle inequality mij ≤ mik+mkj for every triple i, j, k of points in V, with mii = 0 for each i ∈ V .
(Note that we do not require that mij = 0 if and only if i = j.) An ultrametric u is defined similarly,
except that we strengthen the triangle inequality requirement to uij ≤ max{uik, ukj}. This latter
condition is equivalent to requiring that in every triangle induced by any triple of points, the two
longest sides have the same length.

The most natural motivation for ultrametrics comes from biology, specifically from the study
of phylogenetic trees. Specifically, the phylogenetic “tree of life” forms an ultrametric on all living
species, where the distance between species is the time elapsed since they had a common ancestor
(see [1, 2] for more). In particular, one of the most prominent problems in computational biology
is reconstructing the evolutionary tree [2], using DNA and RNA distances as an estimate of the
evolutionary time separating two species. It is easy to reconstruct the evolutionary tree if the input
distances exactly form an ultrametric. Unfortunately, the input data are generally only close to
an ultrametric, rather than exactly so, since several factors interfere with molecular dissimilarity
as a measure of hereditary time: the randomness of the evolutionary process, sampling particular
individuals as representatives of a species, different speeds of gene change in different species, and
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horizontal transfer [1] which disrupts the tree-based model. Hence, it makes sense to find an
ultrametric that is closest to the observed data, which models the true underlying phylogenetic
tree.

1.1. Problem description

We consider several variants of the closest ultrametric problem. In each we are given as input a
non-negative function d on a finite set of points V = {1, . . . , n}, such that d is symmetric (dij = dji
for all points i, j ∈ V ) and dii = 0 for each i. We do not assume that d is a metric. The goal is to
compute an ultrametric u that is “closest” to d, under a certain measure of dissimilarity.

We focus on two different measures (i.e., objective functions) of the dissimilarity between d and
u, both of which have been commonly used in the literature:

• net additive distortion (“`1”): the dissimilarity of d and u is
∑

i<j |dij − uij |;

• net multiplicative distortion: the dissimilarity of d and u is
∑

i<j max{dij/uij , uij/dij}.

In the multiplicative case, we require that the input satisfies dij 6= 0 for each i 6= j in order that
the objective is well-defined.

We model the set of feasible output ultrametrics in two ways. We consider:

• the non-contractive model, (or min-increment [3, 4]) where we require u ≥ d;

• the unrestricted model, where the above condition is not required.

For comparison, the contractive model requires u ≤ d. However, this is a solved case because
every d has a unique subdominant ultrametric ud which is as close as possible to d. Namely, define
udij as the maximum value of xdij taken over all ultrametrics x with x ≤ d. Then it can be shown

that ud is an ultrametric. So in the contractive model, ud is simultaneously as close as possible in
each coordinate to d, and a simple algorithm based on spanning trees can compute ud efficiently
(e.g., see [5, 6]). For this reason, we only consider the non-contractive and the unrestricted models.

From the perspective of biological applications, one motivation for the non-contractive model
is the fact that a DNA mutation at some position can mask or cancel out an earlier mutation at
the same position, causing the genetic distance to be less than what the evolutionary time would
predict.

Throughout the paper, we use n := |V | as the number of points/species, and ρ := min{dij/dk` |
dij > dk`} as the smallest ratio between two distinct input distances. Furthermore, we assume d to
be integer valued: this can be done without loss of generality whenever the input data is rational.

1.2. Our results and techniques

All the problems under consideration cannot be exactly solved by a polynomial time algorithm,
assuming P 6= NP [7, 6]. Therefore, it makes sense to look for approximation algorithms. In
particular, an α-approximation algorithm (also said to have approximation ratio α) is one that
runs in polynomial time and outputs an ultrametric uALG so that the distortion of d and uALG is
at most a factor α times the optimal distortion between d and the optimal ultrametric uOPT . We
also investigate hardness-of-approximation. In this respect, we recall that if a problem is APX-hard,
then for some fixed ε > 0, it is NP-hard to compute a (1 + ε)-approximately optimal solution.
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We first deal with net multiplicative distortion. We give an O(log n)-approximation algorithm
for finding the closest ultrametric, in both the non-contractive and unrestricted models. This
improves over the previous known best approximation bound of O

(
log dmax

dmin
log n

)
given by [8],

where dmax and dmin are the maximum and the minimum distance values, respectively.
In conjunction with our algorithmic results, we show that finding the closest ultrametric under

net multiplicative distortion in the non-contractive model is APX-hard. In fact, our positive and
negative results for this problem establish that the best possible approximation factor is the same
as for Multicut, up to constant factors. Our techniques are based on linear programming (LP)
relaxations of integer linear programming (ILP) formulations, and we show that the integrality
gap for the multiplicative version is Ω(log n), which rules out any approximation ratio better than
O(log n) for algorithms based on this relaxation. (The integrality gap is the worst-case ratio between
the ILP’s optimal value and the optimal value of the LP obtained by removing all integrality
constraints.)

