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Abstract

In k-hypergraph matching, we are given a collection of sets of size at most k, each with an
associated weight, and we seek a maximum-weight subcollection whose sets are pairwise disjoint.
More generally, in k-hypergraph b-matching, instead of disjointness we require that every element
appears in at most b sets of the subcollection. Our main result is a linear programming-based
(k − 1 + 1

k )-approximation algorithm for k-hypergraph b-matching. This settles the integrality
gap when k is one more than a prime power, since it matches a previously-known lower bound.
When the hypergraph is bipartite, we are able to improve the approximation ratio to k − 1,
which is also best possible relative to the natural LP. These results are obtained using a more
careful application of the iterated packing method.

Using the bipartite algorithmic integrality gap upper bound, we show that for the family
of combinatorial auctions in which anyone can win at most t items, there is a truthful-in-
expectation polynomial-time auction that t-approximately maximizes social welfare. We also
show that our results directly imply new approximations for a generalization of the recently
introduced bounded color matching problem.

We also consider the generalization of b-matching to demand matching, where edges have
nonuniform demand values. The best known approximation algorithm for this problem has
ratio 2k on k-hypergraphs. We give a new algorithm, based on local ratio, that obtains the
same approximation ratio in a much simpler way.
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1 Introduction

In a matching problem we want to find the maximum weight subcollection of pairwise disjoint sets
within a given collection. Often these problems are studied with respect to the maximum set size
k (i.e. on “k-hypergraphs”); matching is polynomial-time solvable for k = 2, while it is APX-hard
for k = 3, even in special cases like 3-dimensional matching [19].

The b-matching problem generalizes matching: the input specifies a limit bv for every vertex,
and we can select at most bv sets containing each v; ordinary matching results when b is the all-1
vector. A b-matching instance can allow each set e to be selected multiple times up to some upper
capacity limit ce. Simple b-matching is the case where all capacities are unit. The uncapacitated
case is where c = −→∞, i.e. there are no capacity limits.

One of our results considers the generalization of b-matching to demand matching, a notion
originally introduced for graphs in [27]. For this problem each edge is given a demand value de,
and we now constrain that for every vertex v, the sum of the d-values of the incident edges should
be at most bv. When d is the all-1 vector we recover the b-matching problem.

Hypergraphic matching problems are often studied via linear programming relaxations. In this
paper we use only the naive LP relaxations. The worst-case ratio between the LP optimum and the
optimal integral solution is called the integrality gap. An LP-relative α-approximation algorithm is
one that produces (in polynomial time) an integral solution of value at least 1/α times the LP’s
optimal value — this both upper bounds the integrality gap by α and gives an α-approximation
algorithm. Many classical approximation algorithms are LP-relative; so the notion is not novel,
rather, this terminology helps us be concise.

1.1 Results

Our main result is the following theorem.

Theorem 1. There is an LP-relative (k − 1 + 1
k )-approximation algorithm for k-hypergraph b-

matching, for any capacities.

In [24] one of the authors announced a weaker result, namely an upper bound of k − 1 + 1
k on

the integrality gap, but without any algorithm that could find such a good integral solution in
polynomial time.

For the special case b = 1, Füredi, Kahn and Seymour [15] proved an upper bound of k−1+ 1
k in

1993, while Chan & Lau [10] recently gave the first poly-time algorithm matching this bound. Their
technique does not directly extend to the k-hypergraph b-matching case. The technique that we
use to prove Theorem 1 is iterated packing, the same technique from [24]. Part of the contribution
of the present paper is to simplify the algorithms from [24] and [10]. Our main technical innovation
is, in iterated packing, to explicitly specify particular additional solutions as ineligible for packing:
not only solutions that would be ineligible for the original problem, rather we additionally prohibit
solutions exceeding the ceiling of the current fractional solution.

Theorem 1 is tight for infinitely many k: when k − 1 is a prime power, as observed in [15], the
projective plane PG(2, k − 1) of order k − 1 yields a matching lower bound of k − 1 + 1

k on the
integrality gap. It is an interesting open question to settle the integrality gap for any other values
of k.

We are able to determine the exact integrality gap for another interesting class of hypergraphs.
Call a hypergraph bipartite ([1]; cf. [25]) if, for some distinguished subset U of vertices, every
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hyperedge contains exactly one vertex from U .

Theorem 2. There is an LP-relative (k − 1)-approximation algorithm for bipartite k-hypergraph
b-matching, for any capacities.

Chan and Lau [10] proved Theorem 2 in the special case that b = 1 and the instance is k-
dimensional1. Proving Theorem 2 is similar to Theorem 1 plus extending an observation of [10]
from k-dimensional hypergraphs to bipartite ones. Like Theorem 1, a matching integrality gap
lower bound is known [14, p. 157] when k− 1 is a prime power: the hypergraphic dual of the affine
geometry AG(2, k − 1), i.e. a truncated projective plane, has integrality gap k − 1.

We obtain the following interesting corollaries from the bipartite case. In the bounded color k-
hypergraph b-matching problem we are given an instance of the k-hypergraph b-matching problem
along with a partition of the edge set into l color classes, E = E1 ∪ · · · ∪El, and a positive integer
wi for 1 ≤ i ≤ l. We seek a feasible k-hypergraph b-matching of maximum weight such that at
most wi edges from class Ei is selected for each i.

Corollary 3. There is an LP-relative k-approximation for bounded color k-hypergraph b-matching.

Corollary 4. For combinatorial auctions where each bidder can win at most (k − 1) items, there
is a randomized polynomial-time mechanism that, in expectation, is both truthful and (k − 1)-
approximately maximizes social welfare.

We are not aware of any prior results for this extremely natural class of combinatorial auctions,
cf. [23, Ch. 12].

