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Abstract

Which programming error messages are the most common?
We investigate this question, motivated by writing error ex-
planations for novices. We consider large data sets in Python
and Java that include both syntax and run-time errors. In
both data sets, after grouping essentially identical messages,
the error message frequencies empirically resemble Zipf-
Mandelbrot distributions. We use a maximum-likelihood ap-
proach to fit the distribution parameters. This gives one pos-
sible way to contrast languages or compilers quantitatively.

Categories and Subject Descriptors D.3.4. [Programming
Language Processors]: Compilers, Run-time environments

Keywords Error messages, empirical analysis, usability,
education.

1. Introduction

This work started as an offshoot of Computer Science Cir-
cles (CS Circles) [34.135]], a website with 30 lessons and 100
exercises teaching introductory programming in Python. It
contains a system where students can ask for help if they
are stuck on a programming exercise. Often, students re-
ported being stuck because they could not comprehend an
error message, asking for a better explanation of what the
compiler/runtime was trying to say. E.g., the message

SyntaxError: can’t assign to function call

might not be understood by a novice who wrote sqrt (y) =x.

Motivated by this, we decided to systematically improve
the error messages that students received. There is copious
literature on writing good error messages [15, 26, 27, 130,
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40, 41]], but how can this advice be incorporated into the
programming ecosystem? One approach would be making
upstream improvements to the compiler/runtime, but this
can take a long time, and not all audiences would appre-
ciate the changes that would most benefit novices. A sec-
ond approach would be to write a tool that analyzes code
from scratch, looking for common syntactic bugs or likely
semantic mistakes. The literature includes many such tools:
see checkstyle, findbugs and L1} 16} 21,1231 24} 137].

We chose a more lightweight approach: augmenting the
normal error messages with additional explanations. To wit,
we compile and execute the code as usual, and then add a
beginner-appropriate elaboration of the resulting error mes-
sage, implemented by rendering the normal error with a
clickable pop-up link to the explanation. This augmenting-
explanation approach has been previously used on a small
scale with Java compiler errors [7, §5.2], Python runtime er-
rors [14} §5.2.1], and C++ STL compiler errors [42].

It has long been observed that “a few types of errors ac-
count for most occurrences” [8, 36]]. In order to make sure
that a small number of explanations would be useful as often
as possible, we had to answer the following question: what
error messages are the most common? Counting error mes-
sage frequencies has a long history, starting from assembler
[5,130] and SP/k [15], with renewed interest more recently,
using much larger data sets [[1} 2} 8] [18}[19}139].

Using with the history of all previous submissions, we
determined the essentially distinct error messages and their
frequencies (see Section , available online at http://
daveagp.github.io/errors. We wrote explanations for
the 36 most common messages. Regular expressions were
used to aid the implementation. At the most basic level,
some errors were made more readable by elaborating them
into a full paragraph of text rather than a one-line message.
Some explanations include concrete examples of code that
causes the same error message, and a description of how to
fix it. See [15] 26} 27,130,140, 41]] for advice on writing error
messages. Given a large data set, the work involved in this
group-and-explain approach is modest and not technically
challenging, so we would recommend it in any beginner-
facing system. Moreover, in internationalized settings, one
can then add explanations in other languages (this has been
implemented in CS Circles’ Lithuanian translation).
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This paper compares and contrasts the most common er-
ror messages in CS Circles with those in another program-
ming language. The Blackbox project [22}[22] is a large-scale
data collection-and-sharing project using Bluel, a Java pro-
gramming environment oriented at beginners. We obtained
the error messages from all recorded compilation and execu-
tion events, grouping and counting the essentially different
messages like we did for the Python data set. Comparing the
two data sets, we found that both error message frequency
distributions resembled the same family of distributions, the
Zipf-Mandelbrot distribution [25]. For these data sets, this
means that for any integer k, the frequency of the k£th most
common error is approximately proportional to 1/(k + t)?
where ¢ and ~ are parameters of the data set. In order to
determine the best values for these parameters, we propose
using a simple maximum-likelihood approach.