For net additive distortion, we give an O(1 + (ρ − 1)−1)-approximation algorithm for finding
the closest ultrametric, in both the non-contractive and unrestricted models. Shamir et al. [9]
proved that finding the closest ultrametric to d in the non-contractive model is APX-hard, even
if dij ∈ {0, 1} for every i, j. In fact this restricted problem has quite a natural combinatorial
description: given a graph, delete the minimum number of edges so that the remaining graph is a
disjoint union of cliques. Shamir et al. [9] call this problem Cluster Deletion; it is called Min-
ECP in [10]. As part of proving our approximation bound for net additive distortion, we will give
a 4-approximation algorithm for Cluster Deletion (Section 4.3); to the best of our knowledge,
no constant-factor approximation algorithm for it was known. We also extend the result on net
additive distortion to `p distortion (Section 4.4).

All of our approximation algorithms have the same framework. First, we take advantage of
structural theorems which assert that there is an optimal (or near-optimal) solution where the
possible lengths comprising u come from a discrete set. Then, we write an integer linear program-
ming formulation which assigns each edge a value from this set, while respecting the strengthened
triangle inequality. The possible lengths give rise to “layers” in the ILP. We first tackle the problem
of approximately solving each individual layer. Then we use a simple algorithm to combine all of
the layers. Where necessary, we also use scaling and rounding techniques.

1.3. Related work

Several papers deal with finding the closest ultrametric under multiplicative distortion. In
both the non-contractive and unrestricted cases, there is a O

(
log dmax

dmin
log n

)
-approximation algo-

rithm given in [8]. For the non-contractive case [11] proves that any metric space embeds into an
ultrametric with small “scaling distortion”, which is O(1)-approximately optimal.

Cavalli-Sforza and Edwards [12] proposed to minimize the `p-distortion for some p ≥ 1, where
the `p-distortion is (

∑
i,j∈V |uij − dij |p)1/p. Note that `1 distortion is additive distortion. The

unrestricted case was proven to be NP-hard for p = 1 by Křivánek and Morávek [7], and APX-hard
in [8], which extends to any fixed p ≥ 1. The NP-hardness of the non-contractive version was
proven in [6]. On the positive side, O(min{log n log log n, k log n}1/p)-approximations are known
for both the unrestricted and non-contractive versions of `p distortion [8, 13] (here k is the number
of distinct values in the range of d). For the special case of the additive unconstrained version
in which d takes only integer values in {0, . . . ,M} (which is of interest because of hierarchical
clustering problems), O(M + 1)-approximation algorithms are known — a deterministic one in
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[13], and a simpler randomized one in [14]. The `∞ distortion, defined as maxi,j |uij − dij |, admits
polynomial time exact algorithms for both the unrestricted and the non-contractive cases [6, 4].

In developing our algorithms, we will use several graph optimization problems as subroutines.
We already mentioned the Multicut problem. The best known approximation factor for Mul-
ticut is O(log k), where k is the number of terminal pairs [15]; improving this is a long-standing
open problem. The lower bounds on its approximability are as follows: it is APX-hard [16]; it is
NP-hard to approximate to any constant if we assume the Unique Games Conjecture [17]; and it
is NP-hard to Ω(

√
log log n)-approximate under a slightly stronger assumption [17].

Recall Cluster Deletion, mentioned earlier, for which we give the first constant-factor ap-
proximation algorithm. A problem related to weighted Cluster Deletion that we will utilize is
minimum correlation clustering (MinCC). We are here given n points, and for each unordered pair
{i, j} of those points, a weight wij and a single bit of information: either there is an edge between
i and j (positive correlation), or not (negative correlation). Call this graph G = (V,E). The cost
of editing G to obtain another graph H = (V, F ) is defined as the sum of the weights of the edges
which appear in E4F . Then the weighted MinCC problem is to find an H with minimum edit
cost from G such that H is a disjoint union of cliques. Even if all of the weights are 1, MinCC is
APX-hard [18]. In this special setting, a deterministic 4-approximation algorithm based on linear
programming was given in [18], and in [19] a very simple randomized 3-approximation algorithm
was obtained. If the weights are 0-1, the problem is at least as hard to approximate as Multi-
cut [18]. An O(log n)-approximation algorithm is the best known [18, 20, 21, 22] for this case and
as well for arbitrary weights. The maximization version of correlation clustering, where the objec-
tive is to maximize the weights of the edges not in E4F , admits a constant-factor approximation;
see [23, 18, 24].

Dessmark et al. [10] give a O(log n)-approximation algorithm for weighted Cluster Deletion
by reducing it to weighted MinCC. They also give an oracle-2-approximation for unweighted Clus-
ter Deletion where the oracle allows exact solution of the NP-hard maximum clique problem.