The proof of Corollary 4 uses the mechanism of Lavi and Swamy [22], where the distinguished
vertices in the bipartite hypergraph correspond to the bidders. For this application, it is crucial
that Theorem 2 gives an LP-relative approximation in polynomial time.

Finally, we give a new short proof of the following known theorem:

Theorem 5 ([24]). There is an LP-relative 2k-approximation for k-hypergraph demand matching.

Our simpler proof is based on the local ratio method, rather than the iterated packing used in [24].
We rely on a connection in [5, p. 12] between local ratio and iterated packing.

1.2 Related Work

As Tutte observed [28], both in edge-weighted graphs and in the cardinality case, uncapacitated
graphic b-matching can be reduced to matching by replacing each vertex by bv clones. Each edge uv
is likewise cloned bubv times. This reduction has two problems: (1) the clones cause an exponential
increase in the instance size (from lg‖b‖1 to ‖b‖1); and (2) it does not work in the capacitated
case, since we need to prevent too many clones of the same edge from being selected. Cloning
applies to hypergraphs, too, but has the same two problems. Algorithmically, we can often avoid
(1) by not dealing with the clones explicity. For graphs we can fix problem (2): an edge-trisecting
reduction [28] (see also [26, p. 562]) extends cloning to work on capacitated instances. But for
hypergraphs, there is no known workaround for problem (2).

As a strawman, let us mention that one can reduce capacitated b-matching in k-hypergraphs
to uncapacitated b-matching in (k + 1)-hypergraphs, by inserting new vertices in each hyperedge

1A hypergraph is k-dimensional if for some k-partition of the ground set, every edge intersects every part exactly
once.
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and by moving each edge’s capacity to the b value of its new vertex. One can even then apply
cloning. But this is not that useful for us: e.g., we cannot use the previously-known b = 1 case of
version Theorem 1 to even prove the nonconstructive version of Theorem 1 for general b, since this
reduction increases the hyperedge size from k to k + 1.

Algorithmically, the simple (capacity c = 1) case of b-matching is the hardest. The proof is
standard, by fixing the integer part of an optimal fractional solution — see Appendix A.

Observation 6. Given an (LP-relative) α-approximation to simple b-matching in k-hypergraphs,
we can obtain the same quality of approximation for general capacities.

Hypergraph matching. Matching problems in k-uniform hypergraphs are well-studied algo-
rithmically. For any fixed ε > 0 the best known approximation ratios are k

2 + ε for the unweighted

version by Hurkens and Schrijver [18] and k+1
2 +ε for the weighted version by Berman [8]. In the case

k = 3, the algorithmic results of [10] give an ε-improved approximation ratio of 2 for 3-dimensional
matching. On the other hand, Hazan, Safra and Schwartz [17] showed that the problem is hard to
approximate within a factor of Ω( k

log k ) unless P = NP, even in the k-dimensional case.

Hypergraph b-matching. For b-matching in k-hypergraphs, Krysta [21] gave a greedy k + 1-
approximation for the simple case, and Young & Koufogiannakis [20] gave a k-approximation for
the uncapacitated version. Both of these approximation algorithms give LP-relative guarantees. An
improvement in some cases was recently obtained by the k-exchange system framework of Feldman
et al. [13]. The b-matchings form a k-exchange system (this is explicit only for k = 2 in [13]).
In this way one can obtain a local search-based (k+1

2 + ε)-approximation algorithm for weighted
k-hypergraph b-matching. However, its running time is exponential in k and it does not give any
LP-relative guarantee.

It may be tempting to think that the b-matching problem in hypergraphs is a simple extension
of 1-matching in hypergraphs because the theory and algorithms for b-matching in graphs closely
relate to those for 1-matchings. As evidenced by the results above, this does not appear to be
the case. An approximation algorithm that runs in time polynomial in k with guarantee better
than k for k-hypergraph b-matching had been an open problem that we resolve with this work.
Our methods are LP-based, whereas local search seems to give the best known results; however,
the bounding techinques used in local search for hypergraph 1-matching do not seem to readily
extend to the hypergraph b-matching case. For example, Arkin and Hassin [2] give a local search
(k− 1 + ε)-algorithm for weighted k-hypergraph 1-matching; however, as a warmup they present a
trivial bound of k — even this trivial bound does not easily extend to the k-hypergraph b-matching
case.

Other work. Pseudo-greedy methods similar to iterative packing have been successfully applied
to several packing and coloring problems, including multicommodity flows on trees [11], independent
sets in t-interval graphs [5], and weighted edge coloring of bipartite graphs [12].

As mentioned earlier, a 2k-approximation for k-hypergraph demand matching is known [24]; a
better ratio of 3 is possible when k = 2 [24]. These nearly match (exactly match, when k = 2)
the best known lower bound of 2k − 1 [3] on the integrality gap of the natural LP relaxation (this
construction does not require that k− 1 is a prime power). Bansal et al. [3] devised a deterministic
8k-approximation and a randomized (ek + o(k))-approximation for the more general problem of
approximating k-column-sparse packing integer programs.
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Georgios very recently introduced the bounded color matching problem (defined above in a more
general context) and devised a 2-approximation [16]. This result is also based on iterated packing.
The author observes that the bounded color matching problem is a special case of 3-hypergraph
b-matching. In fact it is mentioned in this paper that a polynomial-time k−1 + 1/k-approximation
for k-hypergraph b-matching may be possible. Our work was developed independently of this
work, and we observe that our results generalize this work since the special hypergraph b-matching
instances obtained are bipartite, and we are able to give a k-approximation.