1.1 Discussion and Other Related Work

Orthogonal to purely quantitative analysis, a large body of
work focuses on manual categorization of errors. This allows
researchers to get more accurate results, and to precisely
understand the psychological state of the user, rather than
focus on the compiler-generated error messages themselves.
Good reasons for doing this include that “A single error may,
in different context, produce different diagnostic messages”
and that “The same diagnostic message may be produced by
entirely different and distinct errors,” see [28]]. This analysis
also helps measure whether a compiler’s error messages are
appropriate (e.g., see [20, 36]). This analysis is important
for compiler designers, language designers and educational
research, but it is not our focus.

The comparison of error message frequencies between
different languages raises many interesting open-ended
questions. Even within the same language, some compil-
ers are significantly better or worse than others; see Brown’s
amusing crowdsourcing of Pascal error messages [3} 4] as
well as [32, 41]. One way to view different error message
distributions is to imagine the extremes: the worst possi-
ble language would only ever say “?” without elaborating
(this has been formally evaluated, see [40]), while the best
possible language would, like a human tutor, always give a
perfectly adapted explanation. The exponent v in our work
is one way to measure where a language sits between these
extremes. However, simpler measures such as entropy could
also be used. Also, a single quantitative measure should not
be treated as paramount without context. When comparing
languages/compilers (e.g., [29]), statistical fitness is less im-
portant than overall usability, including measures like time
between errors and time to achieve user goals.

A notable alternative approach to improving student feed-
back based on large-scale data, rather than focusing on error
messages, is the HelpMeOut system [13]], which uses a de-
tailed repository of past student work sessions to find old
errors similar to new ones and make suggestions of how to
fix them.

To our knowledge, this paper is the first one to exam-
ine any link between programming error messages and sta-
tistical distributions. The special case ¢ = 0 of the Zipf-
Mandelbrot distribution is known as the power law distribu-
tion. It arises empirically in data sets such as the frequency
of distinct words in books, of links in webpages, and of ci-
tations in literature. Caveats apply here [6, [12] [31], includ-
ing: that generative explanations of how these distributions
could arise are tenuous; that near-power-law data sets may
be even closer still to other distributions; and that analyzing
such data sets has common pitfalls like using linear regres-
sion. Another caveat for our work is that the distributions of
error messages will depend on the nature of the users, and
the kind of setting in which the work is collected. In our
case, both data sets come from a very large, open project in-
tended for beginners. We anticipate that a data set where stu-
dents only work on a fixed set of exercises could be skewed
in some way, but both Bluel] and the CS Circles “console”
allow students to do any sort of open-ended programming.

See [33] for discussion of power laws in runtime object-
reference graphs of industry-scale computer programs.

2. Data Sets

Our first data set is the Python corpus from CS Circles.
Amongst the first 1.6 million code submissions, about
640000 resulted in an error. Our second data set is the Java
corpus from BlueJ Blackbox. We specifically considered
the “compile” events, of which there were about 8 million,
half of which produced an error, and the “invoke” events, of
which there were about 5 million, about 260000 of which
produced a syntax error and 180000 of which produced a
run-time error. We did not include the codepad or unit test
events, both of which are an order of magnitude smaller.

In both cases, following [32], we only counted the first er-
ror message. This tends to be the most accurate error (since
a syntax error can cause new valid parts of the program be-
low to be reported as errors) and it is also the error that the
programmer is most likely to pay attention to and fix first.
Moreover, CS Circles only shows the first error message in
its user interface; and even for a Ul like BlueJ that shows
multiple errors, beginner students often (by habit or by in-
struction) fix only one at a time and then recompile/re-run

After obtaining these raw data sets of hundreds of thou-
sands of error messages, we had to count how many time
each distinct message occurred. It is necessary to “sanitize”
the data by removing parts that pertained to specifics of user
code rather than the kind of error. For instance, NameError:
name ’'x’ is not defined should be understood by our
system to be essentially the same error as NameError:

't would not be invalid to investigate data sets where all errors are reported
and counted, but a worry is that it might say more about the statistics of
chain effects in syntax errors and less about the actual underlying bugs. Two
other strategies, “count-all” and “count-distinct,” are used in [39], though
their study participants were professionals and not novices.



name ‘sum’ is not defined so that the same explana-
tion will appear in either case. The sanitization was an itera-
tive process. Simple heuristics handled most cases correctly,
and in total we needed about 20 sanitization rules for Python
and 50 for Java, implemented using regular expressions.