Ultrametrics are a special case of tree metrics. A distance function on a finite set V is a tree
metric if there exists a weighted tree, whose vertex set contains V , such that the distance between
any two points in V is equal to the length of the unique path connecting them in the tree. There
is a rich mathematical literature about tree metric embeddings. There are commonalities to some
of the most famous results, such as the Johnson-Lindenstrauss lemma, Bourgain’s theorem, and
FRT (Fakcharoenphol-Rao-Talwar) trees. Those results deal with a “distortion” equal to maximum
multiplicative distortion (usually contractive or non-contractive by convention). Furthermore, they
focus on the worst possible distortion over all possible inputs. In contrast, what we seek in the
present paper is an as-close-as-possible ultrametric embedding on each instance; the ratio that
we are concerned with is an algorithmic approximation ratio measuring how close we can get to
this per-instance goal. For example, in the contractive case, even though some d need arbitrarily
high distortion in order to become ultrametrics, we consider this problem well-solved (as having
an approximation ratio of 1) because we can find exactly the closest ultrametric to each input
instance. This per-instance approximation question is relatively recent; see Dhamdere’s thesis [25]
for an early survey of work along this line.

2. LP formulation and layer combination

We now describe a natural linear program for ultrametric approximation, following previous
work such as [13]. For all versions of ultrametric approximation, we will fix the possible values of
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u in advance. In particular, we will construct a set δ0 < δ1 < · · · < δk of values and force u to
only take values amongst the δi’s. We will describe later how to choose the δi’s; at this stage, let
us assume that these values are given.

Let
(
V
2

)
represent the set of all unordered pairs of nodes, i.e., the set of edges, which we write

as {i, j} or ij. Define a binary variable xte whose value is 1 if and only if ue ≥ δt. Then the set of
feasible ultrametrics with range in {δi}i can be modeled as follows:

xte ≥ xt+1
e , ∀e ∈

(
V
2

)
, 1 ≤ t < k, (1)

xtij + xtjk ≥ xtik, ∀i, j, k ∈ V, 1 ≤ t ≤ k, (2)

xte ∈ {0, 1}, ∀e ∈
(
V
2

)
, 1 ≤ t ≤ k. (3)

Inequality (2) ensures that no triangle has a unique maximum length edge. The index t starts at
1 and not 0, since x0e = 1 would hold for all e ∈

(
V
2

)
given that ue ∈ {δi}i ⇒ ue ≥ δ0, and instead

we eliminate these constant variables.
The non-contractive case is modeled by adding the constraints

xte = 1, ∀e ∈
(
V
2

)
, t : de > δt−1. (4)

The objective function of the model depends on the choice of the distortion, but in all cases
treated here it will be a linear (or more precisely, affine) function. Therefore the resulting model is
an integer linear program.

The variables and constraints associated with a particular value of the index t are referred to as
layer t. More precisely, we think of layer t as consisting of the constraints (2) along with integrality
(3) and, when appropriate, non-contractivity (4). Our approach with this ILP is to solve each single
layer problem in isolation, and then to combine the layers in such a way that the monotonicity (1)
is satisfied. The single layer problems will in general be too hard to solve exactly but it will instead
be enough to obtain approximation algorithms for them.

We first show that the following simple method gives a feasible output: give each edge the
longest length assigned to it by any layer.

Lemma 1 (Layer combination). Suppose that x satisfies (2) and (3) but not (1). Define yte to be 1
if any xse with s ≥ t has xse = 1, and 0 otherwise. Then y satisfies (1)–(3). Moreover, if x satisfied
(4) then so does y.

Proof. The only nontrivial part to prove is that y satisfies (2). Since y is 0-1, all we need to show
is that if i, j, k, t satisfy ytik = 1, then ytij + ytjk ≥ 1. But there must have been some s ≥ t such that

xsik = 1; by the definition of y we have ytij + ytjk ≥ xsij + xsjk ≥ xsik = 1 as needed, since x satisfied
(2).

In the rest of the paper we will provide analysis and additional techniques to show that the
cost of this approach is not too large, for some particular choice of δi’s. For conciseness, in the
rest of the paper, we use Closest-Ultrametric as a general name for the four problems that we
study; we attach a superscript × or + depending on whether we consider multiplicative or additive
distortion; and we attach a subscript > when we deal with the non-contractive case.
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3. O(logn)-approximation for multiplicative distortion

A useful fact for the multiplicative problem is the following. It was used, for example, implicitly
in [8].

Observation 2. Let dist(a, b) denote the net multiplicative distortion between two distance func-
tions a and b, and λ > 1. If a and a′ are such that each pair a′ij , aij differ in ratio by at most a
factor of λ, then for any b, dist(a′, b) and dist(a, b) differ in ratio by at most a factor of λ.

Now let d be the original input and obtain d′ by rounding each distance up to the next power
of 2. It follows from the observation above that an α-approximately optimal ultrametric uA for d′

will be a 8α-approximately optimal ultrametric for d. Indeed, for any ultrametric u (with u ≥ d if
we are considering the non-contractive case),

dist(d, uA) ≤ 2 dist(d′, uA) ≤ 2α dist(d′, 2u) ≤ 8α dist(d, u),

where (i) the first inequality follows from Observation 2; (ii) the second inequality holds because
the distance between uA and d′ is at most α times the distance between d′ and any ultrametric
(as long as, in the non-contractive case, such ultrametric dominates d′: this is ensured as in this
case u ≥ d and therefore 2u ≥ d′); (iii) the third inequality follows by applying Observation 2 first
with respect to u and 2u, and then with respect to d and d′. Moreover, if uA is a non-contractive
ultrametric for d′, it is also a non-contractive ultrametric for d. Therefore uA is 8α-approximately
optimal for d. (With little more effort, one proves that uA is indeed 4α-approximately optimal
for d.) Hence, since we seek only an O(log n) approximation ratio, we will assume without loss of
generality that all dij ’s are powers of 2.