We will exploit the interplay between LP-relative approximation algorithms and convex de-
compositions — an equivalence between the two was shown by Carr & Vempala [9]. The Lavi-
Swamy [22] mechanism combines techniques from [9] with the VCG mechanism.

We give an overview of iterated packing in the next section. There, we also introduce a structure
theorem from [10] and its specialization to bipartite instances, versions of which will be used
throughout the paper. Next, to further introduce the iterated packing methodology, we give an
iterated packing proof of the same result, although it does not run in polynomial time. This is
extended to b-matching in Section 4, which contains our main technical innovations. First an
existential proof is given (Algorithm 2) and then finally Algorithm 3 proves Theorems 1 and 2
constructively. Then in Section 7 we present the proof of Theorem 5, which is based on the local
ratio method.

2 Iterated Packing Overview

The notion of an approximate convex decomposition is essential to iterated packing, as the latter
iteratively builds such a decomposition for a given fractional solution. Here we present a slightly
different notion of an approximate convex decomposition than usually considered.

Definition 7. For α ≥ 1, define α-convex multipliers to be any collection of nonnegative reals
whose sum is α. Likewise, we say that x is an α-convex combination of the points {xi}i if there are
α-convex multipliers {λi}i so that x =

∑
i λix

i.

The utility of α-convex combinations is that they provide a convenient way to talk about integrality
gaps without rescaling as was done in [9] or [24].

Proposition 8 ([9]). If every feasible LP solution for a packing program can be written as an
α-convex combination of integral feasible solutions, then its integrality gap is at most α.

Proof. We need to show that for any nonnegative weight function w, if x∗ is the fractional solution
that maximizes w(x∗), then there is an integral solution of weight at least w(x∗)/α. A random
solution from the α-convex combination representation of x∗, drawing xi with probability λi/α, has
expected weight

∑
i
λi
α w(xi) = w(x∗)/α. So one of the xi has at least this weight.

(In fact [9] also proves an algorithmic converse, used also by the Lavi-Swamy framework [22]
underlying Corollary 4.)

We will use Proposition 8 as follows: we develop a polynomial-time algorithm to write frac-
tional hypergraph b-matchings as ρ-convex combinations of feasible integral b-matchings. Then by
Proposition 8, we get the LP-relative ρ-approximation algorithm claimed in Theorems 1 and 2.

In [24] the idea of iterated packing was introduced. Each iteration, called a packing step, updates
the current α-convex combination to a new one, increasing some terms of the combination on one
coordinate.
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Definition 9 (Packing step). Let us be given an α-convex combination x =
∑

i λix
i where the xi

are feasible integral solutions, an edge e to pack, and a target value t ∈ R+. We may think of a
packing step as packing the edge e into some of the solutions xi such that each resulting solution
is still feasible and that we have packed e into solutions with a total mass of t, i.e. the sum of
corresponding λi is t.

Let χe be the vector in RE with coordinate 1 on e and 0 elsewhere. A packing step will replace
some 0 ≤ λ′i ≤ λi portion of each xi with xi + χe, where we allow λ′i > 0 only when xi + χe is
feasible. Therefore

∑
i(λi − λ′i) · xi +

∑
i λ
′
i · (xi + χe), the result of the packing step, expresses

x+ tχe as an α-convex combination of integer feasible solutions.

For a packing step to actually be feasible, it is clearly both necessary and sufficient that the set
P = {i | xi + χe feasible} of solutions into which e can be packed must satisfy λ(P ) ≥ t.

For the sake of polynomial-time implementation of our final algorithm, note we can ensure at
most one i has λ′i /∈ {0, λi} in the above argument, so that each packing step increases the number
of terms by at most one. Alternatively we could use Carathéodory’s theorem which guarantees that
any α-convex combination can be rewritten as one with at most d+ 1 terms where d is the number
of coordinates.

The basic iterated packing formula starts with a fractional solution x in hand and iteratively
constructs an integral solution by starting with an empty hypergraph on V . The edges are processed
in some order, and for each edge e, a packing step is performed on e with a target value of xe.
One key fact about iterated packing is that when a target value is larger, packing is easier, hence
iterated packing shows how large fractional values facilitate approximation for packing problems
much like iterative packing does for covering problems. The basic approach may be refined in
several directions. One may start with base integral solution that is non-empty hypergraph. This
was explored in [24] to derived an improved approximation for the demand matching problem.
Another improvement is to consider a specific ordering of edges.

This key idea driving our algorithm is analyzing an ordering of edges which allows us to obtain
a polynomial-time algorithm. Although, as announced in [24], extensions of ideas from [24] may be
used to derive an upper bound of k−1+1/k on the integrality gap for the k-hypergraph b-matching
problem, the bound is non-constructive and does not give a polynomial-time algorithm. We show
that by considering an ordering of edges that was first studied by Chan and Lau [10], we obtain
a polynomial-time k − 1 + 1/k-approximation. This ordering is based on vertices of small degree
in an extreme point solution, which in turns allows one to argue that there is an edge with large
fractional value. The lemma below shows that we can find a vertex of sufficiently small degree.

Let {Av,e}v,e be the 0-1 incidence matrix for our k-hypergraph: it has rows for vertices and
columns for edges, with at most k ones per column. When x∗ is an extreme point solution to the
matching LP {0 ≤ x ≤ 1 | Ax ≤ 1}, elementary properties of polyhedra show that the incidence
matrix of {e | 0 < x∗e < 1} has linearly independent columns. This makes the following lemma
useful: it was proven by Chan and Lau for the general case, while the bipartite case follows from
generalizing their arguments about the k-dimensional case (see Appendix A).