There is a question of how far one should sanitize. Should
these two error messages be considered the same?

RuntimeError: maximum recursion depth exceeded

while getting the repr of a list

RuntimeError: maximum recursion depth exceeded

while getting the repr of a tuple

Overall we tended to use fewer sanitization rules rather
than more (considering the above to be different); a similar
approach was used in [39]]. Conceptually, to fix a single ob-
jective goal for sanitization, we imagined that each category
should uniquely correspond to a single line of source code
of the compiler/runtime where the error is first detected.

Another step in sanitization was to remove any non-
English error messages, to avoid inadvertently seeing the
same patterns repeated in multiple languages, which might
affect the results. This was done by removing all messages
with non-ASCII characters, and manual filtering.

2.1 Overview of Data Sets

The Python data set yielded 309710 syntax errors and
333538 compile-time errors. The Java data set yielded
4002822 compile-time errors and 129650 run-time errors.
Note that the Java data set has a much smaller proportion of
run-time errors than Python (only about 3% rather than al-
most half). But to a degree, this difference is inherent in the
language, since many errors that would occur at compile-
type in Java’s strict typing-and-scoping system are not en-
countered until run-time in Python.

After sanitization and grouping, the Python data set
yielded 283 distinct error messages. Of these, 17 occurred
exactly twice and 42 occurred only once (for example,

ValueError: Format specifier missing precision

and SyntaxError: can’t assign to Ellipsis).The
Java data set yielded 572 error messages in total; 65 occurred
exactly twice and 127 occurred only once (for example,
com.vmware.vim25.InvalidArgument and cannot
create array with type arguments).

Errors are not completely parallel for both languages. For
example, Java allows function overloading, i.e. two func-
tions with distinct signatures but the same name. In Python,
this must instead be implemented by a single function that
takes different actions depending on the runtime number and
type of its argument(s). It is the function’s responsibility to
generate the error message. It turns out that not all such func-
tions generate identical messages and so the single Java error
message no suitable method found corresponds to
more than one distinct Python error message:

f argument must be a string or number, not T
and f arg 1 must be a type or tuple of types.
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Figure 1. The two data sets for our study. The CS Circles
data set is Python, while Blue] is Java. The plots are log-log.

The 5 most common Python errors were:

179624 SyntaxError: invalid syntax
97186 NameError: name ’'NAME’ is not defined
76026 EOFError: EOF when reading a line

26097 SyntaxError: unexpected EOF while parsing
20758 IndentationError: unindent does not match

any outer indentation level
The 5 most common Java errors were:

702102 cannot find symbol - variable NAME
407776 ;" expected

280874 cannot find symbol - method NAME
197213 cannot find symbol - class NAME
183908 incompatible types

We plot both data sets in Figure [T} The z-axis measures
the rank of each error message (with 1 being the most fre-
quent) and the y-axis measures the number of times each er-
ror occurred. Using a logarithmic scale is necessary for the
changes in the y-axis to be visible, and we also use a loga-
rithmic scale for the x-axis. Notice that both data sets give
rise to similar distributions; in the rest of the paper we will
try to describe them in a common framework.

2.2 Notation

For any given data set, we will use N to denote the total
number of errors logged, and M for the number of distinct
error types. For example, the Python data set has N =
643248 and M = 283. Let F}, denote the number of times
that the kth-most common error occurred, e.g. F; = 179624
for Python. We will also write Fi,,x := Fj as an alternate
symbol for the same value, when we wish to emphasize that



#FI(f)where fis: | 1 |2 [ 3[4 ] 5|6
Python 42 | 17119113 6 | 4
Java 127165 | 31|17 | 18 | 15

Table 1. Number of f-legomena in each data set.

it is the maximum frequency. The smallest frequency Fs
is 1 for both of our data sets. In lexicography, the items
occurring just once are known as the hapax legomena of the
corpus. An f-legomenon is any error message that appears
exactly f times. We will use the symbol