3.1. Non-contractive approximation (Closest-Ultrametric×>)

For the non-contractive version, the next lemma will provide a way to define the δi’s values.

Lemma 3. Let u be an ultrametric with u ≥ d. Obtain u′ by rounding down each uij to the closest
value in the range of d, i.e. u′ij = max{dk` | dk` ≤ uij}. Then u′ is an ultrametric with u′ ≥ d, and
dist(u′, d) ≤ dist(u, d).

Proof. It is clear that u′ ≥ d and dist(u′, d) ≤ dist(u, d). Assume by contradiction that u′ is not
an ultrametric, i.e., there are i, j, k ∈ V such that u′ij > max{u′ik, u′jk}. Then we would also have
uij > max{uik, ujk}, contradicting the fact that u is an ultrametric.

Corollary 4. There is an optimal non-contractive ultrametric u such that the range of values of u
is a subset of the range of values of d.

In accordance with Lemma 3, we set the δi values equal to the values in the range of d, which
we assume to be powers of 2. In other words, {δ0, δ1, . . . , δk} = {dij | i 6= j}. We attach the
following objective function to the constraints (1)–(4), yielding an integer linear program that
models multiplicative error in the non-contractive case:

min
∑
e

1 +
∑

t:δt>de

xte · (δt − δt−1)/de

 . (5)
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Figure 1: Converting a non-minimal multicut to a minimal one. Let G = (V,E) be the graph shown, where T has
only one terminal pair ad. Left: the edges labelled 1 form a multicut, but taking these labels for xt does not satisfy
(7) in triangle a, c, b. Right: replacement by a minimal multicut, which satisfies (7).

There is a constant term in the objective which we will usually ignore, since from the perspective
of minimization, adding a non-negative constant cost can only make the approximation ratio of a
given algorithm better. We can view the non-constant portion of the objective as the sum of an
objective function for each individual layer, where layer t gets the terms that are linear in some xt

variable. Let us temporarily ignore the monotonicity constraint (1) and investigate the problem
that each layer t gives rise to. We obtain the following layer-t-problem:

min
∑

e:δt>de

xte · (δt − δt−1)/de (6)

xtij + xtjk ≥ xtik, ∀i, j, k ∈ V, (7)

xte = 1, ∀e : de > δt−1, (8)

xte ∈ {0, 1}, ∀e ∈
(
V
2

)
. (9)

There are variables for each {i, j}; some are fixed to 1 by (8) and the rest can be either 0 or 1. The
objective function is a weighted non-negative linear combination of the non-fixed variables. The
most important task is to find a natural interpretation for the constraint (7). Recall that weighted
Multicut is the following problem: given a weighted graph G = (V,E) and a set T of terminal
pairs, delete a minimum-weight set M ⊆ E of edges so that for every ij ∈ T, there is no i-j path
in E \M .

Lemma 5. Consider an instance of weighted Multicut on graph G = (V,E) where the edge set
E is the set of edges corresponding to non-fixed variables, i.e.,

{
e ∈

(
V
2

)
| de < δt

}
, and the set of

terminal pairs is T =
(
V
2

)
\E. Then the optimal value for the layer-t-problem equals the minimum

multicut cost.

Proof. We claim that if xt is feasible for the layer-t-problem, then for each ij with xtij = 1, every
i-j path includes at least one edge set to 1. This follows directly from the triangle inequality (7) for
paths with exactly two edges. Now assume that a path has k ≥ 3 edges and denote by i0, i1, . . . , ik
its nodes. If xti0i1 = xti1i2 = 0, then by (7) also xti0i2 = 0; we can then apply induction on the path
i0, i2, i3, . . . , ik and conclude that at least one variable xtijij+1

with j ≥ 2 is set to 1.

Therefore if xt is feasible for the layer-t-problem, then for each ij with xtij = 1, every i-j path
contains an edge set to 1. This implies that every feasible xt yields a feasible multicut.

It is false that every multicut is feasible for the ILP; see the left side of Figure 1. However,
this is only because of non-minimal multicuts. Given a multicut M , let π be the partition of V
induced by the connected components of E \M . Then taking only those edges in M which span
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two different parts of π yields a multicut M ′ ⊆M . By setting the non-fixed variables equal to the
characteristic vector of M ′, i.e., by setting xte = 1 for all e ∈M ′, we obtain a feasible ILP solution,
as it is not possible that a triangle has exactly one edge in M ′. See the right side of Figure 1 for
an illustration.

An O(log n)-approximation algorithm for Weighted Multicut is known [15]. Thus, we can
find an O(log n)-approximate solution to each of the k layer-t-problems. Let us now show that,
because all δi’s are powers of 2, this gives an O(log n)-approximation algorithm for our main goal.