Lemma 10. If the incidence vectors of ∅ 6= E′ ⊆ E are linearly independent, then some vertex in
(V,E′) has degree between 1 and k. In the bipartite case, the upper bound can be strengthened to
k − 1.
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In order to talk about both the general and bipartite cases in a unified way, define

ρ :=

{
k − 1 + 1

k in the general case, and

k − 1 in the bipartite case.

Additionally, define the degree bound

µ :=

{
k in the general case, and

k − 1 in the bipartite case.

3 Non-Polynomial Time Algorithm for k-Hypergraph Matching

We now give an alternate proof that k-hypergraph matching has integrality gap of at most k+1− 1
k .

The algorithm behind this proof does not run in polynomial time. However, this section also
introduces the notation and steps involved in iterated packing, which we will extend in the next
section to get our main result.

Lemma 11 ([24]). In k-hypergraph matching, a packing step to bring x to x+ tχe, where x+ tχe
is a feasible fractional solution, is possible if α ≥ k − (k − 1)t.

Proof. Let Qv, for each v ∈ e, be the set of solutions i for which xi + χe is not feasible. We
have λ(Qv) ≤ 1 − t since x + tχe is feasible2. We need room (disjoint in the worst case) for all
such Qv, plus an additional t to pack the new edge in solutions that permit it, giving the bound
k(1− t) + t = k − (k − 1)t.

We can indeed get large coordinates using the following strengthening of Lemma 10 (see Ap-
pendix A).

Lemma 12. Any nonzero extreme point solution x to the k-hypergraph matching polytope has some
fractional coordinate at least 1/µ.

Using this, we obtain an iterated packing algorithm for the k-hypergraph matching problem,
which is displayed as Algorithm 1. Note that this algorithm is presented as a recursive top-down
variant of iterated packing, while the basic version in the previous section was presented as a
bottom-up algorithm for ease of exposition. Another more crucial deviation of this algorithm from
the basic iterated packing formula is that since our analysis requires an extreme point, we must
express each non-extreme solutions as convex combinations of extreme points, and we use that:

A convex combination of α-convex combinations is an α-convex combination. (1)

In fact this is the reason the algorithm is not guaranteed to run in polynomial time; however, the
algorithm does terminate since the number of nonzero coordinates of x decreases in each recursive
call.

Proposition 13. Given any LP solution x, Algorithm 1 returns an expression of x as a ρ-convex
combination of integral solutions.

2In detail, the solutions xi for i ∈ Qv have degree 1 at v, so by the definition of a convex combination (Ax)v =
λ(Qv), but (Ax)v ≤ 1− t since, by feasibility, 1 ≥ A(x+ tχe)v = (Ax)v + t.
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Algorithm 1 HM∗(V,E, x) // write x as ρ-convex comb. of 0-1 solutions

1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0.
2: If x is not an extreme point solution to {x ∈ RE+ | Ax ≤ 1},
3: Write x as a convex combination of extreme point solutions.
4: Recurse on each extreme point and return their result combined via (1).
5: Pick e so that xe is maximized and let x′ be x except with x′e set to zero.
6: Recurse: (xi, λi)i := HM∗(V,E, x′).
7: Packing step: pack xe of e into (xi, λi)i and return the result.

Proof. This follows from Lemmas 11 and 12, since if µ = k we have k− (k− 1)/µ = k− 1 + 1
k = ρ,

and if µ = k − 1 we have k − (k − 1)/µ = k − 1 = ρ.

This completes the non-polynomial time iterated packing proof that the integrality gap for matching
is at most ρ. Next, we extend it to b-matching.

4 Iterated Packing and k-Hypergraph b-Matching

In this section, which contains the main new iterated packing technique, we build on the ideas from
the previous section. We begin with a non-constructive iterated packing algorithm to show that
the integrality gap for k-hypergraph b-matching is at most ρ. Then, we move to a constructive
version via iterated packing that runs in polynomial time.

By Observation 6, we assume unit capacities (simple b-matching). We will use the following
statement, whose proof is analogous to Lemma 12.

Lemma 14. Any nonzero extreme point solution x to the k-hypergraph b-matching polytope has
some fractional coordinate at least 1/µ.

The naive adaptation of iterated packing (Algorithm 1) to b-matching would involve writing the
input as a convex combination of extreme point solutions to {x ∈ [0, 1]E | Ax ≤ b}, working with
α-convex combinations of integer 0-1 solutions to Ax ≤ b. However, this approach is unworkable.
When we try to mimic Lemma 11, as b gets larger, we cannot bound λ(Qv) by anything less than
1, giving an approximation ratio of k or worse.

To fix this problem, we will enforce two additional conditions. One of these conditions, the main
driver of the new proof, is that the strengthened degree bound Axi ≤ dAxe must hold in every level
of the recursion (rather than the unworkable requirement that solutions merely respect the final
target degrees). The second condition is that the λ-mass of solutions meeting this strengthened
bound with equality cannot be more than 〈(Ax)v〉 (here 〈·〉 denotes the fractional part), except in
the degenerate case that (Ax)v is integral. Intuitively (i) balances the number of edges packed at
a vertex across the solutions xi, avoiding the trouble that the naive approach would encounter in
future iterations, while (ii) helps achieve (i) inductively. A modified packing step is a packing step
that, given a solution (x, λ) satisfying both of these properties, produces another (x′, λ′) satisfying
both of these properties. Then the definition of the resulting algorithm, Algorithm 2, is as follows.

We will prove by induction that the algorithm succeeds in finding packings meeting both con-
ditions.
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Algorithm 2 HbM∗(V,E, x) // write x as ρ-convex comb. of special 0-1 solutions

1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0. // as before
2: If x is not an extreme point solution to {y ∈ [0, 1]E | Ay ≤ dAxe},
3: Write x as a convex combination of extreme point solutions. // as before
4: Recurse on each extreme point; return their combination via (1). // as before
5: Pick e so that xe is maximized; let x′ be x with x′e set to zero. // as before
6: Recurse: (xi, λi)i := HbM∗(V,E, x′). // as before
7: Modified packing step: pack xe of e into (xi, λi)i and return the result.