#E71(f)

to denote the number of f-legomena. The first few counts of
f-legomena in our data sets is listed in Table [T}

3. Power Law Distributions

When studying frequency counts of different objects, a dis-
crete power law distribution is one in which the frequency
F}, of the kth most common item is proportional to 1/k".
As mentioned in the introduction, power law distributions
provide good fits to many unrelated empirical distributions.
A common example is that in the novel Moby Dick, the fre-
quency of the kth-commonest word is approximately propor-
tional to 1/k1:%%. “Zipf’s law” is sometimes used as a syn-
onym for the discrete power law, but sometimes also refers
to the special case Fy, o 1/k where v = 1. There is also
a large body of work on continuous power laws, where one
sorts items by some magnitude that takes on continuous val-
ues, and examines the relationship between rank and magni-
tude. See many examples of both types in [6].

Note that sanitization of error messages is particularly im-
portant because of the fact that many natural languages fol-
low power-law curves. If we did absolutely no sanitization,
then our error message distributions would have significant
aspects determined by the frequency distribution of variable
names chosen by users, and finding a power law describing
the latter would be less surprising, given that natural lan-
guage is already known to exhibit power law behaviour.

We now turn to analyzing our data sets from the power
law perspective. Do they approximately satisfy a power law?
This did not appear to be the case: a power law, when plotted
on a log-log scale, should give a straight line, but it is clear
from Figure [T] that this is not an accurate description of our
data set.

3.1 Zipf-Mandelbrot Distributions

There is a generalization of power law distributions called
the Zipf-Mandelbrot family of distributions. These distribu-
tions are defined, using two parameters ¢ and -, by

1

F _
B ek o

Such a sequence should appear linear on a log-log plot pro-
vided that along the x-axis, we plot the logarithmic positions
of (k + t) rather than of k. When we tested plotting these
distributions in this modified way, for an appropriate value
of ¢, we obtained a much more persuasive fit: in Figure [2}
which has the shift ¢ = 60, the points very nearly fall on a
line. This shift was obtained by trial-and-error, and the line
drawn in has slope —y = —6.3. In the rest of the paper we
aim to give a more principled way of estimating ¢ and .

Is a Zipf-Mandelbrot distribution plausible? Here is one
argument that, if we accept that power laws can arise in
natural settings, that there is reason to suspect that Zipf-
Mandelbrot laws can too. It is not meant to give an ex-
haustive explanation, just an argument for plausibility. Sup-
pose we start with a power law, and then coalesce several
items together. I.e., replace several distinct error messages
with a single unified message having the sum of their fre-
quencies. (In a list of English words, the analogy would
be that a single word has multiple meanings.) The effects
of this message-merging would be twofold: the resulting
new message would be an outlier to the original power law
curve; and the remaining data points, when plotted on a rank-
frequency scale, would be shifted several positions to the
left, i.e. they would follow a Zipf-Mandelbrot distribution in-
stead of a power law distribution. This is indeed a plausible
scenario for the Python data set! The most common error,
SyntaxError: invalid syntax, is very generic. It
can be obtained by writing two tokens in a row (such as
forgetting a comma or quote marks), using an assignment
statement in place of a conditional expression (such as using
if a=Db: instead of using ==), by mismatching parenthe-
ses, etc.

3.2 Consequences of a Zipf-Mandelbrot model

What behaviour does a Zipf-Mandelbrot model predict? It
postulates that there is some innate ordering of error mes-
sages, from most frequent to least frequent, so that the in-
herent probability F} of the £th most frequent error message
is proportional to (¢ + )~ 7. The reason that we use the sub-
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Figure 2. The Python data set with the (pre-logarithmic)
z-axis shifted by ¢ = 60, and a straight line with slope
—~ = —6.3 that approximately fits most of the data.



script £ here is that our concrete data set arrives via sampling
from the inherent distribution. So like a sampling error, the
observed ordering of messages from most to least frequent
is not necessarily the exact same as the innate ordering.