Proposition 6. For Closest-Ultrametric×>, using an α-approximation algorithm for Multi-
cut on each layer, and combining these solutions with the layer combination approach of Lemma 1,
we obtain an O(α)-approximately closest ultrametric.

Proof. Let Lt denote the α-approximately optimal solution found for layer t. The sum of the single-
layer solutions costs at most α times the cost of an optimal ultrametric. When we combine the
layers, although the cost goes up, it is not by much: the cost associated with a single edge goes up
from

1 +
∑

t:δt>de, e∈Lt

δt − δt−1
de

(10)

to

1 +
∑

t:δt>de, t≤T (e)

δt − δt−1
de

(11)

where T (e) = max{t : δt > de, e ∈ Lt}. Now, writing T instead of T (e), (11) simplifies to
δT /de while the term (δT − δT−1)/de in (10) is at least half as big, since the δi’s are powers of 2.
Consequently, adding up over all edges, combining the layers in this way only costs an extra factor
of 2 in the approximation ratio.

From the above discussion we obtain the following theorem.

Theorem 7. For net multiplicative distortion, there is an O(log n)-approximation algorithm for
finding the closest ultrametric in the non-contractive model.

3.2. Inapproximability

We now prove that the non-contractive multiplicative case is at least as hard to approximate
as Multicut.

Proposition 8. If there is an α-approximation algorithm for Closest-Ultrametric×>, then there
is an (α+ ε)-approximation algorithm for Multicut, for any ε > 0.

Proof. Let an instance of Multicut on a n-node graph H = (V,E), with terminals T , be given.
We assume that T and E are disjoint, since otherwise this adds a constant term to the objective
function, as all edges in T ∩E would have to be cut. We define a Closest-Ultrametric×> instance
on the set of nodes V by setting

de =


1, e ∈ E,
λ, e /∈ E ∪ T,
λ2, e ∈ T.
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where λ > 1 is a parameter we will fix later. Using Lemma 3, we restrict our attention to ul-
trametrics u ≥ d with ue ∈ {δ1 = 1, δ2 = λ, δ3 = λ2} for all e. Notice the following important
facts:

1. The multiplicative distortion of such an ultrametric u is λ2 times |{e : de = δ1, ue = δ3}| plus
other non-negative terms of value at most λn2.

2. Writing M = E ∩ {e : ue = δ3}, we have that M is a multicut. Otherwise, if a path in E \M
were to connect some terminal pair {i, j}, then by repeated application of the ultrametric
inequality we would have uij < δ3 = de, contradicting non-contractivity.

3. Conversely, we can transform multicuts to ultrametrics. Given an arbitrary multicut M ,
define an ultrametric u whose values are δ2 on the cliques defined by the connected components
of G \ M , and δ3 on edges spanning two such connected components. The resulting set
E ∩ {e : ue = δ3} is precisely equal to M .

Let M∗ be the optimal multicut. This implies that the optimal ultrametric u∗ has distortion
at most λ2|M∗|+ λn2, and the approximation algorithm yields an ultrametric uA of distortion at
most αλ2|M∗|+ αλn2. When we convert this back to a multicut MA, its size |MA| is at most

(αλ2|M∗|+ αλn2)/λ2 = |M∗|(α+ αn2/(λ|M∗|)).

So assuming that |M∗| ≥ 1 without loss of generality, and taking λ to be ε−1αn2, we are done.

3.3. Integrality gap lower bound

The approximation algorithm for Multicut in [15] is known to provide an LP-relative O(log n)-
approximation — that is to say, an integral solution of cost at most O(log n) times the fractional
optimum. Using this it is easy to verify that the algorithm in Section 3.1 gives an O(log n) upper
bound on the integrality gap of the LP formulation (1)–(5). We now show a matching lower bound of
Ω(log n) on its integrality gap. This rules out that any better LP-relative approximation algorithm
can be developed using the same LP.

Proposition 9. The integrality gap of (1)–(5) is Ω(log n).

Proof. We use the standard linear programming relaxation for Multicut (see, e.g., [26]). Let the
graph be G = (V,E) and let P denote the set of all paths that connect some terminal pair from T .
Then the LP is

min
∑
e∈E

ye (12)∑
e∈P

ye ≥ 1, P ∈ P, (13)

ye ≥ 0, e ∈ E. (14)

The integrality gap of formulation (12)–(14) is known to be Θ(log n) (see, e.g., [26]). Denote by
c(x) the objective function (5), and by f(y) the objective function (12).

Given an instance of Multicut with Ω(log n) integrality gap, construct the same instance of
Closest-Ultrametric×> as in the proof of Proposition 8, with λ = n2. As argued in point 2
of that proof, the integer optimum of (1)–(5) is at least n4 times the integer multicut optimum.
To finish the proof we will show a fractional analogue of the rest of that proof, namely that the
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fractional optimum of (1)–(5) is at most 2n4 times the fractional multicut optimum. This gives the
desired result, since with MC short for multicut and CU short for closest ultrametric, we will have

CU-ILP-OPT

CU-LP-OPT
≥ n4MC-ILP-OPT

2n4MC-LP-OPT
= Ω(log n).