Lemma 15. For any 0 ≤ x ≤ 1, HbM∗(V,E, x) returns an expression of x as a ρ-convex combi-
nation of 0-1 xi that satisfies (i) Axi ≤ dAxe for each i, and (ii) for every v such that (Ax)v is
non-integral, λ({i | (Axi)v = dAxve}) ≤ 〈(Ax)v〉.

For the proof, it is helpful to realize that we use (Ax)v interchangeably as x(δ(v)), and that it
represents the “degree” of x at v.

Proof. The base case and the non-extreme case are easy; while the extreme points decomposing a
non-extreme solution may have smaller values for dAxe, this does not hurt us. So we only need to
deal with the case that x is extreme and nonzero, where e is chosen with xe ≥ 1/µ.

To prove that the modified packing step can always be carried out while satisfying (i) and (ii),
we again bound a set of unpackable solutions. Specifically, our goal will be to define sets Qv for
each v ∈ e such that any packing step that avoids adding e to any of the solutions

⋃
v∈eQv will

satisfy (i) and (ii) for x, and such that the sets Qv are λ-small enough that e always has room to
be added.

For each v ∈ e, there are three cases, the main distinction being whether d(Ax′)ve = d(Ax)ve.
Note that these terms are either equal, or differ by one.

• Case (I), (Ax′)v = 0. This packing is trivial, set Qv = ∅.

• Case (II), d(Ax)ve = d(Ax′)ve 6= 0. Proving (ii) is vacuous when (Ax)v is integral, and
otherwise it follows easily by induction since 〈(Ax)v〉 = 〈(Ax′)v〉+xe and at most xe of λ-mass
of solutions will have its degree increased at v. To show (i) is satisfied inductively, just like in
Section 3, define Qv to be the set of i with (Axi)v = d(Ax)ve; e can be added to any other xi

without violating the degree constraint. The terms (Ax)v and (Ax′)v differ by xe and have the
same integer ceiling, so by induction on (ii), we have the bound λ(Qv) ≤ 〈x′(δ(v))〉 ≤ 1− xe
showing that Qv is not too big. This bound will be used later.

• Case (III), d(Ax)ve = 1 + d(Ax′)ve and (Ax′)v 6= 0. Then satisfying (i) at v is easy (since all
xi have degree at most d(Ax′)ve at v) but we must design Qv so that (ii) is satisfied after the
packing step.

If (Ax)v is integral any packing works (we can take Qv = ∅), so assume the opposite.
Moreover, when (Ax′)v is integral, by (i) all solutions xi have degree less than d(Ax)ve at
each v ∈ e, and since we are only packing xe = 〈(Ax)v〉 amount of e, (ii) is also satisfied by
any possible packing.

Hence, assume both (Ax′)v and (Ax)v are non-integral. If we pack e arbitrarily, the total
weight of new solutions with degree d(Ax)ve at v could be too large to satisfy (ii). Therefore,
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we will define Qv to exclude some subset of the solutions Q′v := {i | (Axi)v = d(Ax′)ve} that
could rise to have this degree. We have λ(Q′v) ≤ 〈(Ax′)v〉 from (ii) inductively. We now define
Qv to be some subset of Q′v with λ(Qv) = 1−xe. This is not possible if λ(Q′v) < 1−xe but in
this case we just define Qv := Q′v. Also, even if no subset of Q′v has λ-value exactly 1−xe we
can split3 a term of the ρ-convex decomposition to achieve this. The point of this Qv is that,
using (ii) inductively, the post-packing total λ-value of the solutions with degree d(Ax)ve at
v will be at most λ(Q′v \Qv) ≤ 〈(Ax′)v〉 − (1− xe) = 〈(Ax)v〉; the latter equality holds since
(Ax)v = (Ax′)v + xe and by the hypotheses of this case. So these Qv allow us to inductively
satisfy (i) and (ii), on top of which λ(Qv) ≤ 1− xe.

In all cases, λ(Qv) ≤ 1−xe. Analogous to Lemma 11 there is enough room to complete the packing
step so long as ρ ≥ xe+λ(

⋃
v∈eQv). By a union bound this would be implied by ρ ≥ xe+k(1−xe).

This gives the same analysis as before (Proposition 13) in terms of our bounds on xe and ρ, so the
modified packing step succeeds and we are done.

4.1 Polynomial-Time Iterated Packing for k-Hypergraph b-Matching

Finally, we give our main algorithm. It uses modified packing steps and always maintains a ρ-
convex combination satisfying the conditions of Lemma 15. As usual, the core algorithm HbM
(Algorithm 3) operates on solutions where the incidence matrix A is of full column rank.

Algorithm 3 HbM(V,E, x) // write x as ρ-convex comb. of 0-1 solutions

Require: A has its columns linearly independent
1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0.
2: Pick a vertex v̂ with minimum nonzero degree.
3: Pick e ∈ δ(v̂) such that xe is maximized.
4: Recurse: (xi, λi)i := HbM(V,E \ {e}, x|E\{e}).
5: Extend each xi back to RE by setting the e-coordinates to 0.
6: Modified packing step: pack xe of e into (xi, λi)i and return the result.

Lemma 16. If 0 < x < 1 and the columns of the incidence matrix A are linearly independent, HbM
expresses x as a ρ-convex combination of 0-1 solutions satisfying the same properties as Lemma 15.