An interesting aspect of this model is that it assumes
F; o« (£ + t)~7 continues to hold for arbitrarily large ¢.
Can this be plausible: is the total number of possible er-
rors infinite? We will accept this as a reasonable hypothesis,
which if not literally true, could continue long enough to
be consistent with the size of any measured data set, for the
following reason, using Python as an example. The most
common errors we see are the ones in the Python core code
(the syntax errors, and runtime errors from the “builtins”).
Less frequently we start to see errors from Python mod-
ules, such ValueError: math domain error within the
sqgrt function of the math module. While this is the only
module taught on the site, users have occasionally submit-
ted code using other common modules like t ime, random
and functools, each of which comes with its own spe-
cific errors. Moving on, there would be errors from rarely-
used modules, then even after this, modules that users may
with more or less frequency import (or copy in) themselves.
For example, we observed a mainfile: error: must
provide name of pdb file error caused by someone
who copied in a Python program for use with the X-PLOR
biomolecular structure determination software [38]]. The
same phenomenon happens in the Java data set. So errors
with arbitrarily small inherent frequency are not unreason-
able despite the finite size of the languages.

4. Analysis

To fit our data to a Zipf-Mandelbrot distribution, several ap-
proaches are possible. For power laws, the naive approach,
using a least-squares fit to a linear log-log plot (c.f. Figure[2))
is known to introduce errors [[12]. Rather, we will follow
Newman [31]], who considered maximum likelihood estima-
tion methods for power laws. Some work will be needed to
extend this to Zipf-Mandelbrot distributions.

The method in [31] involves a particular way of process-
ing the data; let us mention the motivation. The direct ap-
proach to maximum likelihood estimation would be to de-
termine the + and ¢ that maximize [, (C/(k+t)7)* where
C is the normalizing constant with C' - >"7 | (k+1t) ™7 =
Izsak [[17] suggests this. But trying this approach gives un-
satisfactory results with any of our data sets — the curves
produced fit the data very poorly except in the regime of
F. The calculation goes wrong because it is too heavily bi-
ased by the highest-frequency errors. (For Zipf-Mandelbrot
in particular, if the argument in Section @] were to be true,
then it should be no surprise that fitting to £} would be
problematic, since F; would be an outlier from the norm.)
Also, the most likely fit entails that the innate order ex-
actly matches the observed frequency-ordering of error mes-
sages [17]], which is itself unlikely.

4.1 Probabilities of Frequencies

This motivates the maximum likelihood method on frequen-
cies [6L131]]. It starts by taking a different view of the data set.
Using the Python data set as a concrete example, we imagine
the frequency vector F = (179624, 97186, ..., 1, 1) itself as
being an unordered set of M data points from a parameter-
ized distribution — given a new error message, how frequent
is it? This distribution-on-frequencies is a transformed ver-
sion of the inherent distribution F'*, and also depends on the
data set size. The goal, then, is to choose the parameters so
as to maximize the likelihood of observing F'.

The analysis in [|6, 31] primarily achieves rigor for con-
tinuous distributions. For discrete distributions, it turns out
that the distribution-on-frequencies is actually given by an-
other distribution which seems to have been first studied by
Evert [9]. To describe it we recall the I' function, which is
the (shifted) analytic continuation of the factorial function,
satisfying I'(n) = (n — 1)! at positive integer values and
I'(n) = (n—1)I'(n—1) on its whole domain. The beta func-
tion, another standard function, is a continuous analogue of
the binomial coefficient, defined by

B(z,y) := T'(@)l'(y)/T'(x +y).

Then, finally, the Evert distribution is the frequency dis-
tribution, parameterized by one parameter «, defined by

frequency of f o< B(f +1 — «, ).

It is involved in our analysis for the following reason:

Proposition 1. Suppose that we draw samples from a dis-
crete Zipf-Mandelbrot distribution with parameters v and t.
If the number of samples is large, then for all small f, the ex-
pected number of f-legomena is proportional to B(f + 1 —
a, ) where oo =1+ 1/7.

Paraphrasing, this says that the distribution-on-frequencies
for a discrete Zipf-Mandelbrot distribution is the Evert dis-
tribution. This result was obtained by Evert [9] though he
expressed it in terms of “type density functions.” We re-
prove it in Appendix [A]

We remark that the proof of Proposition [T| remains valid
even if the discrete Zipf-Mandelbrot distribution is perturbed
by altering some of the highest probabilities, which ensures
that it is still valid even if outliers a la Section 3. 1] occur.