Fix an optimal solution y to the linear program (12)–(14). Let ` be the metric completion of y,
i.e., `ij is the shortest path length between i and j w.r.t. the y distances. We construct a feasible
fractional solution x to (12)–(14) by defining x1e = x2e = 1 and x3e = min{`e, 1} for all e. It is easy
to check that x is feasible for (1)–(5). Analogous to the proof of Proposition 8, we have that c(x)
equals λ2f(y) plus other non-negative terms of value at most λn2. As a technicality we may assume
f(y) ≥ 1 since only when ∅ is a valid multicut could f(y) be less than 1, but such instances have
integrality gap 1 and we are considering one with a large integrality gap. So

CU-LP-OPT ≤ c(x) ≤ λ2f(y) + λn2 ≤ (λ2 + λn2)f(y) = 2n4MC-LP-OPT.

3.4. Unrestricted approximation (Closest-Ultrametric×)

We now consider the unrestricted problem Closest-Ultrametric×. While there is no ana-
logue of Lemma 3, we can get around this by setting the pre-defined values δi to consist of all of
the powers of 2 between dmin and dmax; the number k of such values is polynomial in the input
size. Then, using Observation 2, we can restrict our attention to ultrametrics u whose values come
from this set of δi’s. (See [8, Lemma 1(c)] for a similar approach.)

Now, for this problem, the formulation has constraints (1)–(3). The objective function to
measure multiplicative distortion in the unrestricted case can be expressed using telescoping sums
as

min
∑
e

1 +
∑

t≥1:δt≤de

(
de
δt−1

− de
δt

)
(1− xte) +

∑
t:δt>de

δt − δt−1
de

xte

 . (15)

As before, discarding the monotonicity constraint (1) gives k distinct layer-t-problems; the objective
for the tth layer consists of that part of (15) corresponding to xt variables, plus a constant term.
The lack of the non-contractivity constraint (4) means there are no fixed edges. For this reason, the
layer-t-problem is not Multicut, but rather weighted MinCC. Specifically, the layer-t-problem
corresponds to the MinCC instance on graph (V,Et := {e : de < δt}), where each e ∈ Et has
weight cte := (δt−δt−1)/de and each e /∈ Et has weight cte := de/δt−1−de/δt. The proof is analogous
to that of Lemma 5, except that the minimality argument is not needed since all feasible MinCC
solutions satisfy (2), unlike all multicut solutions.

Now, using the known O(log n)-approximation algorithms for weighted MinCC [18, 20, 21, 22],
we will derive an O(log n)-approximation algorithm for Closest-Ultrametric×.

Proposition 10. For Closest-Ultrametric×, using an α-approximation algorithm for MinCC
on each layer, and combining these solutions with the layer combination approach of Lemma 1, we
obtain an O(α)-approximately closest ultrametric.

Proof. Analogous to Proposition 6, the main step is to show that the combination does not increase
the cost contributed by any edge too much. Let Lt be the disjoint union of cliques found in the
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α-approximate MinCC solution for layer t. For a fixed edge e let T := T (e) = max{t : e ∈ Lt}.
Before combining the layers, the cost associated with edge e is

1 +
∑

t≥1:δt≤de, e/∈Lt

cte +
∑

t:δt>de, e∈Lt

cte.

It is instructive to explicitly note that the sequence of costs for e is . . . , 4, 2, 1, 1, 2, 4 . . . , because of
how we set the δi’s; more specifically, if we let τ be such that de = δτ , then we have cτ−ke = 2k for
k ≥ 0, and cτ+1+k

e = 2k for k ≥ 0. Hence, the layer combination step has one of two effects.

• If T > τ , then after combination, we pay a cost of 1+1+2+ · · ·+2k for e where k = T −τ−1,
whereas before we paid at least 2k. So the layer combination step costs at most a factor of 2.

• If T ≤ τ , then after combination, we pay a cost of 1 + 1 + 2 + · · ·+ 2k for e where k = τ − T ,
whereas before we paid at least this much. So the layer combination step does not cost
anything extra.

This gives us the following theorem.

Theorem 11. For net multiplicative distortion, there is an O(log n)-approximation algorithm for
finding the closest ultrametric in the unrestricted model.

4. Additive distortion

We are not able to assume that the input d consists of powers of 2 in the additive case. However,
there is still a lot of useful structure. In particular, it was observed in [8, Lemma 1(a)] that there
is an optimal ultrametric u with all of its values in the range

{
de | e ∈

(
V
2

)}
of d. To see this,

iteratively select any value v in the range of u but not in the range of d, then either increase
or decrease all ue’s with value v (at least one of these operations does not increase the additive
distortion) until they hit some other value in the range of u or d. Each step decreases the number of
distinct values that are in the range of u but not in the range of d, and so the procedure eventually
terminates. Hence, in this section we take the layer thresholds δi to be equal to the values in the
range of d.