Proof. The proof is very similar to proof of Lemma 15 (except we have linear independence instead
of extremeness) and we therefore re-use its notation and some of the observations therein. Our
goal is to show that each modified packing step succeeds. Write Q for

⋃
v∈eQv. For the modified

packing step to succeed we need λ(Q) + xe ≤ ρ as before. We will use that λ(Qv) ≤ (1 − xe) for
each v, which holds as in Lemma 15.

The first case we will handle is |e| < k. In this case, λ(Q) + xe ≤ |e|(1− xe) + xe ≤ (k− 1)(1−
xe) + xe ≤ k − 1 ≤ ρ, as needed. So we assume |e| = k.

Since Lemma 10 applies to our setting, the degree of v̂ is at most µ. The next case we will
handle is xe ≥ 1/µ. In this case, λ(Q) + xe ≤ k(1− xe) + xe = k − (k − 1)xe ≤ k − (k − 1)/µ = ρ
(like the proof of Proposition 13). So we may assume xe < 1/µ.

3Splitting means to replace the term (xi, λi) with two terms (xi, p), (xi, λi − p) with distributed λ-mass on the
same integer solution xi.
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Likewise, by the definition of µ, we may assume x(δ(v̂)) < 1, since otherwise we fall in to the
previous case by our choice of e.

Since x(δ(v̂)) < 1, we can get an exact expression for Qv̂ more specific than that given in the
proof of Lemma 15. All solutions xi in the ρ-convex combination have degree 0 or 1 at v, and the
latter are the ones in Qv̂ (blocking e at v̂), and so λ(Qv̂) = (Ax′)v̂ = (Ax)v̂ − xe = x(δ(v̂)) − xe.
This complements the upper bounds λ(Qv) ≤ 1− xe that hold for all other v ∈ e with v 6= v̂. This
lets us bound the amount of room needed for the modified packing step:

xe + λ(Q) ≤ xe + x(δ(v̂))− xe + (k − 1)(1− xe)
≤ µxe + (k − 1)(1− xe) = k − 1 + (µ− k + 1)xe

≤ k − 1 + (µ− k + 1)/µ = k − (k − 1)/µ = ρ

where the middle inequality used x(δ(v̂)) ≤ µxe and the last used xe <
1
µ .

To complete the proofs of Theorems 1 and 2, we yet again use the approach of starting with
an extreme point solution and fixing its integer part (like Observation 6), recursing only on the
residual b-matching problem, which has linearly independent rows and 0 < x < 1.

5 Application: Bounded Color k-Hypergraph b-Matching

We observe that improved approximations for the bounded color k-hypergraph b-matching problem,
which is defined above Corollary 3, follow directly from our results. The specialization of this
problem for the case of 1-matchings in graphs was very recently introduced by Georgios [16], who
gave a 2-approximation (note that Gerogios had considered only 1-matchings and not b-matchings).
This independent result also leverages a variant of iterated packing. We give a k-approximation
for the general case of bounded color k-hypergraph b-matching.

Georgios observed that the problem was a special case of 3-hypergraph b-matching: for each
color class Ei, add a new vertex ci with capacity wi. Now replace each edge {u, v} with a hyperedge
{ci, u, v}. This precisely models the bounded color 1-matching problem. An analogous reduction
shows that bounded color k-hypergraph b-matching is a special case of standard k + 1-hypergraph
b-matching. To obtain our approximation, we simply observe that these special instances are
bipartite, as the set U consisting of all the ci vertices intersects every hyperedge exactly once. This
gives us a k-approximation since the instance under consideration is a k + 1-hypergraph.

6 Application: Allocations

We will take advantage of the Lavi-Swamy framework [22], which is a fractional version of the well-
known Vickrey-Clarke-Groves (VCG) mechanism. We cannot directly use VCG in this setting,
because one of the steps in VCG is to compute the allocation which maximizes the total utility
of all players, and this problem is NP-complete in our setting for t ≥ 2, by a reduction from 3-
dimensional matching. The main result of Lavi and Swamy is that once we have an LP-relative
ρ-approximation algorithm with respect to the natural LP, we can get a truthful-in-expectation
mechanism, which also maximizes the expected overall utility within a factor of ρ. Minimizing
this factor means we are coming closer to a VCG-like mechanism, whereas allocating everyone the
empty set is truthful but a bad approximation.
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First we define the natural LP relaxation for the allocation problem. Let xiS be a fractional
indicator variable indicating whether player i will win exactly the set S of items. Then the LP
requires that each player wins one set of items, and that each item is allocated at most once,
fractionally. Write viS as the valuation of player i for set S. Altogether the fractional allocation LP
is:

max
∑
i,S

xiSv
i
S : 0 ≤ x ≤ 1;∀i ∈ [n] :

∑
S

xiS = 1;∀s ∈ [m] :
∑
i

∑
S:s∈S

xiS ≤ 1. (A)

We assume the input to the mechanism is an explicit list from each bidder, consisting of their
valuation for each set upon which they wish to put a positive bid. The number of variables and
constraints in the LP is polynomial in the number of such bids. Although for constant k, any
reasonable bid language or oracle can be used, since the number of sets of size < k is polynomial
and we can convert everything to an explicit list.

Definition 17. An ρ-approximate truthful-in-expectation mechanism for the allocation problem is
a randomized algorithm of the following form. It takes the values v as inputs; its outputs are a valid
allocation of items to players together with prices pi charged to each player i. It has the following
two properties. First, where S(i) denotes the set of items allocated to player i, we have

∑
i v
i
S(i)

is at least
∑

i v
i
T (i)/ρ for every valid allocation T . Second, for every fixed v−i, a player who gives

insincere valuations v̂i as their input, resulting in random variables p̂, Ŝ compared to the original
ones p, S, does not increase their expected net utility:

E[vi
Ŝ(i)
− p̂i] ≤ E[viS(i) − pi].