4.1.1 Remarks

In [6, 31], the focus of the analysis is on continuous power
law distributions, and for that, the analogue of Proposition
is to use a simple power law with exponent « instead of an
Evert distribution. Though the Evert distribution is not men-
tioned in [31]], it is remarked that the another distribution, the
Yule distribution, is an “an alternative and often more con-
venient form” of the discrete power law. These conveniences
are mathematical in nature: the normalizing constant, expec-
tation, variance, and moments of the Yule distribution have



nicer closed forms than a pure power law. (And it is reason-
able to use in power law analysis because up to a scaling fac-
tor, the Yule distribution becomes a discrete power law in the
limit.) These conveniences holds for the Evert distribution
too, since Evert and Yule differ only by a shift. For instance,
our fitting code utilizes the identity Z?ﬁ? B(f+1—a,a) =
B(2—-a,a—1)—B(Fpax +2 —a,a—1).

4.2 Maximum Likelihood

The Evert distribution allows us to compute the most likely
value of « for the collection of frequencies F. Writing E'}
for B(f + 1 — a, a), and C* for the normalizing constant
with C¢ - Z?‘:“"f‘ E¢ =1, we seek the o that maximizes

M
[Ice-Ez,.
k=1

This can be determined numerically using binary search,
using logarithms since the numbers involved are very small.
Then we determine the parameter v using v = 1/(a — 1).
The only remaining issue is how to determine the value
of the shift parameter ¢ that has maximum likelihood. Propo-
sition [T]does not help since ¢ plays no role in its conclusion.
(The reason for this apparent paradox is that the approxima-
tion guarantee of Proposition [I] is only valid for small fre-
quencies.) Nonetheless, we can determine a value for ¢ using
some ideas from the analysis of the continuous case [6} 31]E]

Proposition 2. Let o = 1 + 1/7. Suppose we draw a
sample from the bounded continuous power-law distribution
with exponent —o and domain (1, (757)"")- Then the
(M + 1)-quantiles of this random variable are proportional
to(t+ 1), (t+2)77,...,(t + M)™". Furthermore, the
choice of t that maximizes the likelihood of observing F is
t= (M +1)/(FHL — 1),

The first conclusion says that a “typical” draw of M
items from this continuous distribution-on-“frequencies” is
a model for the Zipf-Mandelbrot distribution. The second
conclusion gives us the rule that we use to compute ¢ in our
statistical fitting. We prove the proposition in Appendix

5. Fitting the Data

In Evert’s paper [9], rather than using maximum-likelihood,
he proposes estimating « using a Chi-squared test on the first
few #F~1(1),#F~1(2),... values. This approach is im-
plemented by the R library zip£R of Evert and Baroni [10].

We fit our data sets to the Zipf-Mandelbrot family of
distributions, using both the Chi-squared approach, and the
maximum-likelihood method of Propositions [I] and 2] (im-
plemented in Maple). The results of the fitting are shown in

2 The authors of [6l [31]] note that the continuous model reasonably resem-
bles the discrete model when thinking about larger frequencies; the smallest
continuous variables are the ones that would have to be distorted the most
in order to become quantized. Thus, the inaccuracies of Proposition are
complementary to those of PropositionE}

Max. likelihood X2 min.
Java a=1216,t=33.1| a =1.225,t=25.7
Python | a=1.165,t=44.7 | a = 1.143,t = 65.7
Python™° | « =1.131,t =99.8 | « = 1.133,t = 92.9

Table 2. Results of fitting our data sets to Zipf-Mandelbrot
distributions with both methods. Python"/° indicates the
Python data set with the 3 commonest messages removed.
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Figure 3. Plot of the Python data set on shifted log-log
axes, with shift ¢{ from maximum likelihood estimation.
Red: observed frequencies; blue: Chi-squared fitted Zipf-
Mandelbrot distribution; green: maximum likelihood fitted
Zipf-Mandelbrot distribution.
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Figure 4. Plot of the Java data set, analogous to Figure

Table 2] The fit for the Python data set improved greatly by
treating the three most common errors as outliers (c.f. Fig-
ure [I). In Figures [3 and 4 we show shifted log-log plots of
the observed fits (the Python plot omits the outliers). For the
Python-without-outliers data set, both methods give a good
fit. For the Java data set, the maximum-likelihood method
gives a significantly better fit than the Chi-squared method.