4.1. Unrestricted approximation (Closest-Ultrametric+)

To obtain an ILP formulation for Closest-Ultrametric+, following [13], we attach the ob-
jective function

min
∑
e

 ∑
t≥1:δt≤de

(δt − δt−1)(1− xte) +
∑

t:δt>de

(δt − δt−1)xte


to (1)–(3). The layer-t-problem is similar to the one for Closest-Ultrametric× considered in
Section 3.4, except that now cte has the same value for all e ∈

(
V
2

)
. Therefore the single-layer

formulation is an unweighted MinCC problem, which admits an O(1)-approximation [18, 19]. We
proceed to analyze what happens when we combine these layers.

From now on, let ρ = mini δi+1/δi, i.e., the minimum ratio between any two distinct input d
values.
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Proposition 12. For Closest-Ultrametric+, using an O(1)-approximation algorithm for car-
dinality MinCC on each layer, and combining these solutions with the layer combination approach
of Lemma 1, we obtain an O(1 + (ρ− 1)−1)-approximately closest ultrametric.

Proof. We follow the approach of Proposition 10. Recall that we defined Lt as the disjoint union of
cliques found in the α-approximate MinCC solution for layer t; also, for a fixed edge e, we defined
T := max{t : e ∈ Lt} and τ as the index such that de = δτ . The combination step of Lemma 1
does not cost us anything extra for edges with T ≤ τ . For an edge with T > τ , the cost paid for it
is at most dT after the combination step, and at least dT − dT−1 before the combination step. In
other words the cost increased by a factor of at most

dT
dT − dT−1

=

(
1− dT−1

dT

)−1
≤ (1− ρ−1)−1 = 1 + (ρ− 1)−1.

4.2. Non-contractive approximation (Closest-Ultrametric+
>)

For the non-contractive version Closest-Ultrametric+
>, the ILP formulation is (1)–(4) with

objective function

min
∑
e

∑
t:δt>de

(δt − δt−1)xte.

Let us now examine the layer-t-problem. Let E denote the set {e : de < δt}. Then the layer-t-
problem ILP is equivalent to the following (after dividing the objective function by δt − δt−1):

min
∑

e∈E xe (16)

xij + xjk ≥ xik, i, j, k ∈ V, (17)

xe = 1, e ∈
(
V
2

)
\ E, (18)

xe ∈ {0, 1}, e ∈ E. (19)

This is an instance of Cluster Deletion: we want to find a minimum-size set of edges in (V,E)
whose deletion leaves a disjoint union of cliques. In Section 4.3 we give a 4-approximation algorithm
for Cluster Deletion. Assuming this, analogous to Proposition 12, we will have:

Proposition 13. For Closest-Ultrametric+
>, using an O(1)-approximation algorithm for Clus-

ter Deletion on each layer, and combining these solutions with the layer combination approach
of Lemma 1, we obtain an O(1 + (ρ− 1)−1)-approximately closest ultrametric.

4.3. A 4-approximation algorithm for Cluster Deletion

We here consider the Cluster Deletion problem: we are given a graph G = (V,E) and we
want to partition the graph into cliques by removing the minimum number of edges. In order to ob-
tain a constant-approximation for Cluster Deletion, we will re-analyze an algorithm developed
in [18] for MinCC. The main difference in our setting is that all edges which would be “negative”
in the MinCC setting are fixed in the present setting — this is constraint (18).

Proposition 14. There is a 4-approximation algorithm for Cluster Deletion.
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Algorithm 1: 4-approximation for Cluster Deletion on G = (V,E).

1 M ← ∅; let x be an optimal solution to (16)–(18)
2 U ← V
3 while U 6= ∅ do
4 choose any node v ∈ U ; C ← {c ∈ U | c 6= v, xvc < 1/2}
5 if

∑
c∈C xvc ≥ |C|/4 then S = {v} else S = C ∪ {v}

6 M ←M ∪ δ(S,U \ S); U ← U \ S
7 output M

Proof. Our approach is based on the ILP (16)–(19) and its linear relaxation (16)–(18), where all
variables are constrained to be non-negative. We use the following standard notation: for a subset
of edges A, x(A) means

∑
e∈A xe; and for S ⊆ V , δ(S, T ) denotes the set of edges in E with one

endpoint in S and the other in T . The 4-approximation algorithm is shown in Algorithm 1.
In order to check that the solution is feasible, note that the connected components of the graph

surviving after the execution of the algorithm are precisely the sets S chosen by the algorithm. For
any such set S, if i, j ∈ S then xvi < 1/2 and xvj < 1/2, thus implying xij < 1. Since this is only
possible if ij ∈ E, we conclude that S is a clique.

In order to verify the approximation guarantee, it suffices to show that in each iteration of the
algorithm, we have the following inequality:

|δ(S,U \ S)| ≤ 4x(δ(S,U \ S)).

In other words, we want to show that the deleted edges in each iteration have average x-value at
least 1/4. Since each edge is considered in at most one iteration, the result |M | ≤ 4x(E) would
follow and consequently so would the approximation guarantee.