Moreover, 0 ≤ E[pi] ≤ E[viS(i)] for all i.

Theorem 18 (Lavi-Swamy [22]). Given a polynomial-time LP-relative ρ-approximation algorithm
for an allocation problem, we can obtain a polynomial-time ρ-approximate truthful-in-expectation
mechanism.

However, the allocation problem here is precisely bipartite k-hypergraph matching: for each
bidder and each set of items they could win, create a set out of them all together, and this set has
size at most 1 +k−1 = k; and each such hyperedge contains exactly one bidder, so the hypergraph
is indeed bipartite. So our bipartite extension of the Chan-Lau theorem (Section 2) applies and we
are done. The LP-relative property is essential; the non-LP relative local search approach from [13]
cannot be used with [22].

7 Local Ratio and k-Hypergraph Demand Matching

We recommend [4, 6, 7] for background on the local ratio method, including its relationship with
the primal-dual method. The heart of the local ratio approach is the following lemma:

Lemma 19 (Local ratio lemma). Let xOPT be the (unknown) optimal integral solution. If wi·xLR ≥
wi · xOPT for all i, and w =

∑
iwi, then w · xLR ≥ w · xOPT , i.e. xLR is α-approximately optimal.

Compared with fractional local ratio, we do not start by solving an LP, which is faster. But, we
cannot use x∗ to guide the algorithm — we have to ensure an oblivious approximation guarantee
that holds against the unknown optimal solution.
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In this section we reinterpret the 2k-approximation for k-hypergraph demand matching from [24]
as a local ratio algorithm. Compared with [24], the new algorithm will be both simpler and faster
(as we solve no LPs). The inspiration for this simplified algorithm is a connection between local
ratio algorithm and iterative packing elucidated by Bar-Yehuda et al. [5, p. 12].

As before, let A be the incidence matrix, and let A[d] be the same matrix but with the column
for each e having its entries multiplied by de. Then an ILP formulation for the hypergraph demand
matching problem is to find an integral x maximizing wx subject to A[d]x ≤ b and c ≥ x ≥ 0.

We will assume that de ≤ bv whenever v ∈ e. This is without loss of generality for the purposes
of approximation, while for bounding the integrality gap this no-clipping assumption is needed to
even get a constant upper bound (even if k = 1, a.k.a. knapsack). Additionally, we treat only the
main case that c is unit, with the general case and the proof details in Appendix B; the same basic
ideas were used in [24] but arranged differently.

The crux in our case is to show that for every instance, there is a hyperedge e and a weight
function satisfying that any feasible solution is either 2k-approximately optimal or has room for e
to be added. With this (Lemma 20) and using the local ratio lemma, we can show that Algorithm 4
is a 2k-approximation algorithm.

Lemma 20. Let e be the hyperedge so that de is minimal. Define a weight function ŵ on all
hyperedges by ŵe = 1, and for all other f ,

ŵf :=
∑
v∈e∩f

df
max{bv − de, de}

. (2)

Then (i) every feasible solution (whether or not it contains e) has value at most 2k under ŵ, (ii)
ŵe ≥ 1, and (iii) any feasible subset of E \ {e} to which e cannot be added has weight at least 1
under ŵ.

Algorithm 4 HDM(V,E, d, b, w) // for hypergraph demand matching

1: Pick e ∈ E such that de is minimum, or return ∅ if E = ∅.
2: Define a new weight function ŵ ∈ RE via ŵe = 1 and (2) for f 6= e.
3: Let weŵ be its scalar multiple by we, and w′ := w − weŵ. // note w′e = 0
4: Define E′ := {e ∈ E | w′e > 0}. // note e 6∈ E′
5: Recurse: F ′ := HDM(V,E′, d, b, w′|E′).
6: If F ′ ∪ {e} is feasible define F := F ′ ∪ {e}, else define F := F ′.
7: Return F .
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A Proofs for Sections 1 and 2

Proof of Observation 6. Given an arbitrary k-hypergraph b-matching instance max{wx | x ∈ Z, 0 ≤
x ≤ c, Ax ≤ b}, let x be an optimal solution to the LP relaxation. We fix the integer part of bxc
and work with a residual problem. Let c′e = 1 if xe is non-integral and c′e = 0 otherwise, and let
b′ := b−Abxc; then the residual problem is max{wx | x ∈ Z, 0 ≤ x ≤ c′, Ax ≤ b′}, which is simple
(it has unit capacities as well as some zero-capacity edges that can be deleted). The LP optimum of
the residual problem is wbxc less than the LP optimum of the original problem. A short calculation
then shows that an (LP-relative) α-approximation for the residual problem, added to bxc, is an
approximation of the same quality for the original problem.

Proof of Lemma 10. The first part is a counting argument. The incidence matrix retains its rank
if we delete the all-zero rows, leaving only those rows corresponding to the set V ′ of vertices with
nonzero degree. The number of such vertices must satisfy |V ′| ≥ |E′| or else rank |E′| could not
be achieved. Since each column has at most k unit entries, there are at most k|E′| unit entries in
the whole matrix. So averaging, some row has at most k|E′|/|V ′| ≤ k nonzeroes, and this gives the
desired vertex.

For bipartite hypergraphs, examine the situation in which equality holds. This can only happen
if |E′| = |V ′| and the matrix has exactly k ones per row and per column. Let U be the subset
of vertices so that every hyperedge intersects U exactly once. So, each hyperedge intersects the
complement of U exactly k − 1 times. Therefore, the vector in RV with (−k − 1) entries in U and
unit entries elsewhere is orthogonal to all rows, contradicting that the adjacency matrix has full
rank.