6. Future Work

A few questions for future work are: (1) can the fit be repli-
cated in other Java/Python systems? (2) what properties of
the users or programming ecosystem affect the o and ¢ pa-
rameters? (3) do error messages in other languages follow a
Zipf-Mandelbrot distibution?

In the context of the hypothetical extreme languages of
Section [I.T] Python’s smaller value of « suggests that it
tends to give more distinctive error messages. Is it actually
giving more information in its errors? Could it alternatively
be explained due to artefacts like the non-parallelism men-
tioned in Section 2.1

It would be interesting to re-analyze the discrete data
sets in [31] using the Evert maximum likelihood method.
This could be done for the data sets for word frequency,
web hits, telephone calls, and citations, which are discrete
distributions coming from a population that is large enough
to be effectively infinite. It would be interesting to apply
the Kolmogorov-Smirnov test suggested in [31]] to the Evert
method, to be more rigorous in our approach.

From a more practical perspective, it would be not hard,
and of a great potential benefit, to release a systematic data
set of good beginner-friendly explanations of the top errors
in different programming languages. Further work could try
to quantify if this improves the ability of beginner students
to program independently.
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A. Proof of Proposition I]

Fix a constant f and consider /N as growing to infinity. By
linearity of expectation, the expected number E[# F~1(f)]
of f-legomena is equal to the sum, over all ¢, of the prob-
ability that word ¢ occurs exactly f times in our sample.

For large N, any word with frequency bigger than a con-
stant has vanishingly small probability of occurring only f
times. So for a word that may become an f-legomenon, its
number of occurrences is well-approximated by a Poisson
random variable, since it is a sum of many Bernoulli ran-
dom variables, each with a small individual expectation. The
expected number of occurrences of the ¢-th most common
word is NC(¢ + t)~7, so the number of times we observe it
is a Poisson variable with expectation NC'(¢ + )~

This means that for any constant f, by the definition of a
Poisson variable,

(NC(L+t))!

Prlword Cappears exactly f times| = - oarmg )
lexp

Thus, the expected number of words appearing f times is

(NC(+t)~7)f
Bl Zf'expNC€+) v)

(oo}

We approximate this infinite sum with the infinite integral

o [ _NCEenT
(Nl = 1 f!exp(NC’(x+t)_'7)d ’

To evaluate it, we substitute y = NC(z + )77, ie. ¢ =

E[#F~

()7 —tandsodx = —%(CN)l/Wy_l_l/vdy, giving
_ ON)Yr (NOTT yf=5 1
E[#F! = (7/ T dy.
e ()= o

Again assuming N large, the above integral is well-approxim
by replacing the upper bound by +oo. Therefore, taking the
terms that do not depend on f into the constant of propor-
tionality, we find that

+oo , f—2-1
BHP (N x g [ g
CT(f-1/y)
O T(f+1)
< B(f=1/v,1+1/7) =

B. Proof of Proposition 2]

B(f+1—a,a).

Let U(a,b) denote a random variable from the uniform
distribution on (a,b). Our starting observation is that the
continuous power-law distribution with exponent —« and
unbounded domain (1,+o00) is identical in distribution to
U(0,1)77. See, for instance, [6, App. D].

Therefore, adding the bound to get the continuous power-
law in the hypothesis of the theorem, said distribution is
identical in distribution to U (W, 1)77.

The (M + 1)-quantiles of U(ﬁ,l)*7 are ((t +
k)/(t+M+1))"7fork =1,..., M, so the first conclusion
follows.

Finally, the smaller the domain (1, (=) "), the
larger the probability density function at the observed F
values, except that we need (ﬁ)”’ > Fax for Frpax
to be observable at all. This proves the second conclusion.
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