First consider the case that
∑

c∈C xvc ≥ |C|/4, where the algorithm selects S = {v}. If we define
T1 := {vc : xvc ≥ 1/2}, then |T1| ≤ 2x(T1). The edges in T2 := δ(S,U \ S) \ T1 are exactly the
edges vc with c ∈ C, so they satisfy |T2| ≤ 4x(T2) by assumption. Note that δ(S,U \ S) = T1 ∪ T2,
and therefore we have |δ(S,U \ S)| = |T1|+ |T2| ≤ 4x(δ(S,U \ S)).

Consider now the other case that
∑

c∈C xvc < |C|/4, where the algorithm selects S = C ∪ {v}.
Let T1 be the set of edges ij with i ∈ S and xvj ≥ 3/4. We have xij ≥ xvj − xvi ≥ 1/4 by the
triangle inequality, so this set of edges satisfies |T1| ≤ 4x(T1).

The remaining edges in δ(S,U \ S) \ T1 can be partitioned into disjoint sets according to their
endpoint further from v: for each j with 1/2 ≤ xvj < 3/4, define Uj := {i | ij ∈ E, xvi < 1/2}. If
we can show

∑
i∈Uj

xij ≥ |Uj |/4 for each such j, we will be done.
By the triangle inequality, we have xij ≥ xvj − xvi and therefore for each j,

∑
i∈Uj

xij ≥ |Uj |xvj −
∑
i∈Uj

xvi ≥
|Uj |

2
−
∑
i∈Uj

xvi.

We now claim that
∑

i∈Uj
xvi ≤ |Uj |/4 which will complete the proof. We know the related fact

that
∑

c∈C xvc < |C|/4 holds and since xvv = 0 we also get
∑

i∈S xvi < |S|/4. For a node i in S
but not Vj , it must be that ij /∈ E. In such a case the triangle inequality gives xvi ≥ xij − xvj =
1− xvj > 1/4. Since the edges from v to S have average x-value at most 1/4, and the edges from
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v to S \ Uj have average x-value at least 1/4, it must be that the edges from v to Uj have average
x-value at most 1/4, as needed.

4.4. Extension to `p distortion

Recall that additive distortion is the same as `1 distortion. Our results extend to `p distortion
as follows. As shown in [8, 13], there is a 2-approximate optimal ultrametric with values in the
range of d. Thus we can fix the δi’s to be the distinct values in the range of d. Following [13], the
objective function would be

min
∑
e

 ∑
t≥1:δt≤de

((de − δt−1)p − (de − δt)p)(1− xte) +
∑

t:δt>de

((δt − de)p − (δt−1 − de)p)xte


(this function is the pth power of the `p distortion). The layer-t-formulation is a weighted Multicut
problem in the non-contractive model and a weighted MinCC problem in the unrestricted model.
In both cases, there is an O(log n)-approximation for the layer-t-formulation. We now show that
by using the layer combination approach of Lemma 1 we get an O

(
((1 + (ρ− 1)−1) log n)1/p

)
-

approximation.

Proposition 15. For `p distortion, using an α-approximation algorithm for Multicut (in the
non-contractive case) or MinCC (in the unrestricted case) on each layer, and combining these
solutions with the layer combination approach of Lemma 1, we obtain an O((α(1 + (ρ− 1)−1))1/p)-
approximately closest ultrametric.

Proof. The proof idea is as in Propositions 10 and 12 (we use the notation introduced there). In
this case, when T > τ , after the layer combination we pay at most (δT − δτ )p, while before we paid
at least (δT − δτ )p − (δT−1 − δτ )p, thus the ratio is

(δT − δτ )p

(δT − δτ )p − (δT−1 − δτ )p
=

(
1−

(
δT−1 − δτ
δT − δτ

)p)−1
≤
(

1−
(
δT−1
δT

)p)−1
≤
(

1− 1

ρp

)−1
≤
(

1− 1

ρ

)−1
= 1 + (ρ− 1)−1.

Therefore we pay an extra factor of 1 + (ρ − 1)−1. The claimed factor O((α(1 + (ρ − 1)−1))1/p)
follows as the objective function that we are considering is the pth power of the `p distortion.

The claimed result then follows.

Theorem 16. For `p distortion, there is an O
(
((1 + (ρ− 1)−1) log n)1/p

)
-approximation algorithm

for finding the closest ultrametric both in the non-contractive and unrestricted models.

5. Open problems

A first open question is whether there is a better approximation for Closest-Ultrametric+

and/or Closest-Ultrametric+
>. For instance, is there any O(1)-approximation or at least

polylog(n)-approximation for these problems? This is not known even in the case when d is a
metric.
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Another interesting point is extension to tree metrics. When dealing with `1 distance, there is a
reduction due to Agarwala et al. [27] from finding closest tree metrics to finding closest ultrametrics,
where only a constant factor is lost in the optimal (or approximately optimal) value. Is there
such a reduction for multiplicative distortion? Is there a reduction for additive distortion that
approximately preserves the parameter ρ? These would extend our work to finding tree metrics
instead of ultrametrics.
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