Proof of Proposition ??. (i) Note that ŵ(x) is the sum of the x values of all edges that intersect e
(including itself). We group them by the point of intersection and isolate the v term, giving

ŵ(x) ≤ xe + (x(δ(v))− xe) +
∑

u∈e,u6=v
(x(δ(u))− xe)) ≤ x(δ(v)) + (|e| − 1)(1− xe).

Applying xe ≥ x(δ(v))/µ to the above inequality,

ŵ(x) ≤ |e| − 1 + x(δ(v))
µ− |e|+ 1

µ
. (3)

Now we use Lemma 10. In the bipartite case µ = k − 1, (3) is at most |e| − 1 ≤ k − 1 = ρ as
needed. In the general case where µ = k, note that the right-hand side of (3) has nonnegative
coefficient in |e| (as x(δ(v)) ≤ 1 ≤ µ) so it suffices to consider |e| = k. Then (3) is at most
k − 1 + x(δ(v))/µ ≤ k − 1 + 1

k = ρ as needed.

(ii) This follows from (i). For the induction to work, we use the fact that a subset of full-rank
columns is again full-rank. Observe that ŵ(F ) ≥ 1 and so ŵ(F ) ≥ ŵ(x)/ρ. Using induction,
w′(F ) ≥ w′(x)/ρ. Combining these facts using the local ratio lemma, we have the desired
result.

Proof of Lemma 12. If xe = 1 for any coordinate then we are done, so suppose otherwise. We know
from elementary linear algebra that there is a set V ′′ of vertices and a set E′′ of edges so that x is
the unique solution to xe = 0, ∀e /∈ E′′;x(δ(v)) = 1, ∀v ∈ V ′′. Then the same counting argument

15



as in Lemma 10 (resp. and the same linear independence in the bipartite case) ensures that some
v ∈ V ′′ is incident on at most k (resp. k−1) edges. Since it has x(δ(v)) = 1 the e ∈ δ(v) maximizing
xe satisfies the lemma.

B Proofs for Section 7

Proof of Lemma 20. (i) Suppose some X ⊆ E has e ∈ X. Then for every v ∈ e, the total demand
of X \ {e} at v must be at most bv − de. Hence

ŵ(X) ≤ 1 +
∑

f∈X\{e}

∑
v∈e∩f

df
bv − de

= 1 +
∑
v∈e

∑
f∈X\{e},v∈f df

bv − de

≤ 1 +
∑
v∈e

1 ≤ |e|+ 1 ≤ k + 1.

On the other hand if e 6∈ X, then we use that max{bv − de, de} ≥ bv/2 and the feasibility of
X (specifically A[d]X ≤ b) to obtain

ŵ(X) ≤
∑
f∈X

∑
v∈e∩f

df
bv/2

= 2
∑
v∈e

∑
f∈X,v∈f df

bv
≤ 2|e| ≤ 2k.

(ii) Holds by definition.

(iii) If some X /∈e is feasible and X ∪{e} is not feasible, let v be some vertex for which feasibility
is exceeded when we add e. Thus

∑
f∈X,v∈f df ≥ bv − de. Also, df ≥ de for all f ∈ X by our

choice of e as having minimal demand, and X must have at least one edge incident on v by
the no-clipping assumption, so

ŵ(X) ≥
∑

f∈X,v∈f

df
max{bv − de, de}

≥ max{bv − de, de}
max{bv − de, de}

= 1.

Then with standard local ratio arguments, we get:

Theorem 21. Algorithm 4 is a 2k-approximation algorithm for k-hypergraph demand matching.

Proof. We prove the result by induction on |E|; the base case is trivial. For the recursive step,
we know by induction that F ′ satisfies w′(F ′) ≥ w′(X)/2k for any subfamily X of E′. Since w′ is
nonpositive on E \E′ and w′e = 0, we have that F is a 2k-approximately optimal subset of E under
w′.

We claim that F is also a 2k-approximately optimal subset of E under ŵ. First, if F = F ′∪{e}
then ŵ(F ) ≥ 1 by Lemma 20(ii), and if F = F ′ then ŵ(F ) ≥ 1 by Lemma 20(iii). Second, the
optimal subset of E under ŵ has weight at most 2k, by Lemma 20(i).

Finally we use the “local ratio lemma:” as F is a 2k-approximately optimal subset of E under
both w′ and ŵ, so it is under their conic combination w.

Theorem 5 describes an LP-relative guarantee. To show this it is enough to prove a stronger
version of Lemma 20(i) where we argue that all feasible fractional solutions x have ŵ(x) ≤ 2k —
the details are the same as in [24, p. 356] and so we omit them.
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Finally, the above explanations assumed that we have c = 1. Unfortunately, dealing with the
general case is not as simple as using Observation 6, since the residual instance might not satisfy the
no-clipping assumption. Nonetheless, we can modify the algorithm to one that runs for arbitrary
c in polynomial time via the following changes. This will complete the proof of Theorem 5 in its
entirety. First, we assume WOLOG that ce ≤ minv∈ebbv/dec for each e. When ce ≥ 2 we alter the
definition of ŵ so that for f 6= e,

ŵf :=
∑
v∈e∩f

df
min{(bv − de)/ce, (bv − (ce − 1)de)/2}

.

The algorithm defines F by greedily adding as many copies of e as possible (up to ce) to F ′. Like
Lemma 20 we can show that this choice of ŵ ensures both ŵ(F ) ≥ ce and that every fractionally
feasible solution x has ŵ(x) ≤ 2kce. The ideas used to fill in the details of this proof are the same
ideas as are used in the c = 1 case.